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1 Porous media fluid flow models

In this section, the expressions that were used to implement the various unsaturated flow models
in Fronts are presented.

1.1 Brooks and Corey

The Brooks and Corey model defines the following correlation between pressure head h and mois-
ture content θ [1]:

θ = θr +
θs − θr
|αh|n

, (1)

and, for hydraulic conductivity K:

K = Ks

(
1

|αh|n

) 2
n+l+2

, (2)

so that the moisture diffusivity function D for capillary flow is:

D(θ) = K
dh

dθ
=

Ks

α

1

n(θs − θr)

(
θ − θr
θs − θr

) 1
n+l+1

. (3)

1.2 Van Genuchten

The Van Genuchten model defines [1]:

θ = θr +
θs − θr

(1 + |αh|n)m
, (4)

and:

K = KsΘ
l
(
1−

(
1−Θ

1
m

)m)2

, (5)

both with m = 1− 1/n and Θ = (θ − θr)/(θs − θr), so that:

D(θ) =
Ks

α

(1−m)

m(θs − θr)
Θl− 1

m

((
1−Θ

1
m

)−m

+
(
1−Θ

1
m

)m

− 2

)
. (6)
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1.3 LET

For the model that uses the LET correlations, we define hydraulic conductivity with the LETx
formula [2] as:

K = Ks

SLw
wp

SLw
wp + Ew(1− Swp)Tw

, (7)

where Swp depends on the saturation Sw (or moisture content θ) via:

Swp =
Sw − Swir

1− Swir
=

θ − θr
θs − θr

. (8)

Additionally, we can use a LETs function [2], which relates saturation and pressure under
spontaneous imbibition:

Pc = Pcir
(1− Sws)

Ls

(1− Sws)Ls + EsS
Ts
ws

(9)

In order to combine both expressions, we first assume that Sws = Swp. Then, considering that
the pressure head is h = γPc (with γ the specific weight of the fluid), and defining α ≡ γ/Pcir, we
obtain the expression for the moisture diffusivity [3]:

D(θ) =
Ks

α

EsS
Lw
wp S

Ts
wp (1− Swp)

Ls (LsSwp − SwpTs + Ts)

θsSwp (Swir − 1) (Swp − 1)
(
EsS

Ts
wp + (1− Swp)

Ls

)2 (
Ew (1− Swp)

Tw + SLw
wp

) . (10)

1.4 LETd

The simplified LETd model uses the following expression for capillary flow [3]:

D(θ) = Dwt

SL
wp

SL
wp + E(1− Swp)T

, (11)

with Swp defined as in Eq. (8).

2 Alternative formulations of Boltzmann-transformed equa-
tions

The general form of the transient nonlinear diffusion equation as presented in the main paper is:

∂θ

∂t
= ∇ ·

[
D(θ)

∂θ

∂r
r̂

]
(12)

which, where r̂ is a Cartesian coordinate unit vector (or the axial coordinate unit vector in a
cylindrical coordinate system), is equivalent to:

∂θ

∂t
=

∂

∂r

(
D(θ)

∂θ

∂r

)
(13)

and can be converted by applying the Boltzmann transformation into the ordinary differential form
shown in the main text.
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2.1 Radial coordinates

Eq. (12) is also susceptible to the Boltzmann transformation when r̂ is a radial coordinate unit
vector in a cylindrical or spherical coordinate system. In these cases, the expression is equivalent
to:

∂θ

∂t
=

1

rm−1

∂

∂r

(
rm−1D(θ)

∂θ

∂r

)
(14)

with m = 2 in cylindrical coordinates and m = 3 in spherical coordinates. These transform into
the ordinary differential expression:

−ϕ

2

dθ

dϕ
=

m− 1

ϕ
D(θ)

dθ

dϕ
+D(θ)

d2θ

dϕ2
+

dD

dθ

(
dθ

dϕ

)2

(15)

The radial forms have been implemented in Fronts, even though they are not as versatile due
to being more restricted in terms of which boundary conditions are applicable in practice (see
Section 3.2), including the fact that they are singular at ϕ = 0. However, the radial–cylindrical
(m = 2) case is of special interest insofar it can support a fixed-flowrate boundary condition, which
will be described in Section 3.2.2.

