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Abstract:
The capillary end effect appears in a two-phase displacement process as a physical
consequence of the capillary discontinuity at the system outlet and causes accumulation
of the wetting phase at this location and back along the system. In the study of water
injection into a one-dimensional system, to obtain accurate phase saturation profiles in the
presence of the capillary end effect at any time during the transient state, conventional
implicit pressure explicit saturation and one-dimensional convection-diffusion methods
have been modified by applying a novel boundary condition. This modification is entirely
physics-based, whereas in commercial simulators fix-up procedures are applied which do
not conserve mass. A new term “exit saturation” is introduced which provides a useful
way to study and analyse the capillary end effect. Transient-state flow development in the
presence of the capillary end effect in different wetting systems is presented in detail in
this work. Also, several methods are presented to obtain steady-state saturation profiles.
At steady-state conditions, the capillary end effect vanishes in purely water-wet systems
and all oil in principle can be displaced from the system in a finite, but very long time.
However, in mixed- and oil-wet systems, some oil is permanently trapped in the system
at any chosen flowrate, i.e., the capillary end effect cannot be entirely removed no matter
how large the flowrate is. However, oil recovery is improved by increasing the flowrate.

1. Introduction
In the water injection displacement process into a one-

dimensional (1D) porous medium, capillary pressure follows
a function inside the system for any wettability state and
suddenly becomes zero at the system outlet. This capillary
pressure discontinuity can distort phase saturation profiles
within the system and is called the Capillary End Effect (CEE).
Depending upon the system wettability (represented by the
sign of capillary pressure in this work), the following scenarios
may be encountered. Note that only water is injected into the
system and there is no counter-current flow anywhere in the
system.

In water-wet systems, capillary pressure is positive in-

side the system (while being zero at the outlet), therefore a
negative capillary pressure gradient develops which prevents
water from flowing out. Negative capillary pressure gradient
actually hinders water outflow. As a result, water accumulates
at the end of the system. Leverett (1941) first presented a
clear explanation of this physical phenomenon. How far this
accumulation extends back into the system depends on the
magnitude of the capillary pressure, petrophysical properties
and flow conditions. In oil-wet systems, capillary pressure
is negative inside the system, therefore a positive capillary
pressure gradient develops at the end of the system. In this case
both viscous pressure gradient and capillary pressure gradient
contribute to water flow which results in depletion of water at
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Fig. 1. Water and oil relative permeability functions used in
this study (as in Eq. (1)).
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Fig. 2. Capillary pressure function used in this study (as in
Eq. (1)).

the end of the system. In mixed-wet systems, both behaviors
are observed which will be explained in detail below. The pri-
mary focus of this paper is to study the CEE and numerically
show how flow develops in different wetting systems in the
presence of the CEE.

Many researchers have theoretically obtained the water
saturation profile along the system at steady-state conditions in
different wetting systems. Richardson et al. (1952) presented
a theoretical method to obtain oil saturation profile along
the system during a drainage process (oil being displaced
by gas) at steady-state conditions. Hadley and Handy (1956)
also provided formulas for calculating steady-state saturation
and pressure profiles during the displacement process in the
presence of the CEE. Kyte and Rapoport (1958) explained
that the CEE at the end of the system holds water from
production and delays breakthrough time which results in more
oil recovery prior to water breakthrough.

Not considering the CEE in the calculations (using the
results of steady-state experiments) gives erroneous two-phase
relative permeabilities, then it is important to find ways to
alleviate or entirely remove this effect. Virnovsky et al. (1995,
1998) proposed a multi-rate steady-state relative permeability
experiment and used simulations to correct relative permeabil-
ity data for the CEE. Gupta and Maloney (2014) introduced
the Intercept Method to entirely remove the CEE from steady-

Table 1. System properties and flow conditions for
simulation runs for the base case data.

