Modeling of two-phase flow in heterogeneous wet porous media

Yihang Xiao¹, Yongming He¹*, Jun Zheng¹, Jiuyu Zhao²

¹College of Energy, Chengdu University of Technology, Chengdu 610059, P. R. China
²State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P. R. China

Abstract:
The characterization of two-phase flow has been commonly based on homogeneous wet capillary models, which are limited to heterogeneous wet porous media. In this work, capillary pressure and relative permeability models for three heterogeneous wet systems are derived, which enable the analysis of the effect of oil-wet ratio on the two-phase flow mechanism. The capillary pressures, relative permeabilities and water cut curves of three systems are simulated at the primary drainage stage. The results show that water-wet and oil-wet systems exhibit drainage and imbibition characteristics, respectively, while heterogeneous wet systems show both of these characteristics, and a large oil-wet ratio is favourable to oil imbibition. Mixed-wet large and mixed-wet small systems have water-wet and oil-wet characteristics, respectively, at the end and the beginning of oil displacement. At the drainage stage, the oil-wet ratio can significantly decrease oil conductivity, while water conductivity is enhanced. The conductivity difference between oil and water firstly decreases and then increases with rising water saturation, and the difference diminishes with the increase in oil-wet ratio. The oil-wet ratio can reduce water displacement efficiency, and its effects on the water cut curves vary between the three systems due to wettability distribution and pore-size mutation. The mixed-wet small system has the strongest oil imbibition ability caused by the largest capillary pressure in oil-wet pores and the smallest drainage pressure in water-wet pores, and high water conductivity causes the greatest water cut. The trend of variations in the mixed-wet large system is opposite to that in the mixed-wet small system, and the fractional-wet system is located between the other two systems.

1. Introduction

Early studies concluded that the wettability of oil reservoirs is homogeneous (water-wet or oil-wet) (Nutting, 1934; Craig, 1971). With the advancement of experimental methods, it was gradually recognized that reservoir wettability is heterogeneous (Alhammadi et al., 2020; Gao et al., 2020; Pierze et al., 2020; Cai, 2021; Elakneswaran et al., 2021). The reservoir conditions can be extremely complex, as numerous uncertain factors provide formation conditions for heterogeneous wet systems, such as mineral species, pore geometry, fluid chemistry, pore surface roughness, fluid-pore surface contact time, interfacial tension, temperature, and pressure (Kjosavik et al., 2002). In addition, a large number of tertiary recovery techniques, such as surfactant displacement, alkali displacement, CO₂ displacement, may cause a variation in the original reservoir wettability and make it complex (Chang et al., 2020; Diao et al., 2021; Zheng et al., 2021; Wu et al., 2022).

The heterogeneous wet phenomenon indicates the presence of hydrophilic and oleophilic surfaces, which can increase the complexity of the two-phase flow mechanism. The heterogeneous wetting system is generally divided into two types: 1) a mixed-wetting system where wettability is distributed according to pore size, including mixed-wet large (MWL) (Skauge et
(Kosugi, 1994). The pore size distribution is described by the lognormal distribution function, and we consider that it is adequate to characterize a wide range of core samples (Kosugi, 1994). The density function \(f(r) \) is then given by the formula:

\[
 f(r) = \frac{1}{\sqrt{2\pi\lambda r}} \exp \left[-\frac{(\ln r - \eta)^2}{2\lambda^2} \right], \quad r_{\text{min}} \leq r \leq r_{\text{max}}
\]

where \(\eta \) denotes the mean, \(\lambda \) denotes the variance; \(r_{\text{min}} \) and \(r_{\text{max}} \) are the minimum and maximum capillary radius, respectively; their values in this paper are \(\eta = 1.14 \), \(\lambda = 0.58 \), \(r_{\text{min}} = 0.01 \mu m \), and \(r_{\text{max}} = 20 \mu m \).

The pore volume \(V_p \) of the capillary bundle model is
expressed as:

\[V_p = \int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr \]
(4)

The water saturation \(S_w \) of the capillary bundle model can be expressed as:

\[S_w = \frac{V_w}{V_p} \]
(5)

where \(V_w \) denotes water volume in the capillary bundle model.

