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Abstract:
Spontaneous imbibition plays a significant role in different technical applications, and
several analytical models have been proposed for predicting the fluid imbibition mass into
porous media based on the fractal theory. Herein, these previous models are reconsidered
in view of the obvious difference between the effective porosity and the areal porosity of
porous media. Firstly, an implicit equation for fractal tortuosity is proposed and a modified
correlation for the areal porosity is presented; then, a semi-analytical prediction model for
fluid imbibition mass with gravity pressure is derived; finally, comparisons of predictions
among several previous models with the present model are carried out. The modeling
results show consistency with the experimental data published in the literature.

1. Introduction
The phenomenon of spontaneous imbibition, which is

driven by capillary pressure, has an important function in
different technical applications, such as oil recovery (Gao
et al., 2018), carbon dioxide storage by capillary trapping
(Arshad et al., 2016), paper sensors (Elizalde et al., 2015),
inkjet printing (Wijshoff, 2017), heat pipe wicks (Nishikawara
et al., 2018), or microfluidic devices (Dudek et al., 2018).
There is great research interest in spontaneous imbibition in
porous media (Ashraf et al., 2019). One of the ‘hot topics’ is
to predict the fluid imbibition mass (Liu et al., 2020; Orlando
et al., 2020).

The widely known Lucas-Washburn (LW) equation (Lucas,
1918; Washburn, 1921) indicated that the imbibition distance
and mass versus the time followed the correlation of t0.5 in
a circular capillary. However, there existed much controversy
over the availability of LW equation, and some studies argued
that the imbibed mass could not hold the correlation of t0.5;
therefore, many studies derived new versions of this equation
to cohere with testing results, as discussed in a comprehensive
review in the literature (Cai and Yu, 2011).

The fractal theory is of great interest when studying fluid
flow in porous media, as well as for the analysis of rock
properties, such as the roughness of rock surface (Xie et al.,
2020), porosity (Pia et al., 2013), permeability (Mahabadi et
al., 2019), tortuosity (Comiti and Renaud, 1989) and capillary
pressure (Li, 2010).

Regarding the spontaneous imbibition in fractal porous
media, Li and Zhao (2012) early proposed a mathematical
model to predict the fluid imbibition mass, and presented the
power law relationship between imbibition mass and time.
They argued that the time exponent lied in the range of 0 to 1.
Balankin et al. (2012) carried out experiments and a theoretical
analysis on fluid impregnation in porous media, and considered
the time exponents as usually less than 0.5. Cai et al. (2010a)
analyzed capillary imbibition in a single curving capillary
based on the fractal theory and presented an analytical solution
for the height of fluid imbibition. Subsequently, an analytical
solution for spontaneous imbibition mass in porous media
was proposed (Cai et al., 2010b), it indicated that the fractal
character had an obvious effect on fluid imbibition height.
Cai et al. (2010c) then derived the correlations of the depth
of fluid invasion based on fractals, and proposed that capillary
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tortuosity and pressure effect were the two key factors for
analyzing the extraneous invasion in porous media with lower
porosity. Cai and Yu (2011) studied the influence of fractal
tortuosity on spontaneous imbibition mass in porous media
and suggested that the time exponent was within 0.167 to
0.5. Cai et al. (2012) treated the porous media as a bundle
of tortuous capillaries, and constructed a mathematical model
of spontaneous imbibition on the condition of gravitational
pressure. Based on the previous studies above, Shi et al. (2018)
assumed that the front of the fluid imbibition process was
not uniform, and that the fluid inside capillaries with different
diameters spent different time periods before arriving at the
top of the rock sample. Therefore, they derived a new semi-
analytical model for spontaneous imbibition in porous media
on the condition of gravity pressure.

However, in attempts to explain spontaneous imbibition
based on the fractal theory, the difference between the areal
porosity φa and the effective porosity φc had been studied with
much less intensity, and only a few researches had focused
on this issue. Yu et al. (2009) clearly suggested that the
areal porosity φa of porous media was a two-dimensional
parameter, whereas the effective porosity φc of porous media
was a three-dimensional parameter, and the correlations for the
corresponding two kinds of porosity were entirely different.
Other studies either simply considered φa as φc (Cai et al.,
2014), or merely regarded φc as the product of areal porosity
φa and average capillary tortuosity τav (Shi et al., 2018). In
this work, according to the definition of porosity (Yu et al.,
2009), a modified correlation for φa is derived, the important
distinction between φc and φa is further discussed, and a new
semi-analytical model of spontaneous imbibition with gravity
is proposed.

