
Capillarity Vol. 6, No. 2, p. 31-40, 2023

Original article

Open-source high-performance software packages for direct
and inverse solving of horizontal capillary flow

Gabriel S. Gerlero1, Claudio L. A. Berli2, Pablo A. Kler1,3 *

1Centro de Investigación de Métodos Computacionales (CIMEC, UNL–CONICET), Colectora RN 168 km 472, Santa Fe, Argentina
2Instituto de Desarrollo Tecnológico para la Industria Quı́mica (INTEC, UNL–CONICET), Colectora RN 168 km 472, Santa Fe, Argentina
3Departamento de Ingenierı́a en Sistemas de Información, Facultad Regional Santa Fe, Universidad Tecnológica Nacional, Lavaisse 610,
Santa Fe, Argentina

Keywords:
Richards equation
horizontal flow
nonlinear diffusion
Boltzmann transformation
Julia language

Cited as:
Gerlero, G. S., Berli, C. L. A., Kler, P. A.
Open-source high-performance software
packages for direct and inverse solving of
horizontal capillary flow. Capillarity,
2023, 6(2): 31-40.
https://doi.org/10.46690/capi.2023.02.02

Abstract:
This work introduces Fronts, a set of open-source numerical software packages for
nonlinear horizontal capillary-driven flow problems in unsaturated porous media governed
by the Richards equation. The software uses the Boltzmann transformation to solve such
problems in semi-infinite domains. The scheme adopted by Fronts allows it to be faster
and easier to use than other tools, and provide continuous functions for all involved
fields. The software is capable of solving problems that appear in hydrology, but also in
other particular domains of interest such as paper-based microfluidics. As the first known
open-source implementation to adopt this approach, Fronts has been validated against
analytical solutions as well as existing software achieving remarkable results in terms of
computational costs and numerical precision, and is meant to aid the study and modeling
of capillary flow. Fronts can be freely downloaded and installed, and offers a friendly
environment for new users with its complete documentation and tutorial cases.

1. Introduction
Fluid flow in unsaturated porous media can be modeled

with the Richards equation (Richards, 1931). This is a nonlin-
ear partial differential equation that describes changes in mois-
ture content and/or pressure from the effects of gravity and
capillary action. Porous-media flow models provide closed-
form expressions for the necessary constitutive relations (Sun
et al., 2021). A special case of the Richards equation occurs
where the flow is horizontal or the effect of gravity can be
otherwise neglected-where it is also known as the moisture
diffusivity equation (Bear and Cheng, 2010).

As a partial differential equation, the Richards equation is
commonly solved with numerical methods based on the finite
difference, finite element, or finite volume methods, paired
with either fixed-point iteration (Picard’s method) or Newton–

Raphson method to deal with the nonlinear terms (Caviedes-
Voullième et al., 2013; Lai and Ogden, 2015; List and Radu,
2016; Farthing and Ogden, 2017). Software packages that fol-
low these schemes are widely available and used in hydrology,
and range from tools designed exclusively for one-dimensional
cases (Šimůnek et al., 2016) to others that extend support
to arbitrary geometries (Horgue et al., 2022). However, the
aforementioned nonlinear terms included in the equations to
be solved imply serious computational challenges for these
methods, and hence research on improved numerical schemes
for these applications is still ongoing. Such research can
consider one-dimensional vertical, or horizontal, geometries.
In the first group, for instance, List and Radu (2016) proposed
a new linearization scheme with better convergence properties;
Alastal and Ababou (2019) developed a particular Moving
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Table 1. Summary of different characteristics of the currently available software for solving the richards equation.