Reservoir properties and flow
conditions Value Unit

Length in x-direction, L 10 cm

Length in y-direction, ∆y 4 cm

Length in z-direction, ∆z 4 cm

Porosity, φ 0.22 -

Oil viscosity, µo 20 cP

Water viscosity, µw 0.5 cP

Connate water saturation, Swc 0.2 -

Residual oil saturation, Sor 0.25 -

state experimental results. Nazari and Jamiolahmadi (2019)
pointed out the wrong assumptions in Gupta and Maloney’s
work and presented a different method to remove the CEE
from the experimental data. The authors recently presented
a rigorous analysis of “the CEE removal” methods to obtain
correct relative permeabilities (Goodarzian and Sorbie, 2020,
2023; Goodarzian, 2021).

The experimental findings of Masalmeh (2012) give good
confirmation of the theoretical understanding of the CEE
problem proposed here (which will be discussed in this paper).
However, literature lacks a robust method to handle the point
of capillary pressure discontinuity at the end of the core to
enable us to quantify the amount of water accumulation and
depletion at the end of different wetting systems at any chosen
time during the transient state. In this paper, the following
questions are addressed, and explanations are substantiated by
detailed mathematical analysis and numerical simulations.

1) How should the conventional Implicit Pressure Explicit
Saturation (IMPES) and 1D convection-diffusion formu-
lations be modified to capture the point of capillary
pressure discontinuity at the end of the system, and hence
obtain the water saturation profile at any time during the
transient state and at steady-state conditions?

2) Is the practice of taking dummy grid-blocks with zero
capillary pressure at the end of the system to represent
the outlet accurate or even necessary? If so, how many
dummy grid-blocks are necessary?

3) Can the use of Local Grid Refinement (LGR) in a
numerical simulation help (or work) to more accurately
represent the transient saturation profiles in the presence
of the CEE?

4) Does the new formulation introduced in this work guar-
antee mass balance, and can it be applied to give accurate
results in mixed- and oil-wet systems?

5) Can the proposed modification give the final water sat-
uration profile (with trapped oil in mixed- and oil-wet
systems) at steady-state conditions as it can directly be
obtained by semi-analytical methods?

In this work, the following relative permeability and cap-
illary pressure functions (Eq. (1) or Figs. 1 and 2), system
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Fig. 3. A schematic view of real and dummy grid-blocks and the point of capillary discontinuity in the water injection
(incompressible) displacement process.

properties and flow conditions (Table 1) are used. Note that
the three wetting systems in this study share the same input
data, and they only differ in capillary pressure as shown in Eq.
(1) and Fig. 2. All the data here is entirely arbitrary and for
illustration purposes only and they are not from a specific core.
Capillary pressure for water-wet systems is always positive to
indicate rock’s tendency to pull water in. Oil-wet capillary
pressure is always negative to indicate rock’s tendency to
expel water and there must be a pressure to push water in
the oil-wet core. Mixed-wet system capillary pressure shows
both properties. This arbitrary dataset is primarily chosen just
to show the behaviour of the phase saturation and pressure
regime along different wetting systems in the presence of the
CEE. Also, it was meant to make it less complicated and easy
to follow:

krw = 0.9917(Sw −Swc)
2

kro = 3.7867(1−Sw −Sor)
2

pc,waterwet =
0.136054

(Sw −Swc +0.01)0.8 −0.216353

pc,mixedwet−positive part =
0.139567

(Sw −Swc +0.01)0.8 −0.356204

pc,mixedwet−negative part =
−0.139567

(2Swa −Sw −Swc +0.01)1.5 +0.808639

pc,oilwet =−54.42177(Sw −Swc)
3

(1)
For the standard model of two-phase (oil/water) flow, gov-

erning flow equations are well-known and may be expressed
in different well-known formulations, such as the coupled
saturation/pressure equation or the two-phase convection/cap-
illary dispersion formulation (Peaceman, 1977; Aziz and Set-
tari, 1979; Stephen et al., 2001; Pinder and Gray, 2008). In this
work, the two-phase flow equations in already discretized form
within the IMPES formulation are used. The CEE problem
is essentially a boundary condition problem, and it turns
out that this problem can be analyzed most straightforwardly
from the discretized form. In addition, this leads us to some
semi-analytic expressions for calculating the exit saturation
(explained below) at the grid scale and for calculating the
steady-state saturation profiles showing oil trapping for the
oil- and mixed-wet cases. Thus, starting from the discretized
equations is a very fruitful approach for analysing the CEE
problem.