2.2 Integral expression for the diffusivity

The integral expression that is the basis of the “inverse” feature of Fronts is derived here. For this,
we start with Eq. (13) and use the product rule in reverse to obtain:

−ϕ

2

dθ

dϕ
=

d

dϕ

(
D(θ)

dθ

dϕ

)
(16)

Subsequently, a mathematical procedure known as Bolztmann–Matano analysis may be applied
[4]. The previous equation is multiplied by dϕ/dθ:

−ϕ

2
=

d

dθ

(
D(θ)

dθ

dϕ

)
(17)

Integrating both sides in θ from the initial value θi gives:

−1

2

∫ θ

θi

ϕdθ = D(θ)
dθ

dϕ
− D(θi)

dθ

dϕ

∣∣∣∣
θi

(18)

where the rightmost term is neglected given that dθ/dϕ → 0 as θ → θi (see Section 3.1), so that
solving for D yields the final expression:

D(θ) = −1

2

dϕ

dθ

∫ θ

θi

ϕdθ (19)

2.3 Pressure-based Richards equation

The moisture diffusivity equation is in fact a special case of the Richards equation for flow in un-
saturated porous media [5]. While the moisture diffusivity equation can only describe spontaneous
capillary-driven flow as explained by a moisture content–dependent diffusivity, the Richards equa-
tion distinguishes between the effect of hydraulic conductivity and that of pressure in accounting
for the motion of the fluid. The segregation of the pressure field allows for modeling external
pressure–driven flow concurrent with capillary flow. The horizontal (i.e., gravity neglected) case
of such equation, which can be expressed as:

C(h)
∂h

∂t
=

∂

∂r

(
K(h)

∂h

∂r

)
(20)

is also compatible with the Boltzmann transformation, susceptible to being rewritten as:

−C(h)
ϕ

2

dh

dϕ
= K(h)

d2h

dϕ2
+

dK

dh

(
dh

dϕ

)2

(21)
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where h is the pressure head field, K(h) the hydraulic conductivity function that accounts for
shifting medium permeabilities under changes in saturation or pressure, and C(h) ≡ dh/dθ the
hydraulic “capacity” function that relates moisture content and pressure. Eq. (13) can be recovered
from this formulation by defining D ≡ K/C.

The Julia version of Fronts implements functionality to solve problems of this equation too,
using the same solvers and boundary conditions and with C(h) and K(h) as arbitrary functions,
possibly obtained from the built-in porous models as described in Section 1. The analogous radial
forms of Eq. (20) (c.f. Section 2.1) are also compatible with the Boltzmann transformation and
have been implemented as well.

3 Initial and boundary conditions

3.1 Initial condition

Application of the Boltzmann transformation to the initial condition is covered in the main paper.
We note that the limit of θ → θi as ϕ → ∞ also implies that dθ/dϕ → 0 at the same limit.

3.2 Boundary conditions

For more generality when dealing with boundary conditions, we shall define a boundary position
function rb, parameterized by a constant ϕb:

rb(t) = ϕb

√
t (22)

The main purpose of this function is to accommodate the radial equations (Section 2.1), which
are otherwise singular at r = 0. In non-radial coordinates, the obvious case of a boundary fixed at
r = 0 appears as a special case when ϕb = 0. On the other hand, ϕb ̸= 0 implies the existence of a
moving boundary, its movement controlled by the value of ϕb.

3.2.1 Dirichlet boundary condition

The general form of a Dirichlet condition with value θb at the boundary:

θ(rb(t), t) = θb (23)

transforms into the following condition for the univariate function at ϕ = ϕb:

θ(ϕ = ϕb) = θb (24)

This form of the Dirichlet boundary condition is usable with both radial and non-radial forms;
however, in actual scenarios the practicality of imposing a fixed θ value is mostly limited to non-
radial cases with ϕb = 0.

3.2.2 Flowrate boundary condition

In a radial–cylindrical case in particular, a fixed-flowrate condition that prescribes a rate of flow
Qb at the boundary:

Q(rb(t), t) = Qb (25)

is also compatible with the Boltzmann transformation, as it transforms into:

−D(θ(ϕb)) ϕb
dθ

dϕ

∣∣∣∣
ϕb

=
Qb

∆φ∆z
(26)

where 0 < ∆φ ≤ 2π is the central angle and ∆z the axial height. If ϕb → 0, this boundary
condition can in effect model a line source or sink at r = 0 [6]. In practice, the line source/sink
scenario with this boundary condition is implemented in Fronts by allowing ϕb to take on some
small value (10−6 by default).
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3.2.3 Cauchy boundary condition

A different type of boundary condition is that which prescribes the values of both θ and dθ/dϕ at the
boundary (with no specification of an initial condition, as that would result in an overdetermined
problem). This constitutes a Cauchy boundary condition and is used internally as part of the
shooting algorithm in the solvers (every iteration consisting of an attempt to solve a Cauchy
problem). It is exposed as an accessible problem type in the Julia implementation of Fronts, as
it may be used as an optimization in parameter estimation runs where the initial condition is
unknown in order to sidestep the shooting algorithm where it is not strictly necessary.
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