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Abstract:
Soil water characteristic curve (SWCC) has been an important role in hydraulic engineer-
ing, civil engineer and petroleum engineering, etc. Most of SWCC models neglected the
film flow in the dry state, so that they cannot accurately describe the SWCC over entire
range of water content. In this work, an alternative fractal model is proposed to predict the
SWCC over entire range of water content by combining Campbell and Shiozawa model
and Tao model. The proposed model can well predict twelve sets of experimental data,
and its parameters, including the fractal dimension, the saturated volumetric water content,
the matric suction at oven-dry condition, and the air-entry value, accord with theoretical
value. The results show that there is a strong linear relationship between volumetric water
content and matrix suction in log-log scale for different fractal pore-size distribution of
soils. In addition, good agreement is obtained between the experimental data and the model
predictions in all of the cases.

1. Introduction
The soil water characteristic curve (SWCC) is usually used

to describe the relationship between matric suction of soils
and gravimetric/volumetric water content or the degree of
saturation. It is one of the important hydraulic properties for
modeling water transport process in porous media, there are
various applications in the field of unsaturated soil mechanics
(Wheeler, 1996; Gallipoli et al., 2003; Fredlund, 2006). The
critical parameters, such as the shear strength, permeability of
unsaturated porous media and stress-strain, are also related to
SWCC (Fredlund et al., 1996; Assouline, 2001; Al Haj and
Standing, 2016). However, the measurements of the SWCC
is time-consuming because of highly complexity of structure
and composition of soil. One of effective methods to solve the
measurement problem is the development of theoretical model
for predicting the SWCC of soils.

Over the past decades, various attempts have been made
to present the SWCC equation of unsaturated soil. Brooks
and Corey (1964) and Van Genuchten (1980) presented em-
pirical equations to describe the experimental SWCCs, which
are commonly exploited in various fields. Mbonimpa et al.
(2006) presented a SWCC equation of deformable soil under

increasing suction by means of volumetric shrinkage curve.
Aubertin et al. (2003) developed a set of equations to estimate
the SWCC from some basic geotechnical properties of soil.
Yang and Lu (2012) derived a SWCC equation considering
contact angle hysteresis by simplifying soil particles as the
spherical particle model. On the basis of back propagation
(BP) neural network algorithm and Arya-Paris model (Arya
and Paris, 1981), Tao et al. (2017) developed a new calculation
method for determining SWCC. However, these works neglect
the flow process in dry condition, so it cannot accurately
describe the relationship between matric suction and water
volume of soils (Rossi and Nimmo, 1994; Silva and Grifoll,
2007).

In recent years, a great deal of studies has been carried out
on the prediction of SWCC over the complete range of water
content. For example, Lebeau and Konrad (2010) presented
a SWCC model with considering the weighted average of
the contributions of capillary flow and thin film flow. In
SWCC model, the mechanics of thin film flow (Campbell
and Shiozawa, 1992) and capillary flow (Kosugi, 1996) should
be different. Zhang (2011) presented two models to describe
SWCC over complete range of water content, where Brooks
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Table 1. Comparison of different SWCC models.

Reference Equation Note

Lebeau and Konrad (2010) θ = θs
2 erfc

(
ln

ψ

ψm√
2κ

)
+θo

[
1− 1

2 erfc
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ln

ψ

ψm√
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)](
1− ln|ψ|
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)
Weighting average of capillary
flow and film flow.

Zhang (2011) θ (ψ) = θroξ (ψ)+ [θs−θroξ (ψ)]
(

ψa
ψ

)λ

θ (ψ) = θroξ (ψ)+ [θs−θroξ (ψ)] (1+α|b|n)−m

Combination of VG/BC model in
term of capillary flow and CS
model in term of film flow.
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ln
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ψ
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)
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Combination of VG/Kosugi model
in term of capillary flow and
slightly modified FX model in
term of film flow.