2. Solution scheme for the CEE problem
In this water injection process, an incompressible displace-

ment is assumed which means the total flowrate at each cross
section is fixed and equal to the water injection rate in the
first grid-block. To solve the CEE problem, the concept of
flux continuity (van Duijn and de Neef, 1998) at the point
of capillary pressure discontinuity at the system outlet is
employed. Before water reaches the last real grid-block, only
oil flows out of the system. When water reaches the outlet
then, for some time, the negative capillary pressure gradient
is too large to allow water outflow, hence only oil flows
out of the system. When only oil flows out of the system,
the oil flux continuity formulation must be used. As water
saturation increases with time, capillary pressure at the end of
the core reduces. Hence, rock loses its ability to hold water
back in the system, then at some point two-phase flow is
established, for which the total flux continuity formulation
must be used. In the IMPES formulation, water outflow at
any time is given by Eq. (2). When it is negative or zero,
oil flux continuity formulation, and when positive, total flux
continuity formulation must be used. Refer to the Appendix
for more details of the modification introduced here:

qw,out =
∆y∆z
0.5∆x

(kλw)Nx,1

[
pn+1

w,Nx,1 − pn+1
wb

]
=

∆y∆z
0.5∆x

(kλw)Nx,1

[
(pn+1

o,Nx,1 − pn
c,Nx,1)− (pn+1

ob − pcb)
]

=
∆y∆z
0.5∆x

(kλw)Nx,1

[
(pn+1

o,Nx,1 − pn+1
ob )+(pcb − pn

c,Nx,1)
]
(2)

where k is the absolute permeability, λw is the water mobility
(i.e., krw/µw), pcb is the capillary pressure at the outlet
which is zero (or any value), pob is the oil-phase pressure
at the boundary between the last real grid-block and the first
dummy grid-block, n denotes the current timestep and n+ 1
denotes the next time step. In Fig. 3, a schematic view of
the system is presented. There are Nx real grid-blocks and
Nd = N −Nx dummy grid-blocks, shown by solid and dashed
lines, respectively.

To solve the problem of the CEE, the physics of flow at the
point of capillary discontinuity is introduced into the numerical
simulation. The point of capillary discontinuity is not simply
replaced by a dummy grid-block with zero capillary pressure.
Proper equations must be developed to capture the very outlet
point. This outlet point with zero capillary pressure must be
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Fig. 4. Water saturation in the last real grid-block of the system
(PV= 0.28075 and Vr = µo/µw = 40).
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Fig. 5. Water fractional flow from the system (PV= 0.28075
and Vr = 40).

an active player in the equations. LGR does not solve the
problem either because merely taking smaller grid-blocks near
the outlet does not add physics to the solution of the problem.
LGR only better represents the saturation profile but does not
ensure mass conservation because mass conservation is guar-
anteed only when correct equations are used in the solution.
The proposed modification guarantees mass conservation to
machine accuracy. It must be stated that this formulation is
only suitable when there is a capillary discontinuity at the
system outlet or inside heterogeneous systems.

3. Comparison of results obtained from various
modelling methods

Four schemes for the numerical solution of the CEE prob-
lem are presented here (with technical details in the Appendix,
containing demonstrative Figs. A1, A2, and A3):

1) With 200 dummy grid-blocks (using the modified IMPES
method),

2) With only one dummy grid-block (using the modified
IMPES method),
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Fig. 6. Water saturation along the system (at PV=
0.28075 and Vr = 40).

3) With no dummy grid-blocks (using the modified IMPES
method),

4) With no dummy grid-blocks (using the modified 1D
convection-diffusion equation).

Note that dummy and real grid-blocks are initialized the
same way, with the same permeability, porosity and relative
permeability. The only difference is that capillary pressure is
zero in dummy grid-blocks. Also note that capillary pressure at
the boundary between real and dummy grid-blocks is always
zero (Fig. 3).