Software/algorithm Open source Vertical/2D/3D Boltzmann
transformation Method Reference

Hydrus No(*) Yes No Finite element Šimůnek et al. (2016)

COMSOL No Yes No Finite element Li et al. (2009)

porousMultiphaseFoam Yes Yes No Finite volume Horgue et al. (2022)

PFLOTRAN Yes Yes No Finite volume Hammond et al. (2014)

Pseudospectral method Yes(**) No Yes Chebyshev diff. Mathias and Sander (2021)

Fronts Yes No Yes ODE integr. Gerlero et al. (This work)

Notes: ∗ 1D-only public-domain variant of this software has been discontinued, ∗∗ As implemented in the Julia version of
Fronts. Originally published as a MATLAB script (op. cit.).

Multi-Front method for solving the Richards equation for
unsaturated flow in vertical homogeneous porous columns, and
Shanmugam et al. (2020) presented a weighting scheme for the
computation of hydraulic conductivities that can produce more
accurate results. A small snapshot of the different software
currently available for solving Richards equation is reported
in Table 1.

Alternatively, in the presence of horizontal flow,
the Richards equation is susceptible to the Boltzmann
transformation1 (Boltzmann, 1894) . This similarity transfor-
mation reduces the nonlinear partial differential equation to an
equivalent nonlinear ordinary differential equation, and can be
applied to problems of horizontal flow in semi-infinite domains
(Bear and Cheng, 2010). This approach has seen adoption by
researchers looking for analytical solutions to problems of
unsaturated flow (Philip, 1960; Prevedello et al., 2008; Su et
al., 2017); however, exact solutions are limited to problems
with diffusivity functions restricted to a few particular forms,
excluding those currently accepted as the most accurate. More
recently, the Boltzmann transformation has been applied in
the formulation of semi-analytical methods for these problems
(Chen and Dai, 2015; Tzimopoulos et al., 2015). Hayek
(2018) presented a general approximate analytical method
for the Richards equation in horizontal flow; unfortunately,
as discussed in the paper, the method is incompatible with
certain constitutive models (notably, the Van Genuchten
model). Mathias and Sander (2021) presented a pseudospectral
method for direct and inverse solving of horizontal Richards
equation based on the proprietary MATLAB® software. The
Boltzmann transformation has also been used in inverse
problems of horizontal flow where the saturation profile can
be approximated with an analytic function (Evangelides et al.,
2010).

Here, it must be noted that the Boltzmann transformation
can also be useful combined with standard numerical treatment
(Klute, 1952; Philip, 1955; Braddock and Parlange, 1980;
Andersen, 2023), resulting in a more efficient (and/or more
precise) scheme against traditional numerical methods used for
the Richards equation. Notably, such a scheme can obviate the

need for time-stepping iterations. Furthermore, it is possible to
avoid the requirement of a computational mesh as an input to
the program, which makes for a solver easier to use. Moreover,
when compared to an approximate analytical method, the
numerical approach does not suffer from the incompatibility
that appears when diffusivity function gradient tends to infinite
under limit conditions for saturation as it was outlined by
Hayek (2018).

This paper introduces Fronts (Gerlero et al., 2022a), a
numerical tool for solving horizontal cases of the Richards
equation with the application of the Boltzmann transformation.
As such, Fronts is designed to handle problems where the flow
occurs along a single axis and the domains may be presumed to
be semi-infinite. Built with the goal of being open source, and
easier to use and faster than the existing tools that can solve
these problems, the software has independent implementations
in two different programming languages: Python and Julia,
with versions uploaded to the official package registry of each
ecosystem. Both variants include the solvers that shall be
described later, a set of tutorial cases, and online reference
documentation that specifies their usage. The choice of envi-
ronments reflects current usage trends in scientific computing,
with Python being a popular environment for this type of
application, while Julia is a newer language with special
properties favor its adoption for numerical applications where
computation times are an important factor (Bezanson et al.,
2017). Fronts can be used both to solve problems in which
the underlying hydraulic functions are known, selected from a
library of built-in constitutive models, or arbitrarily provided
by users; as well as inverse problems in which the parameters
of an (also arbitrary) constitutive model are to be found. Fronts
was developed with the broader community in mind. Besides
its expected use in hydrology in general, a more specific
application field is identified in paper-based microfluidics,
where the Richards equation is now being applied in models
of lateral flow assays (Schaumburg et al., 2018; Asadi et al.,
2022).