Rudiyanto et al. (2015) θ (ψ) = θs
Γ(ψ)−Γ(ψ0)

1−Γ(ψ0)
+ θr

1−Γ(ψ)−2Γ(ψ0)
1−Γ(ψ0)

+
θr

xa−x0

{
x− xa +b ln

[
1+ exp

( xa−x
b

)]} Combination of capillary hys-
teretic model and PDI model.

Lu (2016) θ (ψ) = θamax

{
1−
[
exp
(

ψ−ψmax
ψ

)] 1
M

}
+

1
2

[
1− erf

(√
2 ψ−ψc

ψc

)]
[θs−θa (ψ)] [1+(αψ)n]1/n−1

Combination of capillary, adsorp-
tive flow and tightly adsorptive soil
water.

Wang et al. (2016) S (ψ) =

[
1−

ln
(

1+c
ψ

ψr

)
ln
(

1+c
ψ0
ψr

)
]
[ln(e+ |αψ|n)]m Extension and modification of FX

model.

Note: θ - Volumetric water content (L3); θs - Saturated volumetric water content (L3); erfc - The complementary error function; ψ - Matric suction (L);
ψm - The matric head that corresponds to the median capillary pore radius (L); κ - The standard deviation of the log-transformed capillary pore radius
distribution; θo - Volumetric water content due to adsorption at a matric head of -1 m (L3); ψ0 - the matric suction at oven-dry condition (L); θro - the
residual water content for the nonextended model (L3); ξ - Pressure head-dependent correction factor; ψa - The air-entry value (L); ω - The relative
contribution of the film flow; θr - The residual water content (L3); α,λ ,n,m - Fitting parameters; Γ(h) - VG model; x− x = lg |ψ|; x0− x0 = lg |ψ0|;
xa− xa = lg |ψa|; b - The smoothing parameter; θamax - Adsorption capacity (L3); ψmax - The highest suction (L); M - The adsorption strength; c - The
fitting parameter; ψc - The mean cavitation suction; ψr - The matric suction corresponding to the residual water content (L); e - Euler’s number.

and Corey (BC) model (Brooks and Corey, 1964) and Van
Genuchten (VG) model (Van Genuchten, 1980) were modified
by adsorption-based Campbell and Shiozawa (CS) model
(Campbell and Shiozawa, 1992). Peters (2013) introduced a
new set of empirical hydraulic models to effectively describe
water dynamics over complete range of water content. The new
SWCC model was given by the weighted sum of a capillary
and an adsorptive saturation term. The basic saturation func-
tions for the capillary flow were the function of Van Genuchten
(1980) model and Kosugi (1996) model. The basic saturation
function for the film flow was given by a slight modification
of the correction function of Fredlund et al. (1996). However,
these two SWCC models have five fitting parameters. On the
basis of capillary hysteresis phenomenon and Peter-Durner-
Iden (PDI) model (Iden and Durner, 2014), Rudiyanto et al.
(2015) presented a SWCC model over complete range of water
content by simultaneously considering capillary hysteretic,
adsorptive water and capillary water. A smooth piecewise
linear function was introduced in this SWCC model. Based
on the assumption of local thermodynamic energy equilib-
rium, Lu (2016) generalized a SWCC equation including
comprehension of soil-water interaction, which can account for
capillary flow, adsorptive flow and tightly adsorptive water in
different state of water content. This SWCC model over entire

range of water content was defined with seven parameters.
Wang et al. (2016) extended Fredlund and Xing (FX) model
(Fredlund and Xing, 1994) to predict SWCC equation from
the saturation to oven dryness. A slightly different correction
function was employed in this SWCC model. Table 1 shows
several common SWCC models over entire range of water
content. Above works devote to improve the existing SWCC
models, or combine capillary flow and film flow, to extend the
traditional SWCC over entire range of water content.