The first simulation example using the data in Eq. (1) and
Table 1 for the water-wet case (with k = 518 mD and q = 0.02
cc/s) shows the build-up of water saturation in the last real
grid-block, Sw,Nx,1, vs. PV of water injected in Fig. 4. Water-cut
vs. PV of water injected is shown in Fig. 5 and the water satu-
ration profile at a given time (PV= 0.28075) is shown in Fig. 6.
The results obtained from all 4 schemes are identical and mass
is perfectly conserved during the displacement process. This
demonstrates that to capture the CEE, no dummy grid-block is
needed at all. Only the correct flux continuity condition must
be applied, as explained above. Even if dummy grid-blocks
are used, then the correct equations for flow of each phase
to/from the boundary point are still required, and this is clearly
sufficient. The practice of using dummy grid blocks within the
conventional IMPES formulation to “resolve” the CEE is both
unnecessary and incorrect since it gives erroneous results
and does not conserve mass.

4. Verification of the new boundary flux
conditions

Water outflow within the conventional IMPES formulation
is the following:

qw,out =
∆y∆z
∆x

(kλw)Nx,1[(
pn+1

o,Nx,1 − pn+1
o,Nx+1,1

)
+
(

pn
c,Nx+1,1 − pn

c,Nx,1
)] (3)

Before water reaches grid-block i = Nx, saturation is at
connate water saturation at which water mobility is zero (since
water relative permeability is zero), hence there is zero outflow
of water. After water enters this grid-block, the capillary pre-
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Fig. 7. Water fractional flow form the last real grid-block.
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Fig. 8. Oil fractional flow from the last real grid-block.
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Fig. 9. Water saturation in the first dummy grid-block.

ssure difference is high and viscous pressure difference be-
tween two grid-blocks (i = Nx and i = Nx + 1) is relatively
low, therefore water outflow becomes negative. This means
that a negative amount of water leaves grid-block i = Nx and
enters grid-block i = Nx +1.

To maintain a fixed total flowrate (equal to the injection
rate), oil has to flow out at a rate larger than the injection rate,
which violates the physics of the incompressible displacement
process. Negative water outflow leads to the following, which
are all against the physics of flow and causes mass balance
errors.

• Water saturation in grid-block i = Nx + 1 goes below
connate water saturation,

• Water saturation in grid-block i = Nx goes higher than
it should due to negative water outflow which acts like
inflow of water into this grid-block in reverse direction.

A simulation example with the data in Eq. (1) and Table 1
for the water-wet case (with k= 290 mD to emphasize the CEE
and q = 2.8 cc/s) is considered in the conventional IMPES
calculation, when water reaches the last real grid-block.

• Water outflow becomes negative (the blue curve in Fig.
7). However, in this new methodology, water outflow will
never be negative (the orange curve in Fig. 7), as required
physically.

• Oil outflow from grid-block i = Nx goes above the injec-
tion rate, which is not physically correct (the blue curve
in Fig. 8) since it must be equal to the injection rate
up until a two-phase flow is established, as found using
the new formulation and shown in Fig. 8 (by the orange
curve).

• Water saturation in grid-block i = Nx +1 (the blue curve
in Fig. 9) goes below connate water saturation and
becomes even negative due to the negative amount of
water transported into this grid-block. This faulty result
is not seen in the orange curve obtained from the new
formulation.

4.1 Comparison of the new formulation with
commercial numerical simulators

CMG and ECLIPSE use Adaptive-Implicit methods, in
which grid-blocks that experience rapid changes in primary
variables (e.g. pressure or saturation) are treated fully im-
plicitly, but grid-blocks with small changes are handled in an
IMPES fashion. In the case above (before water breakthrough),
CMG uses fully implicit scheme, which is a numerical tech-
nique that calculates relative permeability and capillary pres-
sure at the current timestep. This merely numerical technique
does not incorporate the physics of the problem at the outlet
with zero capillary pressure. Therefore, there will be a negative
water outflow as soon as water reaches the last real grid-
block which means water saturation in the first dummy grid-
block will go below connate water saturation or even becomes
negative, exactly as in the conventional IMPES method. On
finding that CMG and ECLIPSE gave a discrepancy from the
exact results obtained from the proposed formulation, it is
speculated that they had applied a fix-up procedure to address
this error. It appeared that, when the water saturation in the
first dummy grid-block (and others) went below connate water
saturation, then it was automatically reset to the connate water
saturation. To confirm this conjecture, a command is used in
the conventional IMPES code to do exactly this.

