Surface acoustic wave manipulation of fluids and suspended particles in microchannels and sessile droplet: A review
Abstract view|20|times PDF download|9|times
Abstract
Acoustofluidic technology enables the precise motion control of microfluids and their suspended matter through microscale flow channels or acoustic streaming mechanisms, featuring multi-functionality, high throughput, dynamic controllability, fast response, high precision, and low energy consumption. In recent years, numerous literatures have reviewed the development of acoustofluidic technology, discussing the acoustic manipulation modes of particles in microfluids and their applications. However, research on the surface acoustic wave-based acoustic manipulation of particles and fluids in different microfluids remains scarce. This paper aims to provide a comprehensive review of this topic, delving into the fundamental principles of surface acoustic wave-based acoustofluidic technology and discussing the latest advancements in this field. First, the basic theory of acoustofluidic technology is introduced along with the forces involved in manipulating particles and fluids, then the advantages and disadvantages of different types of surface acoustic wave devices are reviewed. Microfluids are categorized into two main types: Fluids within microchannels and droplets on open surfaces. The surface acoustic wave-based acoustic manipulation methods for their internal fluids and suspended particles are discussed separately. Subsequently, the advantages and limitations of surface acoustic wave-based platforms in the acoustic manipulation of fluids and particles are analyzed. The work concludes with a summary of the challenges faced by acoustic streaming in the field of fluid and particle manipulation, followed by prospects for the future development of acoustofluidic technology.
Document Type: Invited review
Cited as: Peng, L., Zhou, Y., Guan, W., Zhao, F. Surface acoustic wave manipulation of fluids and suspended particles in microchannels and sessile droplet: A review. Capillarity, 2025, 17(1): 1-15. https://doi.org/10.46690/capi.2025.10.01
Keywords
Full Text:
PDFReferences
Ai, Y., Sanders, C. K., Marrone, B. L. Separation of escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Analytical Chemistry, 2013, 85(19): 9126-9134.
Akthakul, A., Hochbaum, A. I., Stellacci, F., et al. Size fractionation of metal nanoparticles by membrane filtration. Advanced Materials, 2005, 17(5): 532-535.
Akther, A., Walsh, E. P., Reineck, P., et al. Acoustomicrofluidic concentration and signal enhancement of fluorescent nanodiamond sensors. Analytical Chemistry, 2021, 93(48): 16133-16141.
Ali, W. R., Prasad, M. Piezoelectric mems based acoustic sensors: A review. Sensors and Actuators A: Physical, 2020, 301: 111756.
Amorim, D., Sousa, P. C., Abreu, C., et al. A review of sawbased micro- and nanoparticle manipulation in microfluidics. Sensors, 2025, 25(5): 1577.
Astruc, D. Introduction: Nanoparticles in catalysis. Chemical Reviews, 2020, 120(2): 461-463.
Bausk, E., Taziev, R., Lee, A. Discrete apodization in quasislanted saw idts. In IEEE Symposium on Ultrasonics, 2003, 2: 1758-1761.
Bourquin, Y., Syed, A., Reboud, J., et al. Rare-Cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics. Angewandte Chemie International Edition, 2014, 53(22): 5587-5590.
Cai, J., Zhao, J., Zhong, J., et al. Microfluidic experiments and numerical simulation methods of pore-scale multiphase flow. Capillarity, 2024, 12(1): 1-5.
Chen, G., Gibson, K. J., Liu, D., et al. Regioselective surface encoding of nanoparticles for programmable selfassembly. Nature Materials, 2019, 18(2): 169-174.
Chen, X., Lv, H., Zhang, Y. A novel study on separation of particles driven in two steps based on standing surface acoustic waves. Chaos, Solitons & Fractals, 2022, 162: 112419.
Chen, Y., Nawaz, A. A., Zhao, Y., et al. Standing surface acoustic wave (ssaw)-based microfluidic cytometer. Lab on a Chip, 2014, 14(5): 916-923.
Choi, C., Choi, M. K., Hyeon, T., et al. NanomaterialBased soft electronics for healthcare applications. ChemNanoMat, 2016, 2(11): 1006-1017.
Collins, D. J., O’Rorke, R., Neild, A., et al. Acoustic fields and microfluidic patterning around embedded microstructures subject to surface acoustic waves. Soft Matter, 2019, 15(43): 8691-8705.