This paper is organized as follows: a mathematical model
of the co-current spontaneous imbibition process is derived in
Section 2. The unknown parameter derivation and logic com-
putational procedure are discussed in Section 3. Predictions of
the present model and previous models are compared with the
testing data of previous studies in Section 4. Finally, Section
5 concludes the paper with a summary of the main results.

2. Model of spontaneous imbibition in fractal
porous media

In this section, firstly, the fractal characteristics of porous
media are introduced; then, a mathematical model of the
spontaneous imbibing process in a single tortuous capillary
is derived; finally, a semi-analytical prediction model of the
spontaneous imbibing process in a bundle of tortuous capil-
laries is proposed.

2.1 Fractal characteristics of porous media
Since precise self-similar fractals are relatively rare in

nature, the porous media are characterized by statistical self-
similar fractals. Thus, the total number N of pores with
diameter not less than the size λ in the cross section area
Au follows the fractal power law (Yu and Cheng, 2002). The
total cross section area Au of the cubic unit cell, as shown in
Fig. 1, can be formulated as follows (Wu and Yu, 2007):
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Lu
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Fig. 1. Structure of cubic unit cell with side length Lu.
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where λ represents the pore diameter of capillary, λmax is
the maximum pore diameter, D f represents the pore fractal
dimension of this unit cell, ξ denotes the ratio of λmin to
λmax, and φa is the areal porosity (in two dimensions) of the
cross section of the cubic unit cell.

The total number of capillaries with diameter not less than
λ in a rock sample (Nt ) can be calculated as follows (Cai et
al., 2012):

Nt(≥ λ ) =
4
(
2−D f

)
πD f λ

2−D f
max

Asφa

1−ξ
2−D f

λ
−D f (2)

where As is the total cross section area of the rock sample,
and the value of As is commonly far greater than the value of
Au.

2.2 Spontaneous imbibition in a single tortuous
capillary

As shown in Fig. 2, assuming that the incompressible
Newtonian fluid flows up along a tortuous capillary (Liu et
al., 2014), the fluid can successfully extend from the bottom
surface to the top surface of the rock sample for a typical
capillary (such as C1 or C2), while the fluid fails to reach the
top surface and its outlet connects with the side surface of
rock sample for an atypical capillary (such as C3).

In the following analysis, we ignore the atypical capillaries
(such as C3 in Fig. 2), and assume that all capillaries can
successfully extend from the bottom to the top surface of
the rock sample. The imbibition process follows the Hagen-
Poiseuille law (Cai and Yu, 2011):

dLt

dt
=

Qs

πλ 2/4
=

λ 2

32µLt

(
4σ cosθ

λ
−ρgLs

)
(3)



Li, Y., et al. Capillarity, 2021, 4(1): 13-22 15

Top surface

Side surface

Liquid

C1

C2
C3

Fig. 2. View of co-current spontaneous imbibing process in rock sample.

where Qs represents the fluid volumetric flow rate in a single
capillary with diameter λ ; Lt and Ls represent actual tortuous
distance and straight distance of the fluid column inside the
capillary, respectively; t denotes the fluid imbibing time, σ

represents surface tension, θ is the contact angle, µ indicates
fluid viscosity, ρ is fluid density, g represents gravitational
acceleration, and ρgLs is the gravitational pressure of liquid
column in the capillary.

1) When the gravitational pressure can be ignored compared
to the capillary pressure, inserting the correlation of
Lt = λ 1−Dt LDt

s into Eq. (3) yields the formula (Cai et
al., 2010a; Cai and Yu, 2011):

Ls =

(
λ 2Dt−1σ cosθ

4µ

) 1
2Dt

t
1

2Dt (4)

2) When the gravitational pressure cannot be neglected
compared to the capillary pressure, obtaining the exact
analytical solution of Ls against time according to Eq.
(3) is very difficult. Here, a numerical calculating method
is adopted for solving Eq. (3). As the imbibing process
proceeds from the time interval ti−1 to ti, the straight
distance of fluid column correspondingly increases from
Ls,i−1 to Ls,i, where ti−1 and ti represent the previous
time and the current time, respectively. Integrating Eq.
(3) from the (i−1)th time step to the ith one (Shi et al.,
2018) yields:

∫ Ls,i

Ls,i−1

LDt
s dLDt

s =
∫ ti

tt−1

(
λ 2Dt−1σ cosθ

8µ
− ρgλ 2Dt Ls

32µ

)
dt

(5)
The second item ‘Ls’ on the right side of Eq. (5) is assumed

to be equal to Ls,i−1 for a time interval (dt) that is small
enough. Based on Eq. (5), one can obtain the formula (Shi et
al., 2018):