The water saturation profile obtained in this way (using
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Fig. 10. Water saturation profiles obtained from four methods.
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Fig. 11. A close-up view of water saturation profile at the
system outlet in Fig. 10.

this fix-up procedure) is identical to the profiles given by CMG
and ECLIPSE (Figs. 10 and 11), which are slightly different
from the water saturation profile obtained from the proposed
method, which is proven to be exact. Note that x = 1 denotes
end of the real system, after which dummy grid-blocks are
used.

At any point during the displacement process, the amount
of injected water must be equal to the total amount of water
produced from the production well and water remaining inside
the system. Mass balance check is an important way to assess
the accuracy of the numerical simulation scheme. For the case
above, the error in the results given by CMG is 0.05% and
by ECLIPSE is 0.12%, while it is 1.6 × 10−13% (machine
accuracy) in the proposed method. CMG and ECLIPSE give
accurate results for “practical” purposes, but their solution
schemes are not based on the correct physics of the problem.
Applying the proposed modifications, the results obtained are
accurate to machine accuracy.

5. The exit saturation, Sw,exit

The implementation of the correct CEE flux condition
leads to a definition of and a semi analytical method for
the accurate (i.e., exact) calculation of a quantity called exit
saturation, denoted as Sw,exit . Exit saturation is the maximum

water saturation in the last real grid-block (of size ∆x) at which
still only oil flows through the outlet. Note that this value is the
volume average water saturation in the last real grid-block. As
soon as water saturation goes beyond Sw,exit , water just starts
flowing out and two-phase flow is established at the outlet.
When qw,out = 0, the following equation holds:

qw,out =
∆y∆z
0.5∆x

(kλw)Nx,1

(
pn+1

o,Nx,1 − pn+1
ob + pcb − pn

c,Nx,1

)
= 0

(4)
pn+1

o,Nx,1 − pn+1
ob + pcb − pn

c,Nx,1 must be zero for this equation to
hold, for other terms being non-zero. Applying the Darcy’s
law and knowing only oil flows at a rate equal to the injection
rate, then:

pn+1
o,Nx,1 − pn+1

ob =
qt µo

∆x
2

kAkro(Sw)
= pn

c,Nx,1(Sw)− pcb (5)

where pcb = 0 (or any specified value). qt is used here because
water outflow is the same as total injection rate (no oil outflow
yet). Then, Eq. (5) leads to the following equation:

F(Sw) =
qt µo

∆x
2

kAkro(Sw)
− pc,Nx,1(Sw) = 0 (6)

Solving this implicit equation for Sw by the Newton-
Raphson method gives the exit saturation. Inspection of Eq.
(6) shows that as water saturation rises in this grid-block,
viscous pressure difference term increases because oil relative
permeability decreases while still oil flows out of this grid-
block at a rate equal to the injection rate. At the same
time, capillary pressure, i.e., pn

c,Nx,1(Sw) decreases when water
saturation increases. Exit saturation is the point at which these
two curves cross. Exit saturation can also be found using direct
numerical simulation (i.e., the modified IMPES method).

Considering the water-wet system above (with k = 220
mD and q = 8.50 cc/s), Fig. 12 shows the red curve plotting
the viscous pressure difference across the second half of the
last real grid-block (= pn+1

o,Nx,1 − pn+1
ob ) and the blue curve

plotting the capillary pressure in the last real grid-block,
both vs. water saturation. The modified IMPES method gives
Sw,exit = 0.3499 whereas implicit solution of Eq. (6) using the
Newton-Raphson method gives Sw,exit = 0.3449. This slight
difference is because Eq. (6) updates capillary pressure and oil
relative permeability values with respect to water saturation
at the current timestep (as this equation has no time term,
hence previous time-step has no meaning for this equation and
such information is not available), but in the IMPES method,
pressure is solved with these values calculated in the previous
timestep. This agreement can be made more accurate simply
by taking smaller timesteps in the IMPES formulation so that
capillary pressure and water/oil relative permeability values
are calculated successively closer to the current timestep.