On the development side, Fronts is open source and follows
modern software development practices, notably including the

1The Boltzmann transformation is not compatible with gravitational terms in the general Richards equation. Nevertheless, it is possible to use the solution
of a horizontal problem as starting point for the solution to a problem in which gravity is considered (Chen and Dai, 2015).
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Fig. 1. (a) Initial-boundary value problem in a semi-infinite
rectangular domain compatible with the Boltzmann transfor-
mation and Fronts, (b) transformation of the solution to the
Boltzmann variable.

use of a continuous integration service with automated test
suites for validation.

The paper continues with discussions of the mathematical
foundations and the numerical algorithms of Fronts. Following
that, validation of the software in terms of error calculation
from well known analytical solutions is presented, as well as
the discussion of some of the numerous tutorial cases that
are included with the implementations. Finally, an evaluation
of the capabilities of Fronts in solving challenging parameter
estimation problems is presented. The paper finishes with
concluding remarks regarding the benefits and perspectives of
this new software.

2. Mathematical model and numerical method

2.1 Governing equation and Boltzmann
transformation

Consider the transient nonlinear diffusion equation along
a single axis r, which may be written as:

∂θ

∂ t
= ∇ ·

[
D(θ)

∂θ

∂ r
r̂
]

(1)

In that expression, θ is a function of position r and time
t, and D is a positive function of the range of θ . In general,
θ may be called the concentration field and D the diffusivity
function.

When the equation is used to model capillary flow in
porous media, θ is the moisture content field, and D is known
as the moisture diffusivity function, a constitutive relation
that takes its expression from unsaturated flow models, with
adjustable parameters that are fit to the results of certain ex-
periments. Widely adopted constitutive relations for capillary
flow are those by Brooks and Corey (1964) and Van Genuchten
(1980)-implementations of which are already included in the
packages-along with more recently developed models such
as the LET correlations (Lomeland, 2018). Also included as
part of the packages is the implementation of the novel LETd

model for capillary flow, which is a LET-based simplification
specially targeted for paper-based microfluidic applications
(Gerlero et al., 2022b). The mathematical expressions of these
models are covered in the Supplementary Material.

With an appropriate choice of the unit vector r̂, Eq. (1) is
susceptible to the Boltzmann transformation2. The Boltzmann
transformation requires the introduction of a new variable φ -
also known as the Boltzmann variable, defined as:

φ =
r√
t

(2)

To apply the transformation to the partial differential
equation, the partial derivatives in Eq. (1) are replaced using
the following chain rules:

∂

∂ r
=

∂φ

∂ r
∂

∂φ
=

1√
t

∂

∂φ
(3)

∂

∂ t
=

∂φ

∂ t
∂

∂φ
=− φ

2t
∂

∂φ
(4)

After performing the substitutions, all occurrences of r and
t can either be replaced with φ or factored out. Expanding all
derivatives using the product rule, and with the final restriction
that θ be a univariate function of φ , the following ordinary
differential equation is obtained:

− φ

2
dθ

dφ
= D(θ)

d2θ

dφ 2 +
dD
dθ

(
dθ

dφ

)2

(5)

2.1.1 Initial and boundary conditions

For compatibility with the Boltzmann transformation, the
problems governed by Eq. (5) are defined in semi-infinite
spatial domains as it is shown in Fig. 1. Consequently, the
domains will be deemed unbounded toward positive r, and
the uniform initial condition:

θ(r, t = 0) = θi (6)
transforms into the boundary condition at infinity for Eq. (5):

lim
φ→∞

θ = θi (7)

The previous initial condition is commonly combined with
a Dirichlet boundary condition at r = 0, i. e.:

θ(r = 0, t) = θb (8)
which by Eq. (2) transforms to:

θ(φ = 0) = θb (9)
Boundary conditions other than Eq. (8) are applicable in

some particular situations and are also included within the
package; these are covered in the Supplementary Material.