Assuming that the capillary bundle model is initially saturated with water. For water-wet pores, when the displacement pressure reaches the capillary entry pressure \(P_{cw}^e \), oil enters the capillary bundle by piston-like drainage, the corresponding \(r \) is the minimum critical radius \(r_{cw} \), and \(P_{cw}^e > 0 \). For oil-wet pores, when the displacement pressure reaches the capillary entry pressure \(P_{co}^e \), oil enters the capillary bundle by piston-like imbibition, the corresponding \(r \) takes the value of maximum critical radius \(r_{co} \), and \(P_{co}^e < 0 \). Two capillary entry pressures can be expressed as:

\[P_{cw}^e = \frac{2\sigma \cos \theta}{r_{cw}} \]
(6a)

\[P_{co}^e = \frac{2\sigma \cos \theta}{r_{co}} \]
(6b)

The one-phase conductivity \(g_s \) in the cylindrical capillary bundle model is:

\[g_s = \int_{r_{\text{min}}}^{r_{\text{max}}} f(r)g_c(r)dr \]
(7)

For the capillary bundle model, absolute permeability is a constant and is proportional to the conductivity. Thus, the relative permeability of water and oil \((K_{rw}, K_{ro}) \) can be calculated by:

\[K_{rw} = \frac{g_w}{g_s} \]
(8a)

\[K_{ro} = \frac{g_o}{g_s} \]
(8b)

where \(g_w \) and \(g_o \) respectively represent water and oil conductivity.

According to the wettability distribution of different heterogeneous wet systems, the capillary pressure and relative permeability models can be derived by combining the displacement pressure, the corresponding \(S_w, K_{rw} \) and \(K_{ro} \).

2.3 Wettability distribution

For the MWL system, pores larger than the wettability critical radius \(r_m \) are oil-wet and those smaller than \(r_m \) are water-wet (Fig. 1(a)); the opposite is true for the MWS system (Fig. 1(b)). In the FW system, oil-wet and water-wet pores coexist in all pore size distributions, and \(k \) is constant (Fig. 1(c)).

The relationships between \(r_m \) and \(k \) for the MWL and MWS systems are established as:

\[k_{\text{MWL}} = \frac{\int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr}{\int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr} \]
(9a)

\[k_{\text{MWS}} = \frac{\int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr}{\int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr} \]
(9b)

2.4 Capillary pressure and relative permeability models

With the increase in \(r_m \), the \(k_{\text{MWL}} \) decreases, while this is the opposite for \(k_{\text{MWS}} \).

For the FW system, assuming that the oil-wet pore size distribution function is \(f_o(r) \), the water-wet pore size distribution function is \(f_w(r) \), and \(f_o(r) + f_w(r) = f(r) \). Then, the \(k_{\text{FW}} \) can be expressed by:

\[k_{\text{FW}} = \frac{\int_{r_{\text{min}}}^{r_{\text{max}}} f_o(r)V(r)dr}{\int_{r_{\text{min}}}^{r_{\text{max}}} f(r)V(r)dr} \]
(10)
interfacial tension $\sigma_{ov} = 0.26$ N/m. The k values are 0, 1/4, 1/2, 3/4, and 1, where $k = 0$ and $k = 1$ indicate the water-wet and oil-wet systems, respectively. The capillary bundle model is initially saturated with water, and the oil enters the capillary bundle by the P_t transited from negative infinity to positive infinity.

When oil imbibition into the oil-wet pores occurs ($P_t < 0$), S_w for MWL, MWS, and FW systems can be respectively calculated by:

$$ S_{w,MWL} = \frac{\int_{r_{min}}^{r_{max}} f(r) V(r) dr + \int_{r_{min}}^{r_{max}} f(r) V(r) dr}{\int_{r_{min}}^{r_{max}} f(r) V(r) dr} $$ (11a)

$$ S_{w,MWS} = \frac{\int_{r_{min}}^{r_{max}} f(r) V(r) dr + \int_{r_{min}}^{r_{max}} f(r) V(r) dr}{\int_{r_{min}}^{r_{max}} f(r) V(r) dr} $$ (11b)

$$ S_{w,FW} = \frac{\int_{r_{min}}^{r_{max}} f_{o w}(r) V(r) dr + \int_{r_{min}}^{r_{max}} f_{o w}(r) V(r) dr}{\int_{r_{min}}^{r_{max}} f(r) V(r) dr} $$ (11c)