Ls,i =

[
L2Dt

s,i−1 +

(
λ 2Dt−1σ cosθ

4µ
−

ρgλ 2Dt Ls,i−1

16µ

)
∆t
] 1

2Dt

(6)

where i = 1,2, . . . ,nt; the parameter nt is the total interval
number, and Ls,0 = 0. The value of time interval is ∆t = t/nt.
The first time step (i = 1) corresponds to the initial imbibition
process when the bottom surface of the capillary has just been
moistened by the fluid; the last time step (i = nt) represents
that the imbibition process is about to terminate, and at this
time, the corresponding distance of the fluid column (Ls,nt )
represents the final fluid height associated with the given
imbibition time t.

The value of Ls,nt can be obtained by using the method of
iterative calculations, and the total imbibed mass of fluid in
the single capillary, m(λ ), is calculated as:

m(λ ) =
ρπλ 3−Dt

4

L2Dt
s,nt−1+(
λ 2Dt−1σ cosθ

4µ
−

ρgλ 2Dt Ls,nt−1

16µ

)
∆t


1
2

(7)

2.3 Spontaneous imbibition in a bundle of
tortuous capillaries

In this part, a co-current spontaneous imbibing model
of fluid in the capillary bundle is proposed by viewing the
porous media as an ideal bundle of capillaries with different
diameters.

2.3.1 Spontaneous imbibition without considering gravity

The spontaneous imbibing process of fluid in the capillary
bundle is analyzed here while ignoring gravitational pressure.

In the section, we analyze the spontaneous imbibing pro-
cess of fluid in the capillary bundle with ignoring gravitational
pressure. By differentiating Eq. (2) with respect to λ , we can
get the capillary number with diameter value in the scope of
λ to λ +dλ .

−dNt(≥ λ ) =
4As

πλ
2−D f
max

(
2−D f

)
φa

1−ξ
2−D f

λ
−D f−1dλ (8)

Through combining Eq. (4) and Eq. (8), the total imbibed
mass of fluid in the capillaries within the scope of λ to λ +dλ

can be given as:

M(λ ) =
ρAs

2λ
2−D f
max

(
2−D f

)
φa

1−ξ
2−D f

√
σt cosθ

µ
λ

1.5−D f dλ (9)

Eq. (9) is valid only when the imbibed fluid in the capillary
has not reached the top surface of the rock sample. Once the
fluid has reached the top surface, the fluid imbibition process
terminates, and the total imbibed fluid mass should be revised
as equilibrated mass at this time:

Me(λ ) = ρ
π

4
λ

2
λ

1−Dt HDt (−dNt)

=
ρHDt As

λ
2−D f
max

(
2−D f

)
φa

1−ξ
2−D f

λ
2−Dt−D f dλ

(10)

where Me represents the total equilibrated fluid mass in the
capillaries within the scope of λ to λ +dλ , and H represents
the vertical height of the rock sample.
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The total imbibed fluid mass inside all of the capillaries
(Mt ) within the given imbibing time can be formulated by
combining Eq. (9) and Eq. (10) (Shi et al., 2018):

Mt =
∫

λc

λmin

M(λ )+
∫

λmax

λc

Me(λ ) (11)

where the critical diameter λc is the diameter of capillaries that
have just been fully fed with fluid at the given imbibing time t.
Based on Eq. (4), the fluid in larger capillaries fills them faster
than smaller capillaries for the same imbibing time. Therefore,
the imbibition process in any capillary with diameter larger
than the value of λc ceases at this moment. The parameter λc
can be solved by substituting Ls with H in Eq. (4) as follows:

λc =

(
4µH2Dt

tσ cosθ

) 1
2Dt−1

(12)

Eq. (12) indicates that λc is a time-dependent parameter
that decreases with time t. At the initial spontaneous imbibition
process, λc may be far greater than λmax, whereas at the final
spontaneous imbibition process, λc may be smaller than λmin.