5.1 Effect of various parameters on the value of
Sw,exit

It is straightforward to predict the effect of various param-
eters (qt , µo, ∆x and k) on Sw,exit from Eq. (6) by comparing
the terms in the related equality, (qtµo∆x/2)/kAkro(Sw,exit) =



88 Goodarzian, S., Sorbie, K. S.. Capillarity, 2025, 14(3): 82-99

0

10

20

30

40

50

60

70

80

0.10 0.20 0.30 0.40 0.50

Ca
lc

ul
at

ed
 p

c 
vs

 p
(N

x,
1)

-p
b 

 

Water saturation

p(Nx,1)-pb

pc

Fig. 12. Viscous pressure difference and capillary pressure vs.
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pc,Nx,1(Sw,exit). At higher qt or µo, oil viscous pressure gradient
is higher which overcomes the negative capillary pressure
gradient before water is highly accumulated, hence lower
Sw,exit . Also, by looking the equality, kro must be higher to
maintain the equality, which means lower Sw,exit , which means
less significant extent of the CEE into the system.

At a higher permeability, the opposite takes place. Oil
viscous pressure gradient will be lower; therefore, water must
reach higher saturations so that oil viscous pressure gradient
is strong enough to overcome the negative capillary pressure
gradient, hence more water accumulation in the last real grid-
block and higher Sw,exit . Also, by looking the equality, kro must
be lower to maintain the equality, which again means higher
Sw,exit . It is less intuitive that a higher permeability leads to a
more significant CEE that extends farther back into the system.
This has been confirmed by the experimental results reported
by Masalmeh (2012).

It is worthwhile noting that the exit saturation has no
dependence on water viscosity, although water viscosity does
affect the height of the saturation flood front. When a stronger
water- or mixed-wet capillary pressure function (with all other
parameters kept fixed) is used, the CEE will obviously be more
significant.

It is important to note that exit saturation is the volume
average water saturation in the last real grid-block when
water just starts flowing out, but it does not mean that water
saturation is the same all over the last real grid-block. To better
see the water saturation profile in the near vicinity of the outlet,
the LGR can be used. According to Eq. (6), exit saturation is
higher in finer grids (i.e., lower ∆x). As the grid size tends to
zero (∆x → 0), then exit saturation tends to 1−Sor. Therefore,
water saturation rises in the vicinity of the outlet. But no matter
how small the grid is, exit saturation can never be exactly
1− Sor because in that case the Right Hand Side (RHS) of
the equality above will be zero (since pc (1−Sor) = 0), while
the left hand side (LHS) is always a positive value, which
cannot be correct. Therefore, there will be no volume inside
the system with this saturation. This explains the apparent
paradox of how oil can flow out of a water-wet system when
the water saturation at the outlet is 1−Sor for which oil relative

permeability is zero.
To summarize, when two-phase flow initiates and for the

rest of the displacement process, water saturation rises in the
vicinity of the outlet and is only asymptotically 1−Sor right
at the outlet, where the capillary pressure is zero. Saturation
is defined for a volume, not a point and there is no volume
with this saturation in the system, hence two-phase flow can
exist all over inside the system and from the system.

5.2 Exit saturation in mixed- or oil-wet systems
In a mixed-wet core, exit saturation is always lower than

the value at which capillary pressure becomes zero (pc = 0 at
Sw = 0.5 in this study; see Fig. 2). At Sw = 0.5, the RHS of
the equality (qtµo∆x/2)/kAkro(Sw,exit)= pn

c,Nx,1(Sw,exit) is zero,
while the LHS of the equation is always positive. Therefore,
Sw = 0.5 as the value of exit saturation is impossible. Assum-
ing exit saturation being a value greater than 0.5, then the
RHS of the equality will be negative while the LHS can never
be negative. Therefore, in this work, exit saturation is always
lower than 0.5 and for the calculation of the exit saturation
in mixed-wet systems, only the positive leg of the capillary
pressure function is required. Using the same argument above
as for the water-wet case, when water just starts flowing out,
water saturation in the vicinity of the outlet gradually increases
to 0.5 (or any value at which pc = 0). As the displacement
continues, water saturation in the whole system goes above
0.5. From this point onwards, water saturation in the vicinity
of the outlet gradually drops to 0.5. When two-phase flow is
established and for the rest of the displacement process, water
saturation in the vicinity of the outlet approaches 0.5, either
by gradual increase or gradual decrease (see plots “f, g and
h” in Fig. 14) and is asymptotically 0.5 right at the outlet.