The values of K_{rw} and K_{ro} for the oil imbibition stage for MWL, MWS, and FW systems can be respectively calculated by:

$$ K_{rw,MWL} = \frac{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr + \int_{r_{max}}^{r_{min}} f(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (12a)

$$ K_{rw,MWS} = \frac{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr + \int_{r_{max}}^{r_{min}} f(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (12b)

$$ K_{rw,FW} = \frac{\int_{r_{min}}^{r_{max}} f_{o w}(r) g_c(r) dr + \int_{r_{min}}^{r_{max}} f_{o w}(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (13a)

$$ K_{ro,MWS} = \frac{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (13b)

$$ K_{ro,FW} = \frac{\int_{r_{min}}^{r_{max}} f_{o w}(r) g_c(r) dr}{\int_{r_{max}}^{r_{min}} f_{o w}(r) g_c(r) dr} $$ (13c)

Once the oil has saturated all oil-wet pores, when the oil enters the water-wet pores ($P_t > 0$), the S_w for MWL, MWS, and FW systems can be respectively calculated by:

$$ S_{w,MWL} = \frac{\int_{r_{min}}^{r_{max}} f(r) V(r) dr}{\int_{r_{min}}^{r_{max}} f(r) V(r) dr} $$ (15a)

$$ S_{w,MWS} = \frac{\int_{r_{min}}^{r_{max}} f(r) V(r) dr}{\int_{r_{min}}^{r_{max}} f(r) V(r) dr} $$ (15b)

$$ S_{w,FW} = \frac{\int_{r_{min}}^{r_{max}} f_{o w}(r) V(r) dr}{\int_{r_{max}}^{r_{min}} f_{o w}(r) V(r) dr} $$ (15c)

The values of K_{rw} and K_{ro} for the oil drainage stage for MWL, MWS, and FW systems can be respectively calculated by:

$$ K_{rw,MWL} = \frac{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (16a)

$$ K_{ro,MWL} = \frac{\int_{r_{max}}^{r_{min}} f(r) g_c(r) dr + \int_{r_{min}}^{r_{max}} f(r) g_c(r) dr}{\int_{r_{min}}^{r_{max}} f(r) g_c(r) dr} $$ (16b)

3. Results and discussion

3.1 Capillary pressure curves

Fig. 2 shows the capillary pressure curves of the three heterogeneous wet systems, which reveal the imbibition ability of the wetting phase in porous media. The top blue and bottom red curves of the group, which correspond to the drainage and imbibition processes of the conventional water-wet ($k = 0$) and oil-wet ($k = 1$) systems, respectively, are centrosymmetric. However, other curves with k values are located between them, following the trend that the capillary pressures gradually move downward with the increase in k, and feature both drainage and imbibition processes.

For the MWL and MWS systems, the curves with different k values overlap with the water-wet and oil-wet systems, respectively. The water saturation range of overlap decreases and increases, respectively, with the increase in k in the MWL and MWS systems. The number of oil-wet pores increases with the growth of k, thus oil enters water-wet pores (where the inflection point occurs) at lower S_w for the MWL and MWS systems. There is no overlapping phenomenon (without any inflection points) for the FW system caused by the difference in wettability distribution, and the curves are close to oil-wet and water-wet systems at high and low S_w, respectively.

Wettability distribution is the main reason for the difference in two-phase flow rules. In the imbibition stage, oil firstly enters the oil-wet pores of the minimum radius, and the imbibition process is stopped when oil as the non-wetting phase enters water-wet pores of the maximum radius. When water-wet pores of the minimum radius are saturated, the whole displacement process is completed. For the MWS and MWL systems, the radius and contact angle of the maximum-radius oil-wet pore and water-wet pore are largely different (these are respectively called pore-size mutation and contact angle hysteresis), thus the water phase needs higher pressure to enter the water-wet pore, resulting in a discontinuous curve. However, for the FW system, the maximum radii of the oil-wet pore space and water-wet pore space are equal, and only the wetting hysteresis exists, resulting in a minimal discontinuity in the curve.
which is opposite to the MWL system. For the FW system, oil can occupy smaller pores with the increase in \(k \), which reduces oil flowability, while this situation enhances water flowability. According to the above analysis, the flow mechanisms of the three heterogeneous wet systems are significantly different.

The relative permeability curves of the MWL and MWS systems overlap with the water-wet and oil-wet systems, respectively, which is the same for the capillary pressure curves (Fig. 2); the explanations can be found in Subsection 3.1. Meanwhile, the curves of MWL and MWS systems both show obvious inflection points due to the pore-size mutation and contact angle hysteresis.