Those existing models are so complex as to many empirical
parameters. Pore structure information can be used to reduce
the empirical parameters in SWCC model over entire range
of water content (Perfect, 1999; De Bartolo et al., 2014). The
fractal geometry is an effective tool to characterize micro-pore
structure of soils (Mandelbrot, 1982; Kravchenko and Zhang,
1998). Moreover, the SWCC of soils over entire range of water
content are closely related to its pore structure. However, few
attempts have been used to establish SWCC model over entire
range of water content based on the fractal geometry. In this
paper, on the basis of the capillary flow model (Tao model)
and film flow model (CS model), an alternative fractal model
of SWCC over entire range of water content is presented.
The comparison results between the proposed model and
experimental data show the model can be effectively applied
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to predict the SWCC of soils.

2. Model development

2.1 Fractal-based SWCC model
2.1.1 SWCC model in term of capillary flow

The fractal geometry in soil science is an effective tool to
characterize micro-pore structure of soils (Mandelbrot, 1982;
Kravchenko and Zhang, 1998; Russell, 2014). For the pore-
size distribution (PSD) over a range of pore radius from
minimum pore radius rmin to maximum pore radius rmax,
where rmin closely approaches to zero. As Mandelbrot (1982)
presented, the cumulative volume V (≤ r) of pores with radius
less than or equal to pore radius r is expressed as,

V (≤ r) =Cr3−D (1)

where C is a constant, D is the fractal dimension and r is
pore radius of the connected pore space. Assuming that the
pores with radius less than or equal to r are completely filled
with water, the volumetric water content θ can be denoted as
follows (Tao et al., 2018),

θ =Cr3−D (2)

The soil sample is considered as completely saturated
soil when the largest pores with rmax are filled with water.
Therefore, the saturated volumetric water content θs can be
generated by substituting r with rmax in Eq. (2),

θs =Cr3−D
max (3)

The relationship between matric suction and pore radius is
derived by Young-Laplace equation,

ψ =
2σ cosα

r
(4)

where ψ is the matric suction, σ represents the surface tension
and α denotes the contact angle. By substituting r with rmax in
the Eq. (4), the air-entry value ψa corresponding to maximum
pore radius rmax can be obtained as,

ψa =
2σ cosα

rmax
(5)

Then, substituting Eq. (2) into Eq. (4), and Eq. (3) into Eq.
(5), respectively, yields the following expressions,

θ =C
(

2σ cosα

ψ

)3−D

(6)

θs =C
(

2σ cosα

ψa

)3−D

(7)

Dividing Eq. (6) by Eq. (7) gives,

θ = θs

(
ψa

ψ

)3−D

(8)

It is noted that Eq. (8) is only valid in the condition of
water content controlled by capillary force. If the residual

water content θr is simplified as zero, the SWCC equation
developed by Xu (2004) is same as Eq. (8).

2.1.2 SWCC model in term of film flow

It has been recognized that adsorption force is the dom-
inated force to hold water when soil is in dry condition,
where a thin film of water can stretch over the surface of soil
particle. Therefore, the relationship between matrix suction
and thin film water content is influenced by van der Waals
adsorptive forces, surface-water interactions, the thickness of
thin film and electrostatic interaction (Tuller and Or, 2005;
Tokunaga, 2009; Lebeau and Konrad, 2010), which results in
the complexity and difficulty for the study on SWCC over
complete range of water content. Campbell and Shiozawa
(1992) established an empirical method to describe the SWCC
in dry condition, which is expressed as,

lgψ = aθ + lgψ0 (9)

where a is fitting parameter, ψ0 corresponds to the matric
suction at oven-dry condition (i.e., θ ≈ 0). Many attempts have
been made to investigate the hydraulic properties of porous
media using Eq. (9) (Zhang, 2011; Wang et al., 2016; Chen
et al., 2017). These results showed that the model (Eq. (9))
for describing the hydraulic properties of porous media over
the entire range of water content can predict water transport
process well.

Taking the deformation of Eq. (9), there is,

θ =
1
a

lgψ− 1
a

lgψ0 (10)

Eq. (10) illustrates that the water content at low water
content can decrease linearly with the matric suction in log-
arithmic plotting. It is usually used to describe the hydraulic
properties at low water content.