In an oil-wet core, when water reaches the last real grid-
block, capillary pressure takes a negative value which creates
a positive capillary pressure gradient at the end of the system
that favours water flow. This tendency creates a region with
depleted water as water outflow is favoured. Water saturation
in the vicinity of the outlet gradually drops to Swc (at which
pc = 0) as soon as two-phase flow is established and for the
rest of the displacement process and is asymptotically Swc right
at the outlet.

All the sensitivities to the parameters (qt , µo, ∆x and k) and
the behaviour as ∆x→ 0 have been verified by direct numerical
simulation but these are not presented here; they are given in
Goodarzian (2021).

6. Flow development in different wetting
systems in the presence of the CEE

Water-, mixed- and oil-wet systems, in this work, differ
only in the form of their capillary pressure functions (see Fig.
2 given by Eq. (1). To better understand the transient flow
development, four distinct stages are considered; a) before
breakthrough, b) peak generation (if it occurs), c) when
exit saturation is reached and d) peak evolution after water
breakthrough and late-time behavior. In Figs. 13, 14 and 15, it
is shown how the saturation profile develops in water-, mixed-
and oil wet systems, respectively. The core data is given in
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Fig. 13. Water saturation profiles during the displacement process in a water-wet system.
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Fig. 14. Water saturation profiles during the displacement process in a mixed-wet system.
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Fig. 15. Water saturation profiles during the displacement process in an oil-wet system.
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Table 1 and Eq. (1), with k = 132.95 mD and q = 184.90
cc/hr.

1) Before breakthrough: The plots “a, b, and c” in Figs. 13,
14 and 15 show the progress of the “fronts” at different
times before breakthrough for water-, mixed- and oil-wet
cases, respectively. The front, in water- and mixed-wet
systems, is clearly very spread out due to the dominant
effect of capillary pressure. The underlying “Buckley-
Leverett” shock fronts are barely evident in these profiles.
Note that there is a small “kink” in the water saturation
profiles of the mixed-wet case in Fig. 14. This kink
exactly at Sw = 0.5 is caused by the chosen mixed-wet
capillary pressure function which is continuous between
the water-wet (Sw ≤ 0.5) and oil-wet (Sw > 0.5) sections,
but the first derivative, dpc/dSw, is not continuous. The
front for the oil-wet case is quite sharp since dpc/dSw ≈ 0
at low water saturation values (see Fig. 2), hence the
diffusion is low in this region. Water then reaches the
last real grid-block (shown in plot “d” in Figs. 13, 14
and 15), after which the effect of capillary discontinuity
is observed.

2) Peak generation: If there were no capillary pressure
discontinuity at the outlet, water would flow out in just
one timestep after water reaches the last real grid-block,
because krw > 0 when Sw > Swc. However, when water
reaches the last real grid-block, it is held back in water-
and mixed-wet systems (shown in several of the plots in
Figs. 13 and 14) until exit saturation is reached. No such
peak is observed for the oil-wet case, hence Sw,exit = Swc
(in Fig. 15(d)) as explained above.

3) Exit saturation: Explained in detail above and seen in
Figs. 13(f) and 14(f).

4) Peak evolution and late-time behaviour: In water-wet
cores, after breakthrough, water saturation keeps rising
at the end of the system as the displacement contin-
ues with time (in Fig. 13(g)), consequently capillary
pressure decreases there with time (rock becomes more
saturated and continues to lose its tendency to prevent
water from flowing out). Therefore, the negative cap-
illary pressure gradient (∇pc = (pcb − pc,Nx,1)/0.5∆x =
(0− pc,Nx,1