Deivasigamani, R., Mohd Maidin, N. N., Abdul Nasir, N. S., et al. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis, 2023, 44(5-6): 573-620.
Destgeer, G., Im, S., Ha, B. H., et al. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves. Applied Physics Letters, 2014, 104(2): 023506.
Destgeer, G., Ha, B. H., Park, J., et al. Microchannel anechoic corner for microparticle manipulation via travelling surface acoustic waves. Physics Procedia, 2015, 70: 30-33.
Destgeer, G., Jung, J. H., Park, J., et al. Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves. Analytical Chemistry, 2017, 89(1): 736-744.
Devendran, C., Collins, D. J., Ai, Y., et al. Huygens-fresnel acoustic interference and the development of robust timeaveraged patterns from traveling surface acoustic waves. Physical Review Letters, 2017, 118(15): 154501.
Ding, X., Lin, S. C. S., Kiraly, B., et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2012a, 109(28): 11105-11109.
Ding, X., Peng, Z., Lin, S. C. S., et al. Cell separation using tilted-angle standing surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): 12992-12997.
Ding, X., Shi, J., Lin, S. C. S., et al. Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab on a Chip, 2012b, 12(14): 2491-2497.
Doinikov, A. A., Thibault, P., Marmottant, P. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel. Ultrasonics, 2018, 87: 7-19.
Dürr, M., Kentsch, J., Müller, T., et al. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, 2003, 24(4): 722731.
Fakhfouri, A., Colditz, M., Devendran, C., et al. Fully microfabricated surface acoustic wave tweezer for collection of submicron particles and human blood cells. ACS Applied Materials & Interfaces, 2023, 15(20): 24023-24033.
Falkovich, G. Fluid Mechanics: A Short Course for Physicists. New York, USA, Cambridge University Press, 2011.
Fan, Y., Wang, X., Ren, J., et al. Recent advances in acoustofluidic separation technology in biology. Microsystems & Nanoengineering, 2022, 8(1): 94.
Friend, J., Yeo, L. Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83(2): 647-704.
Geng, W., Liu, Y., Yu, N., et al. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-tsaw) for label-free isolation of living circulating tumor cells. Analytica Chimica Acta, 2023, 1255: 341138.
Gu, Y., Chen, C., Mao, Z., et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, 2021, 7(1): eabc0467.
Hossein, F., Angeli, P. A review of acoustofluidic separation of bioparticles. Biophysical Reviews, 2023, 15(6): 20052025.
Hsu, J. C. Enhanced micromixing using surface acoustic wave devices: Fundamentals, designs, and applications. Micromachines, 2025, 16(6): 619.
Huang, J., Kim, F., Tao, A. R., et al. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Materials, 2005, 4(12): 896-900.
Jang, J., Lee, S. S. Theoretical and experimental study of mhd (magnetohydrodynamic) micropump. Sensors and Actuators A: Physical, 2000, 80(1): 84-89.
Jo, M., Seo, Y. W., Yoon, H., et al. Embedded metallic nanoparticles facilitate metastability of switchable metallic domains in mott threshold switches. Nature Communications, 2022, 13(1): 4609.
Kaushik, M. Sound wave propagation in compressible fluids and flow regimes, in Fundamentals of Gas Dynamics, edited by Kaushik, M, Springer Singapore, Singapore, pp. 109-136, 2022.
Khan, M. S., Ali, M., Lee, S. H., et al. Acoustofluidic separation of prolate and spherical micro-objects. Microsystems & Nanoengineering, 2024, 10(1): 6.
Kolesnik, K., Hashemzadeh, P., Peng, D., et al. Periodic rayleigh streaming vortices and eckart flow arising from traveling-wave-based diffractive acoustic fields. Physical Review E, 2021, 104(4): 045104.
Kondoh, J., Okiyama, Y., Mikuni, S., et al. Development of a shear horizontal surface acoustic wave sensor system for liquids with a floating electrode unidirectional transducer. Japanese Journal of Applied Physics, 2008, 47(5S): 4065.
Kondoh, J., Shimizu, N., Matsui, Y., et al. Development of temperature-control system for liquid droplet using surface acoustic wave devices. Sensors and Actuators A: Physical, 2009, 149(2): 292-297.