2.2 Reconstructing the solution
The transformed equation and initial-boundary conditions

together define a two-point boundary value problem. Once a
solution to this two-point problem has been found, the solution
to the original problem can be reconstructed by applying the

2From now on, it shall be assumed that r̂ is a Cartesian unit vector. It is also possible to define r̂ to deal with some problems in cylindrical and spherical
coordinates; for more details on these problems and alternative applications of the Boltzmann transformation, refer to the Supplementary Material.
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Boltzmann transformation in reverse. The univariate function
θ can be transformed into a function of r and t with Eq. (2) so
that:

θ(r, t) = θ(φ =
r√
t
) (10)

Having the derivative dθ/dφ , the partial derivatives ∂θ/∂ r
and ∂θ/∂ t can be reconstructed with Eqs. (3) and (4) respec-
tively.

In many applications, knowing the diffusive flux is also
of interest. In a problem of capillary flow, the diffusive flux
measures the Darcy velocity of the fluid; as such, the diffusive
flux q can be used as input for solving transport problems
(Gerlero et al., 2022b). This quantity can be recovered as:

q =−D(θ)
∂θ

∂ r
r̂ =−D(θ)

1√
t

dθ

dφ
r̂ (11)

Another quantity of interest that appears in flow problems
is that of sorptivity-defined as the cumulative infiltration per
square root of unit time-(Mathias and Sander, 2021), which
can also be computed from the solution to the Boltzmann-
transformed problem as:

S =−2D(θ)
dθ

dφ
(12)

where θ and dθ/dφ are evaluated at the boundary by conven-
tion to obtain a scalar value for the sorptivity S.

2.3 Inverse problem
Fronts can also provide solutions to inverse problems

of Eq. (1) in which the unknown is the function D. This
functionality makes use of the integral expression (refer to
the Supplementary Material for its derivation):

D(θ) =−1
2

dφ

dθ

∫
θ

θi

φ(θ)dθ (13)

and may be evaluated without iteration, as long as a sufficiently
continuous form of the solution-which appears here as φ(θ)-
is available. In such cases, it can provide a useful D(θ)
function without a dependency on known models. In real cases
where the solution is known as discrete data points (with
possible uncertainties) and/or under the requirement that D
must conform to some known parameterized expression, the
practical usefulness of this expression is diminished (Bruce
and Klute, 1956), and defining an optimization problem that
invokes a direct solver may be a more effective approach.

2.4 Numerical implementation
2.4.1 Direct solver

In order to solve a problem governed by the moisture
diffusion equation, the first step is to convert it into a boundary
value problem of Eq. (5) using the Boltzmann transformation.
Then, the transformed problem is solved numerically with a
shooting algorithm in combination with a root finding method.

The default solvers in both the Julia and Python implemen-
tations of Fronts use Radau IIA implicit numerical integrators
of order 5, as implemented by the DifferentialEquations.jl
(Rackauckas and Nie, 2017) and SciPy (Virtanen et al., 2020)

libraries respectively. In practice, this algorithm of numerical
integration was found to be the most accurate and robust
among the available methods for a variety of tested problems.

It should be noted that derivative evaluations are required
in the process of solving Eq. (5). In the first place, the
derivative dD/dθ appears directly in such equation and thus
will need evaluation. Moreover, the use of an implicit inte-
grator imposes a requirement that derivatives of Eq. (5) must
also be runtime evaluable (which at the same time implies
a second differentiation of D). Derivative calculations are
handled differently in each implementation of Fronts: in
the case of Julia, the package uses forward-mode automatic
differentiation (Revels et al., 2016) internally so that required
derivatives are evaluated in a manner transparent to the user.
However, in the Python package, the required differentiated
expressions must be included as part of the implementation,
usually obtained with the help of a symbolic engine (except for
any function expressions provided by users at runtime, which
are differentiated symbolically with the SymPy library (Meurer
et al., 2017) just ahead of use). The different approaches reflect
the fact that the use of automatic differentiation in Python was
determined to be exceptionally expensive in terms of execution
times, even after accounting for the overall speed difference
that exists across the languages.