For the case of λc > λmax, namely, when the fluid imbibing
process is at the initial stage, λc = λmax should be set in Eq.
(11), and then Eq. (11) can be modified as:

Mt =
∫

λmax

λmin

M(λ )

=
ρAs

(
2−D f

)
5−2D f

φaλ
1/2
max

1−ξ
2−D f

√
σt cosθ

µ

(
1−ξ

2.5−D f
)
(13)

For the case of λc < λmin, namely, when the fluid front
reaches the top of all capillaries and the fluid imbibition
process has already stopped, λc = λmin should be set in Eq.
(11), and then Eq. (11) is changed as follows:

Mt =
∫

λmax

λmin

Me(λ )

=
ρHDt As

1−ξ
2−D f

(
2−D f

)
φaλ

1−Dt
max

3−Dt −D f

(
1−ξ

3−Dt−D f
) (14)

From Eq. (12), it can be seen that the condition of λc < λmin
will certainly occur when the given imbibition time t is long
enough. This means that, without considering gravity, the fluid
imbibed in any capillary can finally reach the top of the rock
sample as long as the imbibition time is sufficient.

2.3.2 Spontaneous imbibition while considering gravity

In this part we analyze the spontaneous imbibing process
of fluid in a capillary bundle on the condition of gravitational
pressure. Eq. (8) can be transformed into:

∆Nt(≥ λ ) =
4As

πλ
2−D f
max

(
2−D f

)
φa

1−ξ
2−D f

λ
−D f−1

∆λ (15)

where ∆λ represents the diameter interval, and ∆Nt denotes
the number of capillaries with diameter value in the range of
λ to λ +∆λ .

Based on Eq (15), we can obtain:

M(λ ) =ρ
π

4
λ

2
λ

1−Dt LDt
s,nt∆Nt

=

[
L2Dt

s,nt−1 +

(
λ 2Dt−1σ cosθ

4µ
−

ρgλ 2Dt Ls,nt−1

16µ

)
∆t
] 1

2

×
2−D f

λ
2−D f
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2−Dt−D f

1−ξ
2−D f

∆λ

(16)
It should be noted that the value of nt in Eq. (16) is a self-

defined variable constant for different imbibition times; while
the given time t increases, the value of nt rises to a larger
constant. This can prove that the time interval (∆t = t/nt) can
be small enough while the given time t varies. For example,
when the imbibition time t is limited to 50 s, nt = 500, ∆t = 0.1
s, while time t is defined as 1000 s, nt = 10000, and ∆t can
still be equal to 0.1 s.

Eq. (16) is valid only if the imbibing fluid column in the
capillary has not reached the top surface of the rock sample.
When combining with Eq. (15), the equilibrated imbibed mass
(Me) in the bundle with diameter in the range of λ to λ +∆λ .
is calculated by the formula:

Me(λ ) = ρ
π

4
λ

2
λ

1−Dt HDt ∆Nt

=
2−D f

λ
2−D f
max

ρAsHDt φaλ
2−Dt−D f

1−ξ
2−D f

∆λ

(17)

Combining Eq. (16) and Eq. (17) yields the total imbibed
fluid mass inside all capillaries within the given imbibition
time, as follows:

Mt =
λc

∑
j=λmin

[
L2Dt

s,nt−1 +

(
j2Dt−1σ cosθ

4µ
−

ρg j2Dt Ls,nt−1

16µ

)
∆t
] 1

2

×
2−D f

λ
2−D f
max

ρAsφa j2−Dt−D f

1−ξ
2−D f

∆ j

+
λmax

∑
j=λc+∆λ

2−D f

λ
2−D f
max

ρAsHDt φa j2−Dt−D f

1−ξ
2−D f

∆ j

(18)
It should be noted that the critical diameter λc in Eq. (12)

is not suitable for Eq. (18). And the new value of λc in Eq.
(18) can be obtained by substituting Ls,nt with H in the left
side of Eq. (6) while i = nt.

From Eq. (3), we can derive that the spontaneous imbi-
bition process ceases when the gravitational pressure equals
to the capillary pressure, and there exists an exact threshold
diameter λt (Shi et al., 2018). By defining dLt/dt = 0 in Eq.
(3), we can obtain:

λt =
4σ cosθ

ρgH
(19)

When λ < λt , the spontaneous imbibition process contin-
ues, and the fluid front of the capillary with diameter λ finally
reaches the top surface of the rock sample, as long as the
imbibition time is long enough. On the contrary, when λ > λt ,
the spontaneous imbibition process stops at a certain height,
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because the fluid front cannot reach the top surface of the rock
sample.

3. Parameter derivation and computational
procedure

Eqs. (11) and (18) are the final solutions for describing the
spontaneous imbibition of fluid into a capillary bundle with
and without gravitational pressure, respectively. In Eqs. (11)
and (18), ρ , σ , θ , µ , As, H and φc are known parameters;
and λmax, λmin, D f , Dt and φa are unknown parameters. This
section will determine the five unknown parameters.