Koo, K., Shen, B., Baik, S. I., et al. Formation mechanism of high-index faceted pt-bi alloy nanoparticles by evaporation-induced growth from metal salts. Nature Communications, 2023, 14(1): 3790.
Kuljabekov, A., Ashirbekov, A., Wang, L., et al. Isothermal co2 injection into water-saturated porous media: Latticeboltzmann modelling of pulsatile flow with porosity, tortuosity, and optimal frequency characterization. Thermal Science and Engineering Progress, 2023, 43: 101949.
Lee, S. H., Cha, B., Yi, H., et al. Acoustofluidic separation of bacteria from platelets using tilted-angle standing surface acoustic wave. Sensors and Actuators B: Chemical, 2024, 417: 136161.
Lee, C. S., Lee, H., Westervelt, R. M. Microelectromagnets for the control of magnetic nanoparticles. Applied Physics Letters, 2001, 79(20): 3308-3310.
Li, J., Esteban-Fernández De Ávila, B., Gao, W., et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2(4): eaam6431.
Li, L., Jia, K., Yang, K. Unsteady time-averaged streaming in microfluidics using traveling surface acoustic waves. Microfluidics and Nanofluidics, 2022, 26(10): 75.
Li, M., Lohmüller, T., Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Letters, 2015, 15(1): 770-775.
Li, W., Yao, Z., Ma, T., et al. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Advances in Colloid and Interface Science, 2024, 332: 103276.
Lighthill, S. J. Acoustic streaming. Journal of Sound and Vibration, 1978, 61(3): 391-418.
Lim, H., Hong, S., Cho, S., et al. Advanced design of indented-standing surface acoustic wave (i-ssaw) device for platelet-derived microparticle separation from whole blood. Sensors and Actuators B: Chemical, 2025, 423: 136742.
Liu, X., Chen, X., Dong, Y., et al. Multiple virus sorting based on aptamer-modified microspheres in a tsaw device. Microsystems & Nanoengineering, 2023a, 9(1): 64.
Liu, X., Chen, X., Yang, Z., et al. Surface acoustic wave based microfluidic devices for biological applications. Sensors & Diagnostics, 2023b, 2(3): 507-528.
Liu, W., Gao, H., Liu, K., et al. A review on particle assembly in standing wave acoustic field. Journal of Nanoparticle Research, 2022, 24(4): 81.
Liu, R. H., Yang, J., Pindera, M. Z., et al. Bubble-induced acoustic micromixing. Lab on a Chip, 2002, 2(3): 151157.
Lomeli-Martin, A., Ahamed, N., Abhyankar, V. V., et al. Electropatterning-contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis, 2023, 44(11-12): 884-909.
Meng, L., Deng, Z., Niu, L., et al. A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics, 2015, 5(11): 1203-1213.
Mitragotri, S., Anderson, D. G., Chen, X., et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 2015, 9(7): 6644-6654.
Mullard, A. FDA approves 100th monoclonal antibody product. Nature Reviews Drug Discovery, 2021, 20(7): 491495.
Nakagomi, S., Asano, H., Tanaka, H., et al. Single-phase unidirectional surface acoustic wave transducer using cu electrode. Japanese Journal of Applied Physics, 2003, 42(5B): 3152-3156.
Nam, H., Sung, H. J., Park, J., et al. Manipulation of cancer cells in a sessile droplet via travelling surface acoustic waves. Lab on a Chip, 2022, 22(1): 47-56.
Novotny, J., Lenshof, A., Laurell, T. Acoustofluidic platforms for particle manipulation. Electrophoresis, 2022, 43(7-8): 804-818.
Nyborg, W. L. Acoustic streaming, in Nonlinear Acoustics, edited by Hamilton M and Blackstock D, Springer Nature, Switzerland, Cham, pp. 205-229, 2024.
Orosco, J., Friend, J. Modeling fast acoustic streaming: Steady-state and transient flow solutions. Physical Review E, 2022, 106(4): 045101.
Pan, H., Mei, D., Han, S., et al. Morphologically reconfigurable magnetic micropillar arrays using acoustic streaming for particle capture and droplet manipulation. Sensors and Actuators B: Chemical, 2024, 412: 135776.
Park, J., Ha, B. H., Destgeer, G., et al. An acoustothermal heater for paper microfluidics towards point-of-care glucose detection. Physics Procedia, 2015, 70: 46-49.