At the start of each outer iteration of the solver algorithm,
a candidate value needs to be selected for the integrator to use
as the free parameter (the derivative at the boundary). With
the assumption that this derivative varies continuously with the
initial condition, the solver uses the bisection method to select
trial values from a search interval. By default, a search interval
for the bisection algorithm is found with a heuristic method.
This scheme has been found to be very solid in practice; its
implementation in Fronts adds a few optimizations in order to
improve robustness and avoid unnecessary computations. No-
tably, this rootfinding algorithm is implemented as a coroutine
in Julia with the aid of the ResumableFunctions.jl package
(Lauwens, 2017).

It is important to emphasize that the solvers do not require
a starting candidate solution or even a grid of points to be
provided by the user as an input. Rather, the discretization of
the solution is fully controlled by the automatic step selection
of the numerical integrator, which constitutes an advantage in
terms of usability and performance.

2.4.2 Inverse solver

The inverse solver takes the input function in discrete form,
as values of θ on a finite set of points of the Boltzmann
variable. Such information can be experimental data of mois-
ture content as a function of time and space (Villarreal et
al., 2019). It first constructs a continuous function φ of θ

by interpolating the input data as a cubic spline using the
PCHIP method (Fritsch and Butland, 1984). Subsequently,
the diffusivity function D is defined by applying the integral
expression of Eq. (13).

Whenever the returned diffusivity function is invoked, it
computes the values of the required expressions by evaluating
the interpolating spline accordingly-making use of its integral
and derivatives when required, so as to conform to the same
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requirements that the software imposes on built-in and user-
defined diffusivity functions. As a result, an inverse solver
invocation can be expected to be faster than a direct solver
call, as it does not rely on an iterative algorithm. However, it
bears the disadvantages of the approach mentioned in Section
2.3.

2.4.3 Parameter estimation

Alternatively, an optimization-based parameter estimation
strategy can be employed to find values for parameters (in-
cluding initial and boundary values) for particular expres-
sions of the diffusivity D, as provided for instance by any
established (or newly developed) model for capillary flow.
This scheme implies the definition of an objective function
that itself invokes the direct solver and compares against the
desired results. The objective function can then be passed
to any optimization package to obtain estimates for the free
parameters. Given the substantial performance advantage, the
Julia version of Fronts is preferred for this type of usage.
Indeed, to facilitate this mode of usage, an optimization
support module is included in that implementation, which
assists the user in creating an appropriate objective function for
a particular model, set of free parameters, solver configuration,
and arbitrary target data points with possible uncertainties.
Anticipating the fact that the objective functions will be
repeatedly invoked by any chosen optimizer, computational
efficiency is of particular relevance in the implementation
of this functionality; notably, objective functions constructed
from this module are able to fit constant factors in D as part
of an inner intermediate stage, which avoids otherwise unnec-
essary solver invocations (Gerlero et al., 2022) in estimating
this common type of parameter.

3. Results and discussion
In this section, different cases as validation or application

examples are discussed. It is relevant to note that many more
example cases are included as part of the packages—due
to space constrains, it will cover a subset of those that are
considered the most significant for showcasing the broad range
of applications of Fronts. All reported execution times were
measured with the Julia version of the software running on an
M1 MacBook Air (Apple Inc., Cupertino, Calif., USA) note-
book computer. In order to run Fronts, the single requirement
is a standard installation of either Julia (version 1.6 or newer)
or Python (version 3.7 or newer).

3.1 Software validation
In order to validate the software implementation, two

particular cases that admit exact analytical solutions—due to
the special forms of their diffusivity functions (Philip, 1960)—
were solved with Fronts. The results show both remarkable
numerical precision and low computational costs.