The relative permeability ratio curve can characterize the difference in two-phase conductivity between different flow stages. A value close to 1 means a smaller conductivity difference. The curves of water-wet and oil-wet systems are parallel to each other in semi-logarithmic coordinates, and the other curves are located between them. The conductivity difference first decreases and then rises with the increase in \(S_w \), and the curves gradually move upward with the increase in \(k \). At the beginning of the water displacement process, water enters the maximum oil-wet pores at lower \(S_w \), with increasing \(k \), resulting in the conductivity of water gradually approaching that of oil. As the water displacement process continues, the conductivity difference gradually increases such that the water dominates the flow process at a lower \(S_w (K_{rw}/K_{ro} > 1) \), especially in systems with high \(k \) value.

3.3 Water cut curves

The water cut curve can reflect the water displacement efficiency under various stages. Fig. 4 depicts the water cut curves of different systems. The water cut is less than 0.02 represents the water-free cut stage; the water cut is 0.02 ~ 0.2 represents the low water cut stage; the water cut is 0.2 ~ 0.6 represents the medium water cut stage; the water cut is 0.6 ~ 0.9 represents the high water cut stage; the water cut is 0.9 ~ 0.98 represents the ultra-high water cut stage. The water cut curves with the change of \(k \) are located between the uniform wetting systems, and the water cut is positively related to \(k \) for the same \(S_w \), which means that the water displacement efficiency becomes worse with the increase in \(k \). For the MWL system, the water cut curve shows a trend of slowly and then rapidly increasing with the rise of \(S_w \), and the change magnitude increases with the decrease in \(k \). This phenomenon is caused by two reasons: one is that water firstly enters water-wet small pores; this changing trend of water cut is a gradual effect of the relatively small pore volume (Fig. 1(a)). Then, water enters the largest oil-wet pores at the inflection point (corresponding \(k \)) of the curve, and the larger oil-wet pore volume can lead to an obvious increase in water cut. The other reason is that water enters oil-wet pores at a larger pore radius with the increase in \(k \), resulting in the rising trend of water cut being more dramatic. For the MWS system, the water cut increases rapidly and then slowly, and the change magnitude increases with the enhancement of \(k \); the percolation mechanism is the opposite for the MWL system. For the FW system, the curve trend is relatively flat at low

3.2 Relative permeability curves

Fig. 3 shows the relative permeability curves and relative permeability ratio curves of different systems. The relative permeability curves of uniform wetting systems are symmetrically distributed around \(S_w = 0.5 \), and other curves with \(k \) are located between them. \(K_{ro} \) decreases and \(K_{rw} \) increases for the same \(S_w \), with the increase in \(k \), and the point of \(K_{ro} = K_{rw} \) moves to lower \(S_w \) to achieve higher oil conductivity. For the MWL system, a higher \(k \) indicates the decrease in \(r_m \), which leads to weakened oil conductivity, while water can enter larger oil-wet pores at lower \(S_w \) when water has saturated all water-wet pores, which in turn enhances the water flowing ability. For the MWS system, the \(r_m \) rises with the increase in \(k \), thus water also can enter larger oil-wet pores at lower \(S_w \), especially in systems with high \(k \) value.

- **(a) MWL system**
- **(b) MWS system**
- **(c) FW system**

Fig. 2. Capillary pressure curves of different heterogeneous wet systems.
and high S_w values due to the fact that there is no pore-size mutation.

3.4 Comparison of heterogeneous wet systems

Based on the capillary pressure curves of the three heterogeneous wet systems (Fig. 5), the curve of the FW system is symmetrical to $S_w = 0.5$ when $k = 1/2$, and the curves of the MWL and MWS systems are symmetrically distributed around the FW system. For the MWS system, the oil imbibition ability is the strongest in the imbibition stage owing to the greatest capillary pressure; in the drainage stage, oil can enter the water-wet pores at lower capillary pressure, resulting in the curves of the MWS system located below those of the MWL system. The curve of the FW system is between the other two systems.

As can be seen from the relative permeability curves (Fig. 6), the oil relative permeability curve of the MWL system is shifted to the right, which indicates that the oil phase is more
likely to occupy large pores under the same S_w. K_{rw} is the largest under the same S_w for the MWS system, which is caused by water mainly occupying large pores. The curve of the FW system is between the other two and symmetrically distributed to $S_w = 0.5$. For the water cut curves (Fig. 7), the MWS system with the highest water content leads to the poorest water displacement efficiency, the MWL system has a great water displacement efficiency, and the FW system is between the other two systems.