Firstly, the value of λmax can be obtained by the math-
ematical correlation for maximum pore diameter (Cai et al.,
2010b), and λmin can be acquired based on the correlation
of λmax/λmin = 0.01 (Yu et al., 2009; Cai et al., 2010c). The
value of fractal tortuosity dimension Dt can be calculated by
the formula:

Dt = 1+
ln(1−a lnφc)

ln

{[
πD f

4(3−Dt−D f )φc

(
1−ξ

3−Dt−D f
)] 1

3−Dt D f−1
ξ D f

}
(20)

where the parameter a is a fitting constant, a = 0.41 for the
spherical particles, and a= 0.63 for the cubic particles (Comiti
and Renaud, 1989).

Eq. (20) is clearly an implicit equation that cannot be
solved directly. Once the parameters λmax, λmin, D f and φc
have been obtained, the value of Dt can be calculated based
on the implicit Eq. (20) by using the iteration method. The
calculated results will be analyzed in Section 4.

It is worth mentioning that previous studies (Yu and Cheng,
2002; Cai et al., 2012) considered that the effective porosity
φc (in three dimensions) was equal to the areal porosity φa (in
two dimensions). However, Shi et al. (2018) argued that φc was
equal to the product of τav and φa, while Cai and Yu (2011)
found that the value of φc was equal to the value of φa only
on the condition that the capillaries were straight (τav = 1).

For a cubic unit cell, the areal porosity φa in two dimen-
sions can be expressed as follows (Yu et al., 2009):

φa =
πD f

4
(
2−D f

) (λmax

Lu

)2 (
1−ξ

2−D f
)

(21)

where Lu represents the side length of the cubic unit cell (as
shown in Fig. 1). The effective porosity φc can defined as the
ratio of the pore volume of cubic unit cell to the whole volume
of cubic unit cell, and is given as follows (Yu et al., 2009):

φc =
πD f

4
(
3−Dt −D f

) (λmax

Lu

)3−Dt (
1−ξ

3−Dt−D f
)

(22)

When comparing Eq. (21) with Eq. (22), we find that the
value of φa is different from the value of φc while considering
the tortuosity dimension Dt . Furthermore, we can observe that
the ratio of φc to φa is not equal to the value of tortuosity τav.
This is a deviation from the correlation developed by Shi et al.
(2018), and φc = φa is only true on the condition of Dt = 1.

Based on Eq. (22), the ratio of λmax/Lu in three dimensions
can be obtained as:

λmax

Lu
=

[
4
(
3−Dt −D f

)
φc

πD f
(
1−ξ

3−Dt−D f
)] 1

3−Dt

(23)

Inserting Eq. (23) into Eq. (21) yields a modified correla-
tion for effective porosity:

φa =

[
4
(
3−Dt −D f

)
φc

πD f
(
1−ξ

3−Dt−D f
)] 2

3−Dt πD f
(
1−ξ

2−D f
)

4
(
2−D f

) (24)

In this paper, the value of effective porosity φa is calculated
according to Eq. (24).

In summary, in order to calculate the total imbibed fluid
mass while considering gravity, we firstly insert the known
parameters ρ , σ , θ , µ , As, H and φc into the equations above,
the unknown parameters, such as λmax, λmin, D f , Dt and φa,
can be calculated; then, we can calculate −∆Nt by Eq. (15),
Ls,i by Eq. (6), M(λ ) by Eq. (16) or Me(λ ) by Eq. (17);
finally, we can obtain the value of Mt by using Eq. (18). The
detailed calculation procedure for obtaining the total imbibed
fluid mass while considering gravity is proposed in Fig. 3. It
is should be noted that, in Fig. 3, nt = t/∆t, ∆λ = λmin/10,
and λmin ≤ j ≤ λmax.

In order to further analyze the prediction of imbibition
mass by Eq. (18), two typical prediction models of spon-
taneous imbibition while considering gravity will be further
analyzed in Section 4. The first one (Shi et al., 2018) is the
following:

Mt =
λc

∑
j=λmin

[
(τavLs,nt−1)

2 +

(
jσ cosθ

4µ
−

ρg j2Ls,nt−1

16µ

)
∆t
]1/2

×
2−D f

D f λ
2−D f
max

ρAs j2φa

1−ξ
2−D f

[
j−D f − ( j+∆λ )−D f

]
+

λmax

∑
j=λt+∆λ

2−D f

D f λ
2−D f
max

ρAsH j2φc

1−ξ
2−D f

[
j−D f − ( j+∆λ )−D f

]
(25)

The second model of spontaneous imbibition with gravity
(Cai et al., 2012) is described as:

