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Abstract:
Mercury injection capillary pressure analysis is a methodology for determining different
petrophysical properties, including bulk density, porosity, and pore throat distribution. In
this work, distinct parameters derived from mercury injection capillary pressure tests
was considered for the prediction of permeability by coupling machine learning and
theoretical approaches in a dataset composed of 246 tight sandstone samples. After quality
checking the dataset, the feature selection was carried out by correlation analysis of
different theoretical permeability models and statistical parameters with the measured
permeability. Finally, porosity, median capillary pressure, Winland model, and mean pore-
throat radius (corresponding to the saturation range 0.4-0.8) were chosen as the input
features of the machine learning model. As the machine learning approach, a support vector
machine (SVM) model with a radial basis function kernel was proposed. Furthermore, the
model and its metaparameters were trained with a particle swarm optimization (PSO)
algorithm to avoid over-fitting or under-fitting. In contradiction to the theoretical models,
the implemented SVM-PSO model could acceptably predict the experimentally measured
permeability values with an R2 rate of over 0.88 for training and testing datasets. The
introduced approach could reduce the mean relative errors from about 10 to values less
than 0.45. The improvements were more significant for low permeability samples. This
successful implementation shows the potential of coupled usage of theoretical and machine
learning methodologies for improved prediction of permeability of tight sandstone rocks.

1. Introduction
Multiphase flow in porous media happens in many artificial

and natural processes, such as nonaqueous phase liquids
transport, CO2 storage, enhanced oil recovery (Ahmad et al.,
2016; Blunt, 2017). The relative distribution and movement
of wetting and non-wetting phases in porous media are highly
influenced by the capillary behavior of phases and controlled
by two critical parameters. In classic definitions, these are
the capillary pressure (Pc) and the relative permeability of

the phases, both considered to be functions of the saturation
of the wetting phase (Lin et al., 2018). Also, the efficiency
of operations in oil recovery or geological storage is highly
dependent on the permeability of the rock, and the correct
prediction of its distribution in areal and lateral directions af-
fects decisions and technical solutions. The rock permeability
is directly dependent on the geometrical attributes of rocks,
such as porosity, pore-size distribution, and pore network
coordination number (Menke et al., 2021).
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Capillary pressure is defined as the pressure difference
across the interface between two immiscible phases. The wet-
ting condition of the porous media, interfacial properties of the
phases, and the pore geometry of the rock are the determining
parameters in the capillary behavior of porous media. The
porous plate method, centrifuge method, and mercury injection
capillary pressure (MICP) method are the three most routine
approaches for capillary pressure function measurement in
geological rocks (Abbasi and Andersen, 2022). In MICP tests,
the mercury as a non-wetting phase is injected into the core
samples up to high pressures (to 4,000 bars). The porosity can
be calculated from the total volume of mercury injected at the
maximum pressure (McPhee et al., 2015). Also, the saturation
at each pressure stage is determined as the volume fraction
of mercury that has entered the rock. The Pc at each stage is
equal to the mercury injection pressure. This test also gives
insightful information related to the pore structure of the rock
(Jiao et al., 2020). However, the procedure leads to permanent
loss of the core samples due to retaining mercury in the pores
after withdrawal. The measured Pc at each saturation stage
is related to effective pore throat size by the Young-Laplace
equation:

Pc =
2σ cosθ

r
(1)

where σ is mercury/air interfacial tension, θ is the contact
angle, and r is the pore throat radius.

The permeability of cores is routinely measured in single-
phase liquid or gas injection tests. Also, due to the high
measurement time of tight samples, the pressure decay method
may be used (Jones, 1997). However, for decades, researchers
have tried to extract permeability from other measurements,
such as Pc tests, especially MICP tests. Purcell (1949) provided
an analytical relation for the prediction of permeability from
porosity and MICP curve properties, such as the fraction
of volume occupied by mercury and capillary pressure, but
assumed the porous medium was a bundle of tubes and had
to apply a correction factor. Swanson (1981) defined the
Swanson parameter, which is the maximum value of the curve
of mercury saturation divided by Pc (SHg/Pc) plotted versus
mercury saturation (SHg), for the prediction of permeability
from Pc data for clean sandstones and carbonates, separately.
However, Xiao et al. (2014) concluded that the Swanson equa-
tion is not successful in tight sandstones due to the ambiguous
Swanson parameter values. Xiao et al. (2017) showed that in
homogeneous sandstone rocks, the average pore throat radius
can be calculated to find accurate permeability predictions. By
analysis of tight gas sands, Rezaee et al. (2012) found that the
dominant pore throat radius is in the mercury saturation of
10% and that this point correlated with permeability.