Peng, T., Fan, C., Zhou, M., et al. Rapid enrichment of submicron particles within a spinning droplet driven by a unidirectional acoustic transducer. Analytical Chemistry, 2021, 93(39): 13293-13301.
Peng, T., Lin, X., Li, L., et al. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics. Heliyon, 2024, 10(3): e25042.
Potter, G., Tokranova, N., Rastegar, A., et al. Design, fabrication, and testing of surface acoustic wave devices for semiconductor cleaning applications. Microelectronic Engineering, 2016, 162: 100-104.
Poudineh, M., Aldridge, P. M., Ahmed, S., et al. Track ing the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nature Nanotechnology, 2017, 12(3): 274-281.
Qi, A., Yeo, L. Y., Friend, J. R. Interfacial destabilization and atomization driven by surface acoustic waves. Physics of Fluids, 2008, 20(7): 074103.
Qi, M., Dang, D., Yang, X., et al. Surface acoustic wave manipulation of bioparticles. Soft Matter, 2023, 19(23): 4166-4187.
Qian, J., Begum, H., Song, Y., et al. Plug-and-play acoustic tweezer enables droplet centrifugation on silicon super strate with surface multi-layered microstructures. Sensors and Actuators A: Physical, 2021, 321: 112432.
Raghavan, R. V., Friend, J. R., Yeo, L. Y. Particle con centration via acoustically driven microcentrifugation: Micropiv flow visualization and numerical modelling studies. Microfluidics and Nanofluidics, 2010, 8(1): 73 84.
Rajapaksa, A., Qi, A., Yeo, L. Y., et al. Enabling practical sur face acoustic wave nebulizer drug delivery via amplitude modulation. Lab on a Chip, 2014, 14(11): 1858-1865.
Ramezani, H., Dietz, H. Building machines with dna molecules. Nature Reviews Genetics, 2020, 21(1): 5-26.
Raymond, S. J., Collins, D. J., O’Rorke, R., et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Scientific Reports, 2020, 10(1): 8745.
Renaudin, A., Tabourier, P., Zhang, V., et al. SAW nanopump for handling droplets in view of biological applications. Sensors and Actuators B: Chemical, 2006, 113(1): 389 397.
Roux-Marchand, T., Beyssen, D., Sarry, F., et al. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: Investigation of microdroplet tem perature uniformity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(4): 729 735.
Sesen, M., Alan, T., Neild, A. Microfluidic on-demand droplet merging using surface acoustic waves. Lab on a Chip, 2014, 14(17): 3325-3333.
Shilton, R. J., Mattoli, V., Travagliati, M., et al. Rapid and controllable digital microfluidic heating by surface acous tic waves. Advanced Functional Materials, 2015, 25(37): 5895-5901.
Shilton, R. J., Travagliati, M., Beltram, F., et al. Nanoliter Droplet acoustic streaming via ultra high frequency sur face acoustic waves. Advanced Materials, 2014, 26(29): 4941-4946.
Song, Y., Li, D., Xuan, X. Recent advances in multimode mi crofluidic separation of particles and cells. Electrophore sis, 2023, 44(11-12): 910-937.
Sritharan, K., Strobl, C. J., Schneider, M. F., et al. Acoustic mixing at low reynold’s numbers. Applied Physics Let ters, 2006, 88(5): 054102.
Sun, J., Xianyu, Y., Jiang, X. Point-of-care biochemical as says using gold nanoparticle-implemented microfluidics. Chemical Society Reviews, 2014, 43(17): 6239-6953.
Tan, M. K., Friend, J. R., Yeo, L. Y. Microparticle collection and concentration via a miniature surface acoustic wave device. Lab on a Chip, 2007, 7(5): 618-625.
Tiller, B., Reboud, J., Tassieri, M., et al. Frequency de pendence of microflows upon acoustic interactions with f luids. Physics of Fluids, 2017, 29(12): 122008.
Vuong, T., Qi, A., Muradoglu, M., et al. Precise drop dis pensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter, 2013, 9(13): 3631.
Wang, W., Chen, Y., Farooq, U., et al. Ultrafast chemical-free cell lysis by high speed stream collision induced by surface acoustic waves. Applied Physics Letters, 2017, 110(14): 143504.
Wang, Q., Maramizonouz, S., Martin, M. S., et al. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Ultrasonics, 2024, 136: 107149.