M(t) =
χ

ψ

{
1+W

[
−e−1−(ψ2/χ)t

]}

χ =
σ cosθ

8µτ2
av

2−D f

3−D f

(ρAsφa)
2

λmax

1−φa
,

ψ =
ρ2Asg
32µτ2

av

2−D f

4−D f

φaλ 2
max

1−φa

(26)

4. Results and discussion
Table 1 proposes the predictions of fluid imbibition mass

with different imbibition times and interval numbers on the
conditions of As = 3 cm2, θ = 30◦, H = 40 cm, ρ = 1 g/cm3,
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Mt = 0,  j = λmin
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Calculate Ls,i by Eq. 6
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Calculate ΔNt by Eq. 15

Fig. 3. Logic procedure for semi-analytical equation while considering
gravity.

Table 1. Predictions of imbibition mass for different imbibition times and
interval numbers.

t (s) nt

100 250 500 1000 2000
1000 19.2877 g 19.2792 g 19.2764 g 19.2750 g 19.2744 g

5000 35.4247 g 35.4219 g 35.4210 g 35.4206 g 35.4204 g

10000 40.4941 g 40.4930 g 40.4927 g 40.4925 g 40.4924 g

φc = 0.2, Dav = 0.02 cm, σ = 0.727 mN/cm, µ = 1 mPa·s
and ξ = 0.01. From the table, we can infer that the converged
imbibition mass is reached when the interval number is more
than 1000 for different imbibition times. Since the prediction
of imbibition mass at nt = 1000 is almost the same as that
at nt = 500 or nt = 2000, the prediction variance between
nt = 1000 and nt = 2000 is less than 0.1%. Consequently,
this paper limits the interval number nt to not less than 1000
for different imbibition times.

The variation of fractal tortuosity dimension Dt with the
effective porosity φc is shown in Fig. 4. As seen in the figure,
the value of Dt gradually drops with the increase of φc, and
stays in the range of 1.0 to 1.11 when the effective porosity φc
is between 0.2-0.9. The Eq. (4) indicates that the rising straight
length of fluid column versus time follows the relationship
Ls(t)∼ t1/2Dt , and the time exponent equals to 2Dt ; the process
follows Ls(t) ∼ t1/2 only for a straight capillary (Dt = 1)
(Lucas, 1918; Washburn, 1921). From Eq. (4) it is clear that
the time exponent of the capillary imbibing process is the
reciprocal of 2Dt . The parameter Dt is generally a function of
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porosity and rises with the reduction of porosity Xu and Yu,
2008), thus the time exponent increases with rising porosity.
Since 1<Dt < 1.11, the time exponent is in the range of 0.45-
0.5. Therefore, Eq. (4) in the present paper is more precise than
the LW law (Lucas, 1918; Washburn, 1921).

Fig. 5 presents the difference between the areal porosity
φa and the effective porosity φc. It can be seen that the ratio
of φc to φa decreases with the increase of φc, and that φc
is always larger than φa. This result disagrees with previous
researches that ignored the difference between the effective
porosity φc and the areal porosity φa (Yu and Cheng, 2002;
Cai et al., 2012). Fig. 5 indicates that φa is about 77% of φc
when φc = 0.3, which demonstrates that the difference between
φa and φc is not negligible.

Fig. 6 demonstrates the comparison between the areal
porosity φa and the average areal porosity φ ′. The value of
φa or φ ′ rises with the increase of φc, and φa is larger than φ ′

when the value of φc is kept unchanged. This is not coherent
with the correlation for areal porosity φ ′ = φc /τav obtained by
Shi et al. (2018). Fig. 6 indicates that φ ′ is about 87% of φa
when φc = 0.3. And this suggests that the difference between
φa and φ ′ cannot be ignored.
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Figs. 7 and 8 present the comparison of the imbibed mass
of water with gravity versus time by different equations by us-
ing the experimental data of Berea sandstone (Schembre et al.,
1998) and Bentheim cores (Olafuyi et al., 2007), respectively.
It is observed that all of these three models fit the testing data
well in the initial period of the imbibing process, but after
a while, the testing data of imbibed mass are lower than the
predictions of the model Eq. (18). These discrepancies can be
explained as follows: during the derivation of the theoretical
model, we assume that all capillaries can successfully extend
from the bottom surface to the top surface of the rock sample,
as shown in Fig. 2. However, for the real testing samples with
regular shapes, such as cylindrical samples in Berea sandstone
(Schembre et al., 1998) and Bentheim cores (Olafuyi et al.,
2007), not all capillaries can extend their tortuous tubes from
the bottom surface to the top surface of the testing samples,
and a few capillaries inevitably fail to reach the top surface,
therefore the imbibition water in these capillaries flows out
from the side surface of the test samples. This will lead to a
lower true imbibition water mass in testing as compared with
the theoretical predictions.