In recent years, the application of machine learning (ML)
in geosciences has been growing rapidly due to the large
volume of available data that needs processing and analysis
(Karpatne et al., 2019). Several applications of ML have
been found in the rock-fluid properties (Hébert et al., 2020),
and upscaling of porosity-permeability calculations from pore-
scale images (Menke et al., 2021). Due to the importance of
permeability, many of the studies are focused on the prediction

of permeability from different data sources, including special
core analysis tests (Erofeev et al., 2019), wireline logs (Zhang
et al., 2021), and nuclear magnetic resonance tests (Zhang
et al., 2017). Feng et al. (2020) applied a support vector
machine (SVM) algorithm to 22 sets of MICP data and found
that it is superior to currently available permeability models.
However, it was found that previous studies rarely considered
tight sandstone rocks. Tight sandstones are known as highly
heterogeneous with a mixture of pore types, including primary
intergranular pores, secondary dissolution pores, and fractures
(Zhao et al., 2022). This complex structure of tight sandstones
brings uncertainties in the predictions of permeabilities using
regular models. However, ML models have shown potential for
the prediction of complex phenomena in various applications.
In this work, it is tried to analyze the validity of previously
developed MICP permeability models for tight sandstone rocks
using a dataset much larger than the previous works, and
then develop an ML model for a more accurate prediction
of permeability. It is focused on synergizing the capabilities
of the ML model and the previously developed theoretical
models. Accordingly, at first, the validity of current perme-
ability models (i.e., Swanson, Purcell, Parachor, Fractal, and
Winland models) is investigated over a large set of MICP tests
related to tight sandstones, which are gathered from all over
the world. Then, the pore-scale characteristics of the Pc curves
that are most correlated to the rock permeability is determined.
Then, by mixing the most correlated theoretical and statistical
features, it is focused on the deployment of ML-aided models
for the estimation of tight sandstone permeabilities from MICP
tests.

In the following, the theory behind the deployed models
is introduced, and the details of the developed ML model are
provided. Then, the results obtained in the process of feature
engineering and the model training and testing are provided.
The work ends with a conclusion.

2. Methodology
The methodology used in this work is based on an

ML algorithm coupled with an optimization tool. The main
workflow is shown in Fig. 1. The work started with data-
gathering from industrial and literature data. Afterward, data
cleaning and anomaly analysis were carried out. Then, by
analytical and statistical analysis of possible relevant ML input
features, the most suitable parameters for the prediction of
rock permeabilities are investigated, and features with the
best results are selected. Finally, the ML model is trained,
and the results are validated against the testing dataset. More
discussions about the methodology are provided in the coming
sections.

2.1 Data gathering
In this work, a dataset with an overall of 248 samples

related to tight sandstone rocks was gathered. Each sample
included the measurements of porosity, permeability, and
MICP curves. Some of the data was gathered from the Ordos
Basin, located at the junction of the eastern tectonic domain
and the western tectonic domain, which is expected to be
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Fig. 1. The flowchart introducing the workflow of the development of the ML model for the permeability prediction of tight
sandstones.
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Fig. 2. The mercury injection Pc curves for all the MICP samples in (a) cartesian scale and (b) Semi-log scale.

the second-largest petroliferous basin in China (Wang and
Wang, 2013). The study area is in the Yishaan Slope of the
Ordos Basin, which is the main area of tight (sandstone)
oil exploration and development in China. These tight cores
were taken from different layers of more than 20 wells in
the Yanchang Formation. A total of 172 cores were tested
by Poremaster PM-33-13 for MICP data, and CMS-300 was
used to obtain the porosity and permeability of these cores
(Changtao et al., 2018; Fan et al., 2019). Also, 76 MICP
samples were gathered from different sources in the literature
(Rezaee et al., 2012; Eslami et al., 2013; Xiao et al., 2014,
2017; Tran et al., 2018; Wang et al., 2018, 2019; Arabjamaloei
et al., 2019; Liu et al., 2020). Fig. 2 shows the MICP curves
for all cases in both cartesian and logarithmic scales, where
there are large variations in the range of Pc values. Also, the
statistical distributions of porosity and permeability values of
the tests are provided in Fig. 3. The porosities are in the
range of 0.03-0.26, mainly in the range of 0.06-0.15. Also,
permeabilities are in the range of 0.0005 to 4 mD, and mainly
in the range of 0.008 to 0.1 mD, which is expectable for tight
sandstones.

2.2 Permeability correlations
Many researchers have developed theoretical models for

the prediction of rock permeability by interpretation of MICP

tests. These models may be partially based on theoretical mod-
els or empirical datasets. In this section, the most prominent
correlations utilized in our work are introduced.

2.2.1 Swanson permeability

To provide a method for the prediction of rock brine
permeability from capillary measurements, Swanson (1981)
provided a correlation by introducing the Swanson parameter,
which equals the maximum point of the curve when (SHg/Pc),
is plotted versus SHg. This point is closely related to the
condition in which the non-wetting phase partially fills the
effective pore volumes and has a determining role in control-
ling fluid flow in the rock pore system. For sandstone rocks,
rock permeability K (m2) is calculated by:

K = 0.015
(

SHg

Pc

)2.109

max
(2)

2.2.2 Purcell equation

Purcell developed a semi-analytical equation to determine
the relationship between the permeability of a porous medium
and its porosity and Pc curve using a bundle-of-tubes assump-
tion combined with Poiseuille’s equation (Purcell, 1949):

K = (6.47e−4)φ
∫ SHg=100

SHg=0

dSHg

P2
c

(3)
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Fig. 3. Histogram distribution of (a) porosity and (b) permeability values. Porosity shows a normal distribution, while
permeability shows a log-normal distribution.

where φ is the porosity.
The equation was verified over 26 MICP tests from sand-

stone rocks and showed that the permeability can be well
predicted using the porosity and Pc curves.