3.1.1 Case 1

For the first case, the proposed diffusivity function is:

D(θ) =
mθ m

2

(
1− θ m

m+1

)
, m > 0. (14)

where the initial and boundary conditions are θi = 0 and θb = 1
respectively.

An unusual feature of this case is that, although the wetting
front is finite, its derivative at φ = 1 is discontinuous and
infinite when approaching from the left. As was demonstrated
by Philip (1960), the exact solution for this case is:

θ = (1−φ)
1
m , φ ∈ [0,1] (15)

For the solution of this case three different values of m
are considered, i. e. m = {1,2,5}. Fig. 2 gathers the results
of this case for the different values of m. Fig. 2(a) shows the
comparison of the analytical solution from Eq. (15) and the
solution computed with Fronts. Figs. 2(b) and 2(c) show the
behavior of the error (mean deviation from analytical solution)
for the moisture content and sorptivity as a function of solver
tolerance (absolute tolerance for θi). In both cases, a strong
linear dependence can be inferred up to a limit value of
the tolerance that was found to be around 10−4; for lower
values of such tolerance, the errors behave asymptotically.
Finally, Fig. 2(d) shows the number of iterations required by
solver to obtain a solution within the prescribed tolerance;
the log-linear trend shows the clear advantage of the adopted
computational implementation. For a fixed tolerance of 10−3

(default value in the software), the measured execution times
were m = 1 : 0.4012 ms, m = 2 : 0.9641 ms, m = 5 : 2.096 ms;
which are comparable to similar results reported by Mathias
and Sander (2021) for a pseudospectral method implemented
on a proprietary platform.

3.1.2 Case 2

In this second case also proposed by Philip (1960) and used
for validation of the implementation, the diffusivity function
is written as:

D(θ) =
m

2(m+1)

[
(1−θ)m−1− (1−θ)2m

]
, m > 0 (16)

where the initial and boundary conditions are once again θi = 0
and θb = 1.

The particular feature of this case is that the solution θ

exhibits an infinite derivative at φ = 0. The exact solution for
this case is:

θ = 1−φ
1
m , φ ∈ [0,1] (17)

For the solution of this second case, four different values
of m are considered; i. e. m = {1,2,5,10}. Fig. 3 shows the
results of the second validation case for the different values of
m. Fig. 3(a) shows the comparison of the analytical solution
calculated from Eq. (17) and the numerical solution produced
by Fronts. Once more, a remarkable agreement between the
numerical and analytical solution is observed. Figs. 3(b) and
3(c) show the behavior of the mean error for the moisture
content and percent error for sorptivity as a function of the
solver tolerance. In both instances, a strong linear dependence
can be inferred up to a limit tolerance value that, in this case,
shows a dependency on m for the moisture content error, where
a higher m coincides with a greater irreducible error. As for
sorptivity, the stagnation error is higher than in Case 1, as was
also observed with other methods (Parlange and Braddock
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(a) (b)

(c) (d)

Fig. 2. Validation results of Case 1. (a) Comparison of numerical (circles) and analytical (solid line) solutions, (b) and (c)
moisture content (mean absolute) and sorptivity (percent) errors as function of solver tolerance and (d) number of solver
iterations as a function of solver tolerance.

(a) (b)

(c) (d)

Fig. 3. Validation results of Case 2. (a) Comparison of numerical (circles) and analytical (solid line) solutions, (b) and (c)
moisture content (mean absolute) and sorptivity (percent) errors (respectively) as function of solver tolerance and (d) number
of solver iterations as a function of solver tolerance.
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Table 2. Initial-boundary conditions and model parameters
for the Grenoble sand application example (Fuentes et al.,

1992).