From Figs. 7 and 8, we can also establish that, for a
short imbibition time t = 700 s, the prediction variance of
Eq. (26) is about 0.2%, the variance of Eq. (25) is about
negative 18.1%, and that of Eq. (18) is about 12.2%. In other
words, the model prediction of Eq. (26) is the best for short
imbibition time among the three models compared with the
testing data (Schembre et al., 1998). For a long imbibition
time t = 1980 s, the prediction variance of Eq. (26) is about
27.2%, the variance of Eq. (25) is about negative 21.2%, and
that of Eq. (18) is about 25.4%. Namely, among these three
models, the prediction trend of Eq. (26) and Eq. (18) for a
longer imbibition time is highly similar compared with that of
Eq. (25).

Figs. 9(a) and 9(b) present the comparison of critical
diameters between Eq. (12) of the present model and the model
of Shi et al. (2018). It is observed that, with the increase of
imbibition time, the prediction of critical diameter by Eq. (12)
of the present model is higher than that of Shi et al. (2018).
It is worth noting that, when the effective porosity φc and
characteristic diameter Dav are given, the maximum diameter
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of capillary can be obtained by Eq. (19). Fig. 9(b) shows that,
when λmax = 0.00599 cm in Eq. (12), the imbibition time hits
the critical time (about 1560 s), and the imbibition of the
capillary with λmax begins to face the critical diameter. In other
words, the capillary pressure equals to the gravity pressure at
this moment, and the imbibition process begins to cease. When
the imbibition time exceeds 1560 s, the imbibition process
terminates in the capillaries with diameters in the range of
λmax > λ > λc. For the model of Shi et al. (2018), however,
the critical time is only about 740 s, which means that the
beginning terminal time of the imbibition process in that model
is earlier than that in Eq. (12) of this paper. As illustrated in
Figs. 7 and 8, this can explain why the fluid imbibition mass
predictions of Eq. (18) of this paper are higher than those of
Shi et al. (2018).

Eq. (15) indicates that the total number of capillaries with
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Fig. 9. Comparison of critical diameters between two equations while considering gravity; φc = 0.2, Dav = 0.02 cm, As = 5.15 cm2, θ = 30◦, H = 50 cm,
σ = 0.727 mN/cm, ρ = 1 g/cm3, µ = 1 mPa·s, ξ = 0.01.

same diameter is proportional to the value of areal porosity
φa or φ ′. Based on the parameters given in Table 2, Table
3 compares the total number ∆Nt of capillaries in Eq. (15)
with that of Shi et al. (2018). Table 3 demonstrates that the
total number ∆Nt in Eq. (15) is greater than that of Shi et al.
(2018). The reason for this might be that the areal porosity is
φa = 0.145, the average areal porosity is φ ′ = 0.120, and φ ′ is
about 83% of the value of φa, which exactly agrees with the
ratio of about 87% of the total number in Eq. (15) to that in
Shi et al. (2018).

The total imbibition mass M(λ ) of fluid in the capillaries
with diameter in the range of λ to λ +∆λ can be calculated
by Eq. (16). Fig. 10 displays the effect of the ratio of λ/λmax
on the value of M(λ ). From Fig. 10, we can find that the value
of M(λ ) decreases with the increase of λ/λmax. This can be
explained by the fact that the total number of small diameter
capillaries is far greater than that of large diameter capillaries,
thus even the cross section of a single capillary with a small
diameter is lower than that of capillary with a big diameter,
the imbibition mass M(λ ) still decreases with the increase of
capillary diameter.

It can also be inferred from Fig. 10 that the value of M(λ )
of our model is slightly higher than that of Shi et al. (2018) for
a shorter imbibition time of 1000 s, whereas the value of M(λ )
of our model is much higher than that of Shi et al. (2018) for
a longer imbibition time of 10000 s. This is because the total
number ∆Nt in Eq. (15) is greater than that in Shi et al. (2018)
due to the difference between the areal porosity φa and φ ′,
which leads to the underestimation of fluid imbibition mass in
the capillaries by the model of Shi et al. (2018). The difference

is not obvious for the initial imbibing period, however, with the
increase of imbibition time, the difference gradually expands
and the value of M(λ ) of our model will be much higher than
that of Shi et al. (2018) for a longer imbibition time.