2.1.3 SWCC model over the complete range of water content

Assuming that the contribution of film flow to SWCC is
ignored at moderate water content, a fractal SWCC model
accounting for capillary and thin film flow is written as,

Table 2. Soil properties of the testing data.

No. Data set θs Reference
1 Adelanto loam 0.43 Pachepsky et al. (1984)

2 Pachapa loam 0.46 Pachepsky et al. (1984)

3 Shonai sand 0.43 Mehta et al. (1994)

4 Acheng silty clay loam 0.44 Lu et al. (2008)

5 Beijing silt loam 0.38 Lu et al. (2008)

6 Shijiazhuang silty clay loam 0.4 Lu et al. (2008)

7 Wuqiao silt loam 0.37 Lu et al. (2008)

8 Arizona silty soil-14 0.44 Jensen et al. (2015)

9 Danish sandy soil-L3 0.45 Jensen et al. (2015)

10 Seochang sandy clay 0.42 Oh et al. (2012)

11 Georgia kaolinite 0.57 Likos and Lu (2003)

12 Wyoming bentonite 0.7 Likos and Lu (2003)
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Table 3. The fitted parameters for the new model.

No. Data set a ψa (cm) ψ0 (cm) D

1 Adelanto loam -19.45 106.08 6.63×106 2.775

2 Pachapa loam -39.39 60.76 4.75×106 2.623

3 Shonai sand -70.13 4.03 1.13×106 2.645

4 Acheng silty clay loam -27.37 35.41 1.94×107 2.791

5 Beijing silt loam -41.74 29.89 2.00×107 2.754

6 Shijiazhuang silty clay loam -31.74 14.68 1.36×107 2.807

7 Wuqiao silt loam -42.05 42.72 1.34×107 2.705

8 Arizona silty soil-14 -20.43 8.19 5.02×106 2.844

9 Danish sandy soil-L3 -33.47 20.15 7.23×106 2.807

10 Seochang sandy clay -51.44 41.32 2.93×107 2.702

11 Georgia kaolinite -13.74 150.72 1.54×106 2.783

12 Wyoming bentonite -6.67 5542.68 2.64×106 2.481

θ =

{
θs

(
ψa
ψ

)3−D
ψa ≤ ψ ≤ ψr

1
a lgψ− 1

a lgψ0 ψr ≤ ψ

(11)

where ψr is the matric suction corresponding to residual water
content. ψr is assumed to be the dividing point from capillary
force regime to adsorptive force regime, and is commonly set
to be 1,500 kPa, which can be converted to pressure head of
15,000 cm (Fredlund et al., 1996; Xu, 2004; Lu, 2016).

2.2 Determination of model parameters

In Eq. (11), the description of SWCC over entire range
of water content is primarily dominated by five parameters:
(1) the saturated volumetric water content θs, (2) the air-entry
value ψa, (3) the matric suction ψ0 at oven-dry condition,
(4) fractal dimension D and (5) the fitting parameter a. θs
is conveniently obtained by basic physic experiment of soil.
Air-entry value ψa can be determined by using Eq. (8) to
fit experimental data. Likewise, the fitting parameter a can
be obtained by applying Eq. (10) to fit experimental data.

Conventionally, the matric suction ψ0 at oven-dry condition
is regarded to be 6.3× 106 cm (Schneider and Goss, 2012;
Wang et al., 2018). However, ψ0 is captured by Eq. (10). In
addition, fractal dimension D can be obtained by taking the
logarithm of both side of Eq. (8),

lnθ = lnθs

(
ψa
ψ

)3−D

= (3−D)(− lnψ)+(3−D) lnψa+ lnθs

(12)

Obviously, there is a linear relationship between lnθ and
(-lnψ). Thus, fractal dimension D can be determined by the
slope k in the plotting of lnθ versus (-lnψ).