2.2.3 Parachor equation

By extending the Swanson model, Guo et al. (2004) intro-
duced a correlation that best fitted their MICP data by deriving
the capillary pressure Parachor parameter, (SHg/P2

c )max, that
is defined as the maximum value of the SHg/P2

c curve plotted
versus mercury saturation. The Parachor permeability model
is defined as:

K = (5.29e−7)

(
SHg

P2
c

)
max

(4)

2.2.4 Winland equation

Winland presented an empirical correlation that relates the
average pore radius and porosity to the rock air permeability
(Kolodzie, 1980). After regression with different parameters,
he found that the radius corresponding to the mercury satu-
ration of 35% had the best correlation with the permeability.
However, the optimum corresponding saturation may be dif-
ferent in various cases. In this work, the reference correlation
is used for the analysis of the permeability measurements:

logr35 = 7.82+0.588logKair−0.864logφ (5)
where Kair is the air permeability. In this equation, the pore
radius corresponding to the saturation of SHg = 0.35 is calcu-
lated by:

r35 =
2σ cosθ

Pc(SHg)
(6)

2.2.5 Fractal analysis of pore structure

The fractal theory is widely used for the analysis of pore
structures in sandstone rocks and was first proposed by Burn
and Mandelbrot (1984). They found that the size distribution
of the pores in sponges follows the power law. Actually, the

cumulative distribution of pores with a size greater than or
equal to λ has been confirmed to follow:

N(L≥ λ ) =

(
λmax

λ

)D f

(7)

where D f is defined as the pore-size fractal dimension and
λmax is the maximum pore size. The fractal dimension rep-
resents the fractal specifications of pores and especially, it
gives insightful information about the complexity of the pore
network of the rocks and can be calculated using different
approaches, such as scanning electron microscopy, thin section
analysis, X-ray computed tomography scans and MICP tests.
There are several methods for the calculation of the fractal di-
mension of rocks from MICP data, including two-dimensional
(2D) capillary tube models, three-dimensional (3D) sphere
models, thermodynamic models, and 3D capillary tube models
(Ge et al., 2016). Wang et al. (2018) showed that the 3D
capillary tube model is the most appropriate model for the
prediction of rock properties and pore structures from MICP
tests. In one of these models, Li (2010) proposed a relation
between mercury saturation and the measured Pc:

SHg ∝ P
−(2−D f )
c (8)

Considering this relationship, the fractal dimension of the
3D capillary tube model is calculated by plotting the log-
log scale of SHg and Pc curve. Assuming the slope of the
logSHg− logPc curve is m, the fractal dimension is defined as
(Li, 2010):

D f = m+2 (9)
Afterward, the specific surface area of the rock is calculated

by:

Sp =
3
rg

1−φ

φ
(10)

where rg is the average grain radius. The permeability (m2) is
then calculated by:
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Fig. 4. The results of anomaly analysis applied to the dataset. (a) The histogram of RANSAC outlier analysis scores; higher
magnitudes correspond to the outlier, (b) anomaly analysis where the colors show the outlier score of each point. Points with
the lowest outlier score have darker colors, while the points with high RANSAC scores are colored in yellow.

K = 1.6
(

1−φ

Sp

)(
0.952φ 2

1−φ

)2/(D f−1)

(11)

2.3 Anomaly analysis
Outliers (anomalies) are defined as a group of the original

samples in the dataset that show abnormal behavior in com-
parison to the majority of the population. These abnormalities
can also be due to erroneous measurements/calculations or
even the presence of rare cases in the population. There are
several methods for the detection of outliers in the literature.
In this work, a random sample consensus (RANSAC) method
is used. This method follows an automatic non-deterministic
algorithm and fits a model on random subsets of inliers from
the complete data set (Choi et al., 2009). The advantage is
that it can find the outliers in multidimensional data sets with
a high level of accuracy even when a substantial fraction of
anomalies is present in the dataset. The results of anomaly
detection of the cores are shown in Fig. 4. In this process, the
porosity-permeability data is applied for anomaly detection.
Fig. 4(a) shows the histogram distribution of anomaly scores
found by the RANSAC algorithm. The points with higher
scores are more likely to be considered anomalies. In Fig. 4(b),
the color of points is set based on the anomaly score provided
by the RANSAC algorithm. It shows that there may be an
abnormality in Porosity-Permeability scatter trend in cases
with medium porosity but very high permeability. These cases
can be due to the presence of non-reported fissures/fractures in
the cores, or also can be due to measurement errors. However,
it cannot be confidently considered a measurement error.

Since this work is intended to maintain the generality of
the model, the suspected anomaly points are not removed
from the training model. This will help to ensure that the
developed model will be adequately general to be used in
future predictions.