Parameter Value

Initial condition
(asymptotic)

θi 0.3120

Boundary condition
(asymptotic)

θb 0

Van Genuchten
parameters

Ks 15.37 (cm/h)

α 0.0432 (/cm)

m 0.5096

l 0.5

θr, θs θr = θi, θs = θb

(1980); Parlange et al. (1994), as evaluated by Mathias and
Sander (2021))-yet notably not with Mathias and Sander’s
(2021) own method. Finally, Fig. 3(d) shows the number
of iterations required to solve the case following the pre-
scribed tolerance. As also occurred with Case 1, the trend
here is log-linear, showing once again the advantages of the
solver implementation. For the default tolerance of 10−3,
the measured computation times were m = 1 : 0.4147 ms,
m = 2 : 1.778 ms, m = 5 : 2.725 ms, m = 10 : 1.877 ms, which
are also comparable to those previously reported.

3.2 Application examples
Two of the eight tutorial cases that are included with

the implementations of Fronts are discussed here. The first
is an archetypal example of capillary imbibition with severe
ill-conditioning that is known to not be solvable by other
methods based on the Boltzmann transformation. Finally, a
parameter estimation example based on previously published
experimental data of imbibition in filter paper is presented.

3.2.1 Direct solving example

For the first application example, a case of capillary
imbibition into a porous material with properties described
with the Van Genuchten model was selected. It is important to
note that no analytical solutions exist for this widely adopted
flow model in general nor in this particular example (Hayek,
2018).

This case adopts the parameters for Grenoble sand
(Fuentes et al., 1992) as listed in Table 2 along with the initial
and boundary conditions, which are set to θr (i.e., completely
dry medium) and θs (fully saturated) respectively. Given that
the Van Genuchten diffusivity increases without limit as θ

approaches θs and evaluates to zero when θ is equal to θr, the
problem of infiltration into a fully dry medium with this model
is intrinsically ill-conditioned and both the initial and boundary
conditions have to be treated as asymptotic. Indeed, this case
was previously presented by Hayek (2018) as one that could
not be correctly solved by application of his approximation
method. For its part, Fronts is able to produce an accurate
solution for this problem within the default tolerance for the

Fig. 4. Results of the first application example. The solid line
is the solution produced by Fronts, while the dashed line shows
the solution obtained with other software (porousMultiphase-
Foam) that uses a classical numerical approach for the partial
differential equation.

initial value and a very small (10−7) absolute tolerance for the
boundary value.

Fig. 4 shows the solution produced by Fronts for this case,
with the x-axis showing the Boltzmann variable normalized
by the constant

√
D0, where D0 = (1−m)Ks/(αmθs). For

comparison, also included is the solution obtained for the same
problem with a classical numerical approach that considers the
full partial differential equation, as implemented in the open-
source porousMultiphaseFoam toolbox that uses the finite-
volume method (Horgue et al., 2022). Even with this scheme,
a tolerance for the initial condition needs to be introduced
in order to avoid the ill-conditioning at the limit value.
With these allowances, it can be observed that both tools
predict equivalent solutions to this problem, with Fronts being
superior in terms of execution times (more than ten thousand-
fold difference) due to its more specialized algorithm.

3.2.2 Parameter estimation example

For the final case to cover, experimental data from Gerlero
et al. (2022b) was used, which studied the capillary imbibition
process in Whatman No. 1 paper, a material that is broadly
accepted as the most important substrate for paper-based
microfluidics. The dataset contains 141 datapoints of moisture
content at different values of the Boltzmann variable, each
contemplating the experimental uncertainty, that represent the
observed wetting profile for this material.

The example cases of parameter estimation included
with the package consider two different flow models: Van
Genuchten and LETd. It is important to note that this two
models were selected for this substrate due to their known
potential for describing the imbibition process in this substrate
with few parameters; yet a user can arbitrarily choose any of
the other implemented models (described in the Supplemen-
tary Material) or propose a different one based on their own
needs.

The cases follow a similar strategy than in Gerlero et
al. (2022b), but here adopting the new parameter estimation
support module provided by Fronts. That module is used to
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Table 3. Results of parameter estimation using Fronts and
the experimental data.