3. Result and discussion

3.1 Data for model testing

Twelve sets of published SWCC data is applied to evaluate
the performance of the proposed model (Eq. (11)). The data
source and their saturated volumetric water content θs are
shown in Table 2. For 12 soils data, volumetric water content
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Fig. 1. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Adelanto loam. (b) The model fitting
results for Adelanto loam.
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Fig. 2. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Pachapa loam. (b) The model fitting
results for Pachapa loam.
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Fig. 3. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Shonai sand. (b) The model fitting
results for Shonai sand.
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Fig. 4. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Acheng silty clay loam. (b) The
model fitting results for Acheng silty clay loam.

at saturated condition has been measured, the parameter θs can
be set as the known values. Their references and properties of
soils sample are listed in Table 2.

3.2 Determination of model parameters

By fitting the proposed model (Eq. (10)) wito the experi-
mental data, ψa, ψ0 and a were determined as shown in Table
3. Meanwhile, fractal dimension D was obtained by using Eq.
(12). The fitting results of D are given in Table 3, and the
fitting process is that ( 3−D ) can be evaluated from the

slope k in the plotting of lnθ versus (-lnψ), then the fractal
dimension can be determined as D = 3− k, as shown in Fig.
1(a) - Fig. 12(a). We can observe that there is a strong linear
relationship between lnθ and (-lnψ) for different fractal pore-
size distribution of soils in Fig. 1(a) - Fig. 12(a).

3.3 Model testing results

When fractal dimensions of twelve soils were calculated,
only the experimental data ranging from ψa to ψr were
adopted in Fig. 1(a) - Fig. 12(a). Because the SWCC in those
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Fig. 5. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Beijing silt loam. (b) The model
fitting results for Beijing silt loam.
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Fig. 6. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Shijiazhuang silty clay loam. (b)
The model fitting results for Shijiazhuang silty clay loam.
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Fig. 7. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Wuqiao silt loam. (b) The model
fitting results for Wuqiao silt loam.

range of matrix suction is mainly controlled by the capillary
force. The capillary force is related to micro-pore structure
of soils which follows the theory of PSD of fractal geometry.
The results show that the fitting correlation coefficient is 0.782
∼ 0.987 for all the experimental data, and the values of the
fractal dimension are all in the range of 2 - 3, which accords
with theoretical value. As can be seen from Fig. 1(a) - Fig.
12(a), there is a strong linear correlation between lnθ versus
(-lnψ) except Fig. 3(a), indicating that the fitting results of
fractal dimension are reasonable. In Fig. 3(a), (-lnψ) shows a
slightly linear relationship with lnθ .

As for air-enter value ψa, it can be seen from Table 3,
the values of ψa vary significantly for various soil samples,
which vary in several orders of magnitude. There are three
factors, such as soil texture, soil structure and soil temperature,
cause the difference of orders of magnitude: (1) at the same
matrix suction, the higher the clay content contributes to the
enhancement of the soil water content, at the same water
content, the higher the clay content results in the larger air-
enter value; (2) air-enter values of soils increase with the
number of large pores; (3) conventionally, the viscosity of soil
decreases as temperature increases.
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Fig. 8. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Arizona silty soil-14. (b) The model
fitting results for Arizona silty soil-14.
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Fig. 9. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Danish sandy soil-L3. (b) The model
fitting results for Danish sandy soil-L3.
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Fig. 10. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Seochang sandy clay. (b) The
model fitting results for Seochang sandy clay.

In Table 3, the values of ψ0 of various soils are affected by
the existence of ingredients in soil and the primary interlayer
cations, e.g. Ca2+ and Na+ (Montes-H et al., 2003; Schneider
and Goss, 2012). Generally, it is recognized that the values
of ψ0 for various soils are approach to 6.3× 106 cm. As
demonstrated by Cobos et al. (2014), water content approaches
to be zero when matrix suction is in the range of 5×106 cm
and 1.9×107 cm.