2.4 Kendal’s Tau correlation coefficient
There are different models to quantify the dependency

of two quantities, like Pearson, Spearman, and Kendal’s Tau
correlations. Different works showed the relative advantage
of Kendal’s Tau model in normally distributed datasets, and
also its less sensitivity to discrepancies in the data (Croux
and Dehon, 2010; Puth et al., 2015). In this work, Kendal’s
Tau correlation coefficient is applied, which is defined as the
similarity of the ordering of the data when separately ranked
based on each parameter (Kendall, 1976). This parameter is
explicitly defined as below for any pair of (xi,x j) and (yi,y j):

τ =
2

n(n−1) ∑
i< j

sgn(xi− x j)sgn(yi− y j) (12)

where sgn is the sign function. Two parameters are completely
uncorrelated if τ converges to zero and are directly or inversely
correlated if τ equals 1 or −1, respectively.

2.5 Input features
The main part of the study is designing proper input

features for the training of the SVM-PSO model. The most
routine feature for the prediction of permeability is rock
porosity. Fig. 4(b) shows the correlation between the porosity
and permeability values. There is a linearly increasing trend
in the permeability (log) versus porosity scatter plot. Kendal’s
tau coefficient is 0.54, showing that the porosity generally is
a determining factor for the permeability prediction. So, the
rock porosity is used as a relevant input feature.

Also, to utilize the previously developed theoretical mod-
els, different permeability models developed for permeability
predictions from MICP tests was analyzed. These perme-
ability models include Swanson, Purcell, Winland, Parachor,
and Fractal models (the theories behind these equations are
provided in the previous sections). The most relevant and
correlated predictions will be used as input features of the
ML model. This strategy helps in combining physics-based
theories with data-based models to make use of their ad-
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vantages. Also, generally, one of the drawbacks of the ML
approaches is that they do not realize the physics, and in
extreme cases, they can provide non-physical predictions,
especially for out-of-training range predictions (Karniadakis
et al., 2021). Hopefully, this coupling helps in reducing the
extrapolation weaknesses of ML models.

Moreover, plus the previous features, two statistically cal-
culated parameters are extracted from the Pc curves:

• Average Pc (Pc): The arithmetic average value of Pc for
each point in capillary pressure curves as:

Pc =
1
n

n

∑
i=1

(Pc)i (13)

• Median Pc (MedPc): The Pc value lies in the middle of
the Pc curve vector. To increase the accuracy of the me-
dian calculations, using a linear interpolation approach,
the Pc points were recalculated from the experimental data
with the same SHg interval of 0.02.

Also, in another part of the feature engineering process, it has
been decided to directly import some parts of the Pc curve as
the pore-throat radius. In the calculations, Pc points related to
the different saturation ranges are extracted from the Pc curves.
The extracted Pc values are then converted to the pore-throat
radius using Eq. 6 and then their arithmetic average values are
used as features. More information about the validity of these
values and their correlation with rock permeability is provided
in the next sections.

2.6 Support vector machine
The SVM algorithm was first suggested by Cortes and Vap-

nik (1995) and is a subset of supervised learning methods, and
primarily introduced for classification (pattern recognition)
purposes in projects like handwriting and face recognition.
However, it was also successful in regression problems. In
its simplest form, SVM uses a linear fitting hyperplane to
regress on the dataset with a minimal error margin. Given
the training dataset (xi,yi)

n
i=1 (n is the number of training

samples), where xi is the matrix of input variables (with
dimension 1 by I, where I is the number of inlet variables), and
yi is the output variable, which in this work is the logarithm
of permeability (log Ki), i = 1, . . . ,N, the hyperplane equation
in two-dimensional (x, y) space is defined as a subspace of
dimension n−1:

f (x) = ~w ·~x+b (14)
where scalar b is defined as the offset of the regression line,
and the vector w (1 by I) is called the weight vector and defines
a direction perpendicular to the hyperplane. The prediction
function above requires a small w. The regression parameters
of the hyperplane function are calculated by minimizing the
objective function:

1
2

ω
T ·ω (15)

Subject to the constraints:

Table 1. The meta parameters related to the PSO algorithm
and SVM model.

Metaparameters Value

Number of dimensions 2

Number of particles 10

C1 0.7

C2 0.7

Iterations 600

Kernel RBF

Tolerance 1E-3

Objective function 1−R2

{
~w ·~x+b−~y≤ ε

~y−~w ·~x−b≤ ε
(16)

where ε is the distance within which no penalty is associated
with the training loss function with points predicted within
a distance epsilon from the actual value (see Table 1 for
the parameters used in this work). In this equation, the
error values less than ε should be ignored. To increase the
generalization capability of the model, the relaxation variable
(ζ ) is introduced to include the errors associated with the
points where the target error values exceed ε (see Fig. 5):

1
2

ω
T ·ω +C

n

∑
i=1

ζi (17)

Subject to the constraints:{
~w ·~x+b−~y≤ ε +ζ

~y−~w ·~x−b≤ ε +ζ
(18)

The constant C > 0 determines the trade-off between the
flatness of the model (model complexity) and the amount to
which prediction errors larger than ε are tolerated.