Model Parameter Search interval Value

Van
Genuchten

Ks/α (constant factor) 2.105×10−6 (m2/s)

m [0.001,0.999] 0.8861

l [−50,50] 2.331

θr [0,θi] 0.005623

LETd

Dwt (constant factor) 1.004×10−3 (m2/s)

L [0,10] 1.356

E [0,105] 10010

T [0,10] 1.224

θr [0,θi] 0.00625

generate an appropriate cost function that is subsequently
minimized with an optimizer of the differential evolution
family as implemented in the BlackBoxOptim.jl (Feldt, 2022)
package for Julia.

Table 3 lists the search intervals and found values of
the free parameters for each of the models after allowing
the optimization to run for 60 seconds on a single thread,
with the fitness measured with the reduced chi-square statistic
(χ2

ν ) (Taylor, 1997), which considers the uncertainty in the
experimental data (the constant factor parameters fitted by the
parameter estimation module as described in Section 2.4.3).
Fig. 5(a) compares the solutions found by parameter estima-
tion. Fig. 5(b) shows the diffusivity functions corresponding
to the fitted models and the diffusivity predicted by the inverse
solver (Section 2.4.2). Both flow models show good agreement
with the experimental data in terms of the moisture content
profiles, with errors χ2

ν = 1.6 and 0.9 for the Van Genuchten
and LET models respectively. For their part, the moisture
diffusivity curves deviate from each other at low values of
θ . The diffusivities estimated via the inverse method are
purportedly more representative of the experimental data in
this region due to not being constrained by any particular
model. Nevertheless, the large discrepancies in the diffusivities
translate to only minor differences in the predicted profiles,
which validates the implementation of parameter estimation
that considers the predicted profiles in lieu of what would be
a far less expensive fitting of the diffusivity models to the
results of the inverse solver.

4. Conclusions
This paper introduced Fronts, a new software tool for

solving nonlinear diffusion problems numerically. To our
knowledge, it is the first instance of open-source software that
adopts a scheme based on the Boltzmann transformation to
solve such problems. Distributed as Julia and Python packages,
the implementations includes tutorial cases and reference
documentation for the entire set of features. Fronts is openly
available under the MIT License (Julia) and BSD 3-clause
license (Python).

The implementations have been validated in two well-

known and challenging cases with analytical solutions. The

(a)

(b)

Fig. 5. Results of the parameter estimation examples consid-
ering the Van Genuchten and LETd models. (a) Results of
fitting the experimental data with either model (shaded area
behind the experimental curve represents the uncertainty in
the data) and (b) comparison of diffusivities predicted by the
fitted models with the results of calling the inverse solver with
the experimental data.

robustness and capabilities of Fronts have also been demon-
strated in solving a case with no possible solution when using
other methods. At the same time, Fronts was shown to also be
simpler to use: the main solver has no parameters of numerical
origin that need to be set or tuned when attempting to solve a
case. These facts are once more restated as clear advantages
of the approach adopted in Fronts.

Direct (predictive) use of the toolbox notwithstanding,
Fronts has proven to be useful in solving parameter estima-
tion problems through optimization runs-made practicable due
its speed, included functionality and ease of automation, as
was demonstrated in the imbibition-based characterization of
Whatman No. 1 paper.

Moreover, Fronts can easily apply arbitrary diffusivity
functions defined by users in infiltration problems. The fact
that the partial derivatives and diffusive flux of the solution
are obtained in continuous form is also notable when recon-
structing velocity fields. Furthermore, there is also potential for
the toolbox to help with coupled transport problems, in which
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the diffusive flux from a problem compatible with Fronts
forms an advection velocity in a different problem. While
advection problems obviously fall outside of the scope of the
toolbox, having access to Fronts in this scenario means that
the diffusion problem needs to be solved just once, and the
continuous solution passed on to a different solver that itself
only needs to deal with the (usually linear) transport problem.

With the release of this work, a positive impact is fore-
seen in the field of fluid flow in porous media at different
scales, ranging from applications in hydrology to paper-based
microfluidics, where Fronts is expected to help in the study
of capillary flow and the development of new processes,
techniques and devices.
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