After five parameters were determined, the SWCC over
complete range of water content can be predicted, as shown in
Fig. 1(b) - Fig. 12(b). A validation of the proposed model was

conducted using various twelve data sets from the literatures.
In Fig. 1(b) - Fig. 12(b), excepting for Fig. 3(b), there are good
agreement between the proposed SWCC model over entire
range of water content with experimental data. In Fig. 3(b),
the relatively poor performance of the proposed model may
be the complex structure of Shonai sand. The proposed model
over entire range of water content can predict SWCC well
at low water content. However, volumetric water content is
obviously underestimated when the matric suction ψ ranges
from 10 to 30 cm, it is overestimated when the matric suction
ψ ranges from 30 to 5,000 cm.
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Fig. 11. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Georgia kaolinite. (b) The model
fitting results for Georgia kaolinite.
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Fig. 12. (a) Determination of the values of fractal dimension through plotting experimental data of lnθ against (-lnψ) for Wyoming bentonite. (b) The model
fitting results for Wyoming bentonite.

4. Conclusions
An alternative fractal SWCC model has been developed

with the combination of Tao model and CS model. The pro-
posed model is capable of continuously describing SWCC over
the entire range of water content, and it has a simpler form in
contrast to other models. The results show that matrix suction
and volumetric water content exists a good linear relationship
in log-log scale, indicating that there is a good performance
of fractal geometry in SWCC model of soils. In addition, the
determination of the five parameters of the proposed model
was elaborated. The application of the presented model was
examined by a wide range of experimental data. The results
show good agreement between the experimental data and the
model.

The SWCC of soils is one of the soils hydraulic properties
that are key factors in description of water flow and solute
transport in the unsaturated zone. Both hydraulic conductivity
function and SWCC are strongly related to soil micro-pore
structure. Thus, the future works should be focused on predict-
ing the hydraulic conductivity function based on the proposed
SWCC model.
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areas. Géotechnique 2014, 64(5): 379-390.

Schneider, M., Goss, K.U. Prediction of the water sorption
isotherm in air dry soils. Geoderma 2012, 170: 64-69.

Silva, O., Grifoll, J. A soil-water retention function that
includes the hyper-dry region through the BET adsorption
isotherm. Water Resour. Res. 2007, 43, W11420.

Tao, G., Chen, Y., Kong, L., et al. A simple fractal-based
model for soil-water characteristic curves incorporating
effects of initial void ratios. Energies 2018, 11(6): 1419.

Tao, H.L., Chen, C., Jiang, P., et al. Soil water characteristic
curves based on particle analysis. Procedia Eng. 2017,
174: 1289-1295.

Tokunaga, T.K. Hydraulic properties of adsorbed water films
in unsaturated porous media. Water Resour. Res. 2009,
45, W06415.

Tuller, M., Or, D. Water films and scaling of soil characteristic
curves at low water contents. Water Resour. Res. 2005,
41, W09403.

Van Genuchten, M.T. A closed-form equation for predicting
the hydraulic conductivity of unsaturated soils. Soil Sci.



Jin, T., et al. Capillarity 2019, 2(4): 66-75 75

Soc. Am. J. 1980, 44: 892-898.
Wang, Y.Q., Jin, M.G., Deng, Z.J. Alternative model for

predicting soil hydraulic conductivity over the complete
moisture range. Water Resour. Res. 2018, 54: 6860-6876.

Wang, Y.Q., Ma, J.Z., Guan, H.D. A mathematically
continuous model for describing the hydraulic properties
of unsaturated porous media over the entire range of
matric suctions. J. Hydrol. 2016, 541: 873-888.

Wheeler, S.J. Inclusion of specific water volume within an
elasto-plastic model for unsaturated soil. Can. Geotech.
J. 1996, 33(1): 42-57.

Xu, Y.F. Calculation of unsaturated hydraulic conductivity
using a fractal model for the pore-size distribution.
Comput. Geotech. 2004, 31(7): 549-557.

Yang, S., Lu, T.H. Study of soil-water characteristic curve
using microscopic spherical particle model. Pedosphere
2012, 22(1): 103-111.

Zhang, Z.F. Soil water retention and relative permeability for
conditions from oven-dry to full saturation. Vadose Zone
J. 2011, 10(4): 1299-1308.