However, in complex classification or regression prob-
lems, SVM maps nonlinear regression problems from low-
dimensional feature spaces into linear regression problems
with higher-dimensional feature spaces. The mapping of pa-
rameters in space is achieved by using nonlinear transforming
functions, which are called kernel functions. There are a
variety of kernel functions, including radial basis function
(RBF), polynomial functions, and gaussian functions. The
RBF kernel function (1 by I) in SVM regression problems
is defined as:

k(xi,x j) = exp
[
−γ (xi− x j)

2
]

(19)

The γ represents the distribution width in the kernel func-
tion that tunes the prediction accuracy. Also, x and x′ are two
different observations in the dataset. To solve this nonlinear
problem, the main methodology is to construct a Lagrange
function from the objective function, by introducing a set of
variables (c), and the corresponding constraints that will be
called the primal objective function. By applying the suitable
kernel function in the SVM model, it is tried to maximize the
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below function (Smola and Schölkopf, 2004):

− 1
2

n

∑
i, j=1

(αi−α
∗
i )(α j−α

∗
j )−ε

n

∑
i=1

(αi+α
∗
i )+

n

∑
i, j=1

yi(αi−α
∗
i )

(20)
Subject to the constraint:

n

∑
i=1

(αi−α
∗
i ) = 0 and αi,α

∗
i ∈ [0,C] (21)

In this operation, the Lagrangian multipliers (αi and α∗i )
are optimized for each sample to minimize the error between
the measured and predicted permeabilities. Likewise, the ex-
pansion of the original hyperplane equation may be written
as:

f (x) =
n

∑
i=1

αi−α
∗
i k(xi,x)+b (22)

After the calculation of Lagrange multipliers αi and α∗i ,
by considering that K(xi,x j) = ΦT (xi) ·Φ(xi), one can find an
optimal weight vector of the hyperplane as:

ω =
n

∑
i=1

(αi−α
∗
i )Φ(xi) (23)

where the SVM tends to be overfittin g in large C values, while
in small C cases, the SVM model leans towards underfitting.
The support vector regression operation equation above has
three metaparameters (C, γ , and ε). Since it is accepted that
the accuracy of an SVM model relies on a correct setting of
these metaparameters, these values need to be optimized in
the training stage.The values of these metaparameters control
the learning speed and generalization ability of the model.

2.7 Particle swarm optimization
The tuning parameters of different ML algorithms, which

may have large impacts on the efficiency of the training
process, need to be optimized during the training process.
In this work, particle swarm optimization (PSO) is applied
as the optimization algorithm. This nature-inspired algorithm

is one of many evolutionary optimization methods that can
minimize the objective function by iterative improvement of
the solutions. The method works by considering a population
(called swarms) of the possible solutions (particles). The
population of swarms moves through the search space until
the optimum solution is found. The advantage of the PSO
algorithm is its tolerance in non-homogeneous conditions. This
algorithm was originally introduced by Kennedy and Eberhart
(1995), but a large number of variants were introduced after
that. The position of a particle from xi

κ (it can be C or γ in
the SVM model) will be evolved to xi

κ+1 as:

xi
κ+1 = xi

κ + vi
κ+1 (24)

The subscript κ indicates the increment of time. pi
κ is the

optimum position of the swarm i at time κ so far, while pg
κ

represents the global optimum position for all swarms at time
κ . r1 and r2 are random values between 0 and 1. Also, c1 and
c2 are the cognitive and social scaling parameters, respectively,
which are selected such that c1 = c2 = 2 to give a mean equal
to 1 when they are multiplied by r1 and r2. More information
on the theoretical aspects related to this algorithm is provided
in Kameyama (2009).

2.8 Statistical assessment
To analyze the fitting quality of the models and predictions,

different statistical parameters were used. These are introduced
in the following. The coefficient of determination or R2 score
is defined as the value of changes in the dependent variable
that is predictable from the independent variable:

R2 = 1−

n
∑

i=1
(yi− xi)

2

n
∑

i=1
(yi− ȳi)2

(25)

In this equation, yi is the measured variable, xi is the
predicted variable, and ȳi is the overall mean of the measured
vector. The mean absolute error (MAE), as is clear from its
name, is the average value of all absolute errors:
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MAE =

n
∑

i=1
|yi− xi|

n
(26)

Also, to have a good understanding of the error in com-
parison to the true value, the relative error is defined as:

Relative Error =
|xi− yi|

yi
(27)

where the average of all points is called mean relative error
(MRE).