Fig. 11 compares the imbibition mass among three dif-
ferent equations on the condition of gravity pressure. The
figure demonstrates that, with the increase of rock sample
height H, the imbibition mass of Eq. (18) and of Eq. (25)
always increases, whereas the imbibition mass of Eq. (26) is
independent from H for a longer imbibition time. We also can
find that, among these three equations, the imbibition mass of
Eq. (18) is the largest, and the imbibition mass of Eq. (25)
is the smallest. These discrepancies are due to the fact that
the prediction model in Eq. (26) ignores the large difference
between the effective porosity φc and the areal porosity φa.
Moreover, although the prediction model in Eq. (25) considers
this disparity, Eq. (25) ignores the obvious difference between
areal prosity φa and φ ′. All these factors lead to the discrepan-

Table 2. Parameter values.

Parameters Valule Parameters Valule
φc 0.2 θ 30◦

φa 0.145 H 40 cm

φ ′ 0.12 σ 0.727 mN/cm

D f 1.65 ρ 1 g/cm3

Dav 0.02 cm µ 1 mPa·s

λmax 0.00599 cm ξ 0.01

As 3 cm2 ∆t 1 s

Table 3. Comparison of the total number ∆Nt of capillaries with the same diameter while considering gravity.

λ /λmax 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
∆Nt in Shi et al. (2018) 7791 1167 175 57.6 26.2 14.2 8.6 5.7 3.9

∆Nt in Eq. (15) 8993 1347 202 66.5 30.2 16.4 10.0 6.5 4.5

Ratio 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.88 0.87
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cies of imbibition mass prediction among the three equations.
Fig. 12 presents the results of Eqs. (18) and (11) with the

parameter H. The difference among the displayed curves is
due to the gravity pressure. It can be seen that the difference
is slight with a small H value of 0.4 m, while the difference
seems more significant with a larger H value of 2 m. This
means that the gravitational pressure can not only equilibrate
the capillary pressure, but also cease the fluid imbibing process
before it reaches the top surface of the rock sample. In other
words, for rock samples with greater height, the effect of
gravitational pressure is important, and Eq. (11) will lead to a
more considerable overestimation of the imbibition mass.

5. Conclusions
The significant difference between this work and the pre-

vious researches is that we consider the obvious distinction
between the effective porosity and the areal porosity. An im-
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Fig. 12. Comparison of water imbibition mass between considering and
ignoring gravity; φc = 0.3, Dav = 0.02 cm, As = 3 cm2, θ = 30◦, σ = 0.727
mN/cm, ρ = 1 g/cm3, µ = 1 mPa·s, ξ = 0.01.

plicit equation for fractal tortuosity and a modified correlation
for the areal porosity are proposed, and the analysis results
show that the value of areal porosity is always greater than
that of the average areal porosity, and the difference between
the areal porosity and the effective porosity is too large to be
ignored. A semi-analytical prediction model of fluid imbibition
mass with gravity pressure is derived, and its validity is proved
by comparing the testing data with previous studies. The
imbibition mass predictions of three different models have also
been discussed.

Nomenclature
As = total cross-section area of rock sample, m2

Au = cross-section area of cubic unit cell, m2

Dav = characteristic particle diameter, m
D f = pore fractal dimension, dimensionless
Dt = tortuosity fractal dimension, dimensionless
Ls = straight distance of fluid column, m
Lt = actual tortuous distance of fluid column, m
Lu = side length of cubic unit cell, m
m = imbibed mass in a single capillary, kg
M = imbibed mass in a capillary bundle, kg
Me = equilibrated mass in a capillary bundle, kg
Mt = total imbibed mass of rock sample, kg
N = total number of pores, dimensionless
∆Nt = number of capillaries with diameter value in the

range of λ to λ +∆λ , dimensionless
nt = total interval number of imbibition time, s
t = imbibition time, s
Vp = particle volume of cubic unit cell, m3

Vu = total volume of cubic unit cell, m3

θ = contact angle, ◦

τav = average tortuosity of capillary, dimensionless
σ = surface tension, N/m
ρ = density of wetting phase, kg/m3

λav = average capillary diameter, m
λc = critical diameter of capillary, m
λmax = maximum capillary diameter, m
λmin = minimum capillary diameter, m
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λt = threshold diameter of capillary, m
φa = areal porosity of porous media, dimensionless
φc = effective porosity of porous media, dimensionless
φ ′ = average areal porosity, ratio of φc to τav, dimension-

less
µ = absolute viscosity of wetting phase, Pa·s
ξ = ratio of λmin to λmax, dimensionless
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