3.5 Discussion and comparison of previous models

Bradford and Leij (1996) put forward a capillary pressure model of the FW system:

$$P_{c}^{FW}(S_w) = P_{c}^{ww}(S_w) - \alpha$$ \hspace{1cm} (19)

where P_{c}^{FW} and P_{c}^{ww} represent the capillary pressure of FW system and water-wet system, respectively, and α is a constant
that is related to the oil-wet ratio. However, this model cannot simulate the capillary pressure curve of the oil-wet system by shifting α.

Skjaeveland et al. (2000) treated the positive and negative portions of curves as an individual model and proposed a capillary pressure model of the FW system, such as:

$$P_c^{FW}(S_w) = c_w P_c^{ww}(S_w) + c_o P_c^{ow}(S_o)$$

(20)

where P_c^{ww} denotes the capillary pressure of oil-wet system; c_w and c_o are constants, and $c_w = 1$, $c_o = 0$ and $c_w = 0$, $c_o = 1$ for the water-wet and oil-wet system, respectively. However, c_w and c_o are difficult to select for the FW system.

O’Carroll et al. (2005) presented a capillary pressure model of the FW system based on Leverett’s scaling function and the Cassie-Baxter function, which (without empirical constants) is expressed as:

$$P_c^{FW}(S_w) = (1 - k) \cos \theta_w P_c^{ww}(S_w) + k \cos \theta_o P_c^{ow}(S_o)$$

(21)

where S_w denotes oil saturation. However, this model lacks a definite physical meaning of the Cassie-Baxter function (Cassie and Baxter, 1944) for the FW system.

Therefore, the aforementioned empirical models cannot accurately simulate the capillary pressure of the FW system, and no empirical models exist for the MWL and MWS systems. Currently, the pore-scale models of capillary pressure and relative permeability are established by polygonal pore and MS-P theory (Mayer and Stowe, 1965; Princen, 1969a, 1969b; Prinzen, 1970). However, the solution of these models is very difficult to obtain due to the complex formation process of pores and the combination of pore shapes. The models proposed in this work can well simulate two-phase flows for three heterogeneous wet systems, and the simulation accuracy and applicability are superior to existing empirical models. However, certain disadvantages of the model in this paper are also inevitable. For example, there are no irreducible phases, as the pore connectivity is not considered. Moreover, the capillary pressure curves and relative permeability curves have inflection points due to pore-size mutation and contact angle hysteresis, although the FW system is an exception owing to the existence of contact angle hysteresis. Compared to fine pore-scale models, the proposed model is sufficient to describe the processes on a large scale but is not precise on the pore-scale. Therefore, pore-scale heterogeneous wet models based on circular capillary should be further investigated to improve the model of this paper.

4. Conclusions

In this work, capillary pressure and relative permeability models were derived for heterogeneous wet systems, to comprehensively study the effect of oil-wet ratio on two-phase flow and the difference between three heterogeneous wet systems. From the proposed models and subsequent computational results, the following conclusions can be drawn:

1) The conventional water-wet ($k = 0$) and oil-wet ($k = 1$) systems only have drainage and imbibition processes, respectively, while heterogeneous wet systems possess both characteristics. The imbibition ability enhances with the increase in oil-wet ratio. For heterogeneous wet systems, there is a start-up pressure in the imbibition process, which is explained by the obvious contact angle hysteresis and pore-size mutation.

2) The MWL and MWS systems have two-phase flow characteristics of water-wet and oil-wet system, respectively, at the end and beginning of oil drainage. However, this phenomenon does not appear in the FW system due to different wettability distributions. A large k value can increase K_{rw} and decrease K_{ro} for the same S_w, and the points of $K_{ro} = K_{rw}$ move to the lower S_w to achieve higher oil conductivity.

3) At the beginning of water displacement, water enters the maximum oil-wet pores at lower S_w along with the increase in k, resulting in the conductivity of water gradually approaching that of oil. With the water saturation increasing, the conductivity difference gradually increases as the water dominates the flow process, especially in systems with high k value. The water displacement efficiency decreases with the increase in k.

4) The MWS system has the strongest oil imbibition ability, which is caused by the largest capillary pressure in the oil-wet pore and the smallest drainage pressure in the water-wet pore. The high water conductivity results in the lowest water displacement efficiency in the MWS system. However, the variation in the MLW system follows the opposite trend. The characterization results for the two-phase flow in the FW system are between those for the MWS and MWL systems.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51774053), the Fundamental Research Funds for the Central Universities (No. 2462019YJRC011).

Conflict of interest

The authors declare no competing interest.

Open Access This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