3. Model implementation
In this work, the support vector machine regressor algo-

rithm is applied for the prediction of rock permeability from
MICP test results. Due to the complexity of the investigated
phenomena, it is decided to use the RBF kernel because of
its scaling capabilities. As shown, the SVM model coupled
with the RBF kernel has 3 metaparameters that control the
accuracy and generality of the model. Since both SVM and
RBF models have metaparameters that need to be optimized,
here the PSO algorithm is coupled with the SVM model.
Fig. 5 shows the simplified flowchart of the used model.
The PSO optimizer is coupled with the SVM model to find
the optimum value meta parameters and the coefficient of
determination (R2 score) is selected as the objective function
to be maximized. The regularization coefficient (C) and RBF
width parameter (ω) are imported as the tuning variables to
fit the model. The epsilon distance is selected to be a low
value of 0.05 to improve the accuracy of the model. So, the
number of dimensions in the PSO model is 2 meaning that
particles are crawling in a 2D space where the axes are C
and ω . Also, 10 particles (the swarm) are applied in the PSO
optimizer to locate optimized values of the metaparameters.
More information about the implemented model is provided
in Table 1. The iteration number of 600 is selected for the
swarm to search for the metaparameters.

After randomly dividing the dataset, 80% of the samples
were used for the training of the model, and the others were
selected as the testing dataset (no validation dataset is needed
in SVM models). It should be mentioned that the SVM models
are not scale-invariant, meaning that the respective scale of
variables influences the accuracy of the model. Because of
that, it is important to reduce the scale of all inputs to the
same scale of magnitude. So, except for the porosity, for the
other features, the logarithmic values have been used.

4. Results
After introducing the main specifications of the workflow,

in this section, the results of feature design and selection, and
ML model training and testing are provided.

4.1 Feature engineering
In this section, it is tried to find the most correlated

input features for the ML model. At first, the capability
of empirical or semi-analytical correlations in the prediction
of rock permeability is investigated. Fig. 6 compares the
predictions with the actual values of permeability, and Fig. 7

compares the MAE and RMSE for the predictions, as well as
Kendal’s correlation coefficients. Fig. 6(a) shows the porosity-
permeability correlation for the dataset. Also, the calculated
permeability values for 5 different models, including Swanson,
Purcell, Winland, Parachor, and Fractal models, are compared
with the actual values in Figs. 6(b)-6(f). The mathematical
details of the correlations are provided in the previous sections.
As it is shown in Fig. 6, the predictions of these models almost
follow the increasing trend of permeability. However, there are
some outliers in the calculated values that show that purely
relying on the specific points of the capillary curve may lead
to significant errors, or in the other words, any measurement
errors in these curves may lead to large prediction errors.

Fig. 7 compares the prediction errors (MAE and RMSE)
for different permeability models, and also their correlation
coefficients with the true rock permeability. It is shown that
the predictions related to the Winland model, Swanson model,
and linear regression of the Porosity-Permeability scatter plot
had the minimum errors. The fractal model resulted in the
highest error values. Fig. 6 shows that the fractal model could
predict permeability for a large fraction of the dataset while a
small portion of the data had large errors. Purcell and Parachor
models almost showed similar results and prediction errors
compared to each other. On the other hand, the calculated
Kendall’s tau in Table 2 shows that the Winland r35 and
Porosity-Permeability relationship have the highest correlation
with the permeability values (τ > 0.5). Other correlations have
τ values of less than 0.4. In ML models, the importance of
the correlation coefficient is undeniable. So, in this work,
considering the RMSE and correlation coefficients, the rock
porosity and the Winland model were selected as the most
suitable theory-based features for the ML-based prediction of
rock permeability.

To find more insightful features, it is tried to extract more
parameters from the Pc curves. To do so, the correlation of
a series of statistical parameters with the rock permeability
was examined. Firstly, two statistical parameters of Pc and
MedPc in the capillary pressure curve are chosen as the
representatives of the rock pore characteristics. Fig. 8 shows
the correlation of these two statistical parameters with rock
permeability. From this figure and Table 3, it is clear that
the median value of capillary pressure is more correlated to
the permeability, with Kendal’s coefficient of -0.599, which
is significant in comparison to the previous correlations. From
this difference between mean and median Pc features, it can be
concluded that the permeability of rocks in our dataset mostly
follows the characteristics of medium size pores, and both very
large and very small pores do not significantly influence the
permeability.

Fig. 9 shows the scatter plot related to the average equiv-
alent pore-throat radius (r) values for different saturation
ranges of capillary pressure curves. It is clear from the figure
that overall, the permeability is correlated with the r for
all of the SHg ranges. However, it was tried to find the
ranges with the highest correlation values. As Table 3 shows
Kendal’s correlation coefficient values for these ranges, the
most optimum sampling range is 0.4-0.8 (r0.4−0.8), where
the calculated pore radiuses have the most correlations with
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Fig. 6. The calculated values of permeability for different correlations. (a) Porosity-Permeability plot, (b) winland method, (c)
swanson method, (d) purcell method, (e) fractal model, (f) parachor model. The red lines show the true permeability values.

Table 2. The statistical evaluation of the empirical permeability models and their correlation with the measured
permeabilities.