Wang, Y., Pan, H., Mei, D., et al. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers. Lab on a Chip, 2022, 22(6): 1149-1161.
Wang, L., Parsa, E., Gao, Y., et al. Experimental study and modeling of the effect of nanoconfinement on hydrocarbon phase behavior in unconventional reservoirs. Paper SPE 169581 Presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, Colorado, 17-18 April, 2014.
Wei, W., Wang, Z., Wang, B., et al. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis, 2024, 45(23-24): 2132-2153.
White, R. M., Voltmer, F. W. Direct piezoelectric coupling to surface elastic waves. Applied Physics Letters, 1965, 7(12): 314-316.
Wiklund, M., Green, R., Ohlin, M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on a Chip, 2012, 12(14): 2438-2451.
Wixforth, A., Strobl, C., Gauer, C., et al. Acoustic manipulation of small droplets. Analytical and Bioanalytical Chemistry, 2004, 379(7-8): 982-991.
Wu, M. C. Optoelectronic tweezers. Nature Photonics, 2011, 5(6): 322-324.
Wu, R., Liu, X., and Gong, X. A study of the acoustical radiation force considering attenuation. Science China Physics, Mechanics & Astronomy, 2013, 56(7): 12371245.
Wu, M., Ouyang, Y., Wang, Z., et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 1058410589.
Xia, Q., Chen, Z., Xiao, P., et al. Fermi level-tuned optics of graphene for attocoulomb-scale quantification of electron transfer at single gold nanoparticles. Nature Communications, 2019, 10(1): 3849.
Xu, L., Wang, X., Liu, Y., et al. Lipid nanoparticles for drug delivery. Advanced NanoBiomed Research, 2022, 2(2): 2100109.
Yang, S., Tian, Z., Wang, Z., et al. Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022a, 21(5): 540-546.
Yang, Y., Zhang, L., Jin, K., et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Science Advances, 2022b, 8(30): eabn8440.
Shui, Y., Lin, J., Wu, H., et al. Optimization of single-phase, unidirectional transducers using three fingers per period. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(12): 1617-1621.
Zhang, P., Bachman, H., Ozcelik, A., et al. Acoustic microfluidics. Annual Review of Analytical Chemistry, 2020a, 13(1): 17-43.
Zhang, Y., Chen, X. Particle separation in microfluidics using different modal ultrasonic standing waves. Ultrasonics Sonochemistry, 2021, 75: 105603.
Zhang, S., Chen, C., Xue, C., et al. Ribbon of dna lattice on gold nanoparticles for selective drug delivery to cancer cells. Angewandte Chemie International Edition, 2020b, 59(34): 14584-14592.
Zhang, Y., Devendran, C., Lupton, C., et al. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (saw) driven mixing. Lab on a Chip, 2019, 19(2): 262-271.
Zhang, P., Rufo, J., Chen, C., et al. Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 2021, 12(1): 3844.
Zhao, L, Niu, P., Casals, E., et al. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation. Lab on a Chip, 2021a, 21(4): 660-667.
Zhao, L, Takimoto, T., Ito, M., et al. Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angewandte Chemie International Edition, 2011, 50(6): 1388-1392.
Zhao, X., Yang, L., Guo, J., et al. Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nature Electronics, 2021b, 4(2): 109-115.
Zheng, T., Wang, C., Hu, Q., et al. The role of electric field in microfluidic heating induced by standing surface acoustic waves. Applied Physics Letters, 2018, 112(23): 233702.
Zhou, Y., Guan, W., Zhao, C., et al. Spontaneous imbibition behavior in porous media with various hydraulic fracture propagations: A pore-scale perspective. Advance in GeoEnergy Research, 2023, 9(3): 185-197.
Zhou, Y., Guan, W., Zhao, C., et al. Numerical methods to simulate spontaneous imbibition in microscopic pore structures: A review. Capillarity, 2024, 11(1): 1-21.
Zhou, L., Shi, Y., Zhu, X., et al. Recent progress on optical micro/nanomanipulations: Structured forces, structured particles, and synergetic applications. ACS Nano, 2022, 16(9): 13264-13278.
Zhou, J., Tao, X., Luo, J., et al. Nebulization using zno/si surface acoustic wave devices with focused interdigitated transducers. Surface and Coatings Technology, 2019, 367: 127-134.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.