Models MAE (Log mD) RMSE (Log mD) Kendal’s correlation coefficient

Porosity-permeability 0.34 0.38 0.545

Winland 0.92 0.49 0.645

Swanson 0.77 0.67 0.387

Purcell 2.48 3.42 0.283

Parachor 1.81 2.37 0.294

Fractal 2.40 5.16 0.151
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Fig. 7. Comparison of the results of the different permeability predictions of different correlations and comparing them with
the linear porosity/permeability regression error (Phi-Perm), (a) MAE and RMSE and (b) Kendal’s correlation coefficient.
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Fig. 8. Correlation of the capillary pressure curve derived features with the measured permeability. More details are provided
in Table 3. (a) Average capillary pressure and (b) Median capillary pressure.

the rock permeability. This is in line with the results of
previous studies like Kolodzie (1980). Actually, the pores
filled in this saturation range have the highest population and
highest contribution to rock permeability. Of course, r0.6−0.8
had higher correlation coefficient than r0.4−0.8, but since their
differences were insignificant, it was decided to choose the
r0.4−0.8 to keep the generality of the model and reduce the
chance of being affected by measurement errors. On the other
hand, the saturation ranges of 0-0.2 have the worst results,
which is understandable considering that the low saturation
values are related to the tightest pores. These pores cannot be
sufficiently effective in the fluid transmissibility of rock.

Finally, the optimum combination of features is selected
based on Kendal’s correlation coefficient and also the RMSE
of predictions. Since the training of the ML model is based on
the relevance of the features, the features with a correlation
coefficient higher than 0.5 were prioritized (Fig. 10). So, the
following are selected as the inputs of the SVM-PSO model:

• Porosity (unit: fraction)
• Winland permeability model (unit: log mD)
• The median value of capillary pressure, MedPc (unit: log

bar)
• The average pore-throat radius is calculated from Pc

curves at the wetting phase saturation range of 0.4 to
0.8, r0.4−0.8 (unit: log µm)

The parentheses show the units of measurement used.
Except for the porosity, other features have been transferred
to the log scale before usage.

4.2 Model training and validation
After adding the training dataset (80% of the dataset) to

the implemented SVM-PSO model, the model is trained with
the RBF kernel, a Nelder-Mead minimizer (Avriel, 2003), and
600 epochs (see the training loss during the training in Fig.
11(a)). To avoid overfitting the model, the fitting of predicted
values to the measured permeabilities is cross validated after
finishing the whole optimization stage. It is found that the
fitting scores of test data and training data tend to have an
almost similar value.

The final cross-plot of permeability for the training data is
shown in Fig. 11(b). For the training data, the R2 score was
0.89, which is significant in comparison to the theory-based
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Table 3. The Kendal’s correlation coefficient of statistical and pore-throat radius features extracted from the capillary
pressure curves with the measured permeability values.

Feature type Feature Kendal’s correlation coefficient

Statistical
Average Pc -0.380

Median Pc -0.599

Mean pore-throat radius

r0−0.2 0.273

r0.2−0.4 0.450

r0.4−0.6 0.563

r0.6−0.8 0.587

r0.8−1.0 0.476

r0.4−0.8 0.580
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Fig. 9. Correlation of the pore radiuses (capillary pressure curves) versus the measured permeability for different saturation
ranges.
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Fig. 10. The tornado chart related to the value of Kendal’s
correlation coefficient (absolute value) ordered from high to
low. The features with a τ score higher than 0.5 are selected
for the model development process.

models. Fig. 11(c) shows the predicted values of permeability
in the testing stage. Compared with the training data, the
permeability predictions show an acceptable accuracy. As
Fig. 11(d) shows, the error of predictions was significantly
lower than correlations like the Winland equation. The detailed
statistics on the comparison of the SVM-PSO model are shown
in Table 4, which shows that the correlation coefficient score
has been improved up to around 0.74. In the input features, the
maximum correlation coefficient was not higher than 0.645.
Also, for the testing data, the MRE value for the Winland
equation was around 10 (meaning that the error of predictions
was at the level of 10 times the true values, on average),
while this value was reduced to the level of 0.47 in the
SVM-PSO model. It shows a significant improvement in the
level of permeability predictions for the SVM-PSO model.
Fig. 12 compares the permeabilities predicted by Winland and
SVM-PSO models for the testing data. From the Winland
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Table 4. The R2 accuracy, RMSE, MRE, and Kendal’s correlation coefficient related to the predictions of the SVM-PSO
model for both training and testing data..

Algorithm R2 RMSE (log mD) MRE (fraction) Correlation coefficient

SVM-PSO training 0.89 0.25 0.35 0.72

SVM-PSO testing 0.87 0.27 0.47 0.74

SVM-PSO total 0.88 0.26 0.40 0.72
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Fig. 11. The results of training and testing of the Support Vector Machine model using the PSO optimization algorithm. (a)
comparing the predicted values and actual measured values. The red line shows the fitted curves on the predicted values and
the blue line shows the y = x trend, (b) the convergence trend of the PSO model for iterations, (c) the SVM-PSO model
predictions for the test data. Orange points in the background (low transparency) show the training results and (d) the MRE
related to the SVM-PSO algorithm, compared to the Winland correlation predictions, for the testing data.

predictions, it can be concluded that there are significant
errors in low permeability cases, which is an indication of
the necessity of the development of a new model. The SVM-
PSO model could reduce the level of errors by 1 to 2 orders
of magnitude to the mean MRE of 0.40, which is significant
for a permeability estimator of tight sandstones.

The obtained results show that using ML models in com-
bination with theoretical and statistical calculations is helpful
in improving permeability predictions. It is observed that
training the model using a larger number of datasets can
improve the generality of the SVM-PSO models. In that case,

using Convolutional Deep Learning approaches can be helpful
for a more accurate interpretation of MICP curves. Also,
using smooth capillary pressure curves can decrease prediction
errors.

5. Conclusion
In this work, a large dataset of MICP tests related to tight

sandstones from all over the world is gathered and an SVM-
PSO ML model is used for the prediction of permeability from
the MICP data.
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• The permeability predictions of the analytical models
(Parachor, Purcell, Winland, Fractal, and Swanson mod-
els) were not accurate enough, especially for the rocks
with lower permeabilities. The most accurate model was
the Winland r35 equation with a correlation coefficient of
0.645 and an MRE of 10.

• To improve the predictions, a study was carried out to find
the most relevant features to be imported as the input
variables to the ML model. Porosity data and Winland
permeability predictions are chosen as the input features
of the ML model due to their good correlations with the
true permeabilities.

• Furthermore, the median Pc and the r0.4−0.8 (mean pore
radius for the SHg range of 0.4-0.8), which best correlated
with the rock permeability measurements, were chosen as
the input features. It is concluded that the permeability
of the rocks was mostly dependent on the medium size
pore-throats, not the largest or smallest ones.

• The SVM-PSO ML model fitted the actual permeability
values with an R2 of 0.89 and an MRE of 0.37, signifi-
cantly more accurate than the theoretically based perme-
ability model predictions. The model could significantly
improve the predictions for the low-permeability rocks,
where the theoretical correlations performed weakly.

• The results showed that merging machine-learning algo-
rithms with current empirical or physics-based models
can significantly improve permeability modeling prac-
tices. Using this approach, both physics-driven and data-
driven approaches can synergize in the development of
more reliable approaches.
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Hébert, V., Porcher, T., Planes, V., et al. Digital core repository
coupled with machine learning as a tool to classify
and assess petrophysical rock properties. E3S Web of
Conferences, 2020, 146: 01003.

Jiao, L., Andersen, P. Ø., Zhou, J., et al. Applications of
mercury intrusion capillary pressure for pore structures:
A review. Capillarity, 2020, 3(4): 62-74.

Jones, S. C. A technique for faster pulse-decay permeability
measurements in tight rocks. SPE Formation Evaluation,
1997, 12(1): 19-25.

Kameyama, K. Particle swarm optimization-a survey. IEICE
Transactions on Information and Systems, 2009, 92(7):
1354-1361.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., et al. Physics-
informed machine learning. Nature Reviews Physics,
2021, 3(6): 422-440.

Karpatne, A., Ebert-Uphoff, I., Ravela, S., et al. Machine
Learning for the Geosciences: Challenges and oppor-
tunities. IEEE Transactions on Knowledge and Data
Engineering, 2019, 31(8): 1544-1554.

Kendall, M. G. Rank Correlation Methods 4th edn. London,
UK, High Wycombe, 1976.

Kennedy, J., Eberhart, R. Particle swarm optimization. Paper
Presented at Proceedings of ICNN’95-International Con-
ference on Neural Networks, Perth, WA, 27 November-1
December, 1995.

Kolodzie, S. Analysis of pore throat size and use of the
waxman-Smits equation to determine ooip in spindle
field, colorado. Paper SPE-9382-MS Presented at the SPE
Annual Technical Conference and Exhibition, Dallas,
Texas, 21-24 September, 1980.

Li, K. Analytical derivation of brooks-corey type capillary
pressure models using fractal geometry and evaluation
of rock heterogeneity. Journal of Petroleum Science and
Engineering, 2010, 73(1-2): 20-26.

Lin, Q., Bijeljic, B., Pini, R., et al. Imaging and measurement
of pore-scale interfacial curvature to determine capillary
pressure simultaneously with relative permeability. Water
Resources Research, 2018, 54(9): 7046-7060.

Liu, M., Xie, R., Li, C., et al. Determining the segmentation
point for calculating the fractal dimension from mercury
injection capillary pressure curves in tight sandstone.
Journal of Geophysics and Engineering, 2018, 15(4):
1350-1362.

Liu, Y., Xian, C., Li, Z., et al. A new classification system
of lithic-rich tight sandstone and its application to di-
agnosis high-quality reservoirs. Advances in Geo-Energy
Research, 2020, 4(3): 286-295.

McPhee, C., Reed, J., Zubizarreta, I. Core Analysis: A Best
Practice Guide. Amsterdam, Netherlands, Elsevier, 2015.

Menke, H. P., Maes, J., Geiger, S. Upscaling the porosity-
permeability relationship of a microporous carbonate
for darcy-scale flow with machine learning. Scientific
Reports, 2021, 11(1): 2625.

Purcell, W. R. Capillary pressures-their measurement using
mercury and the calculation of permeability therefrom.
Journal of Petroleum Technology, 1949, 1: 39-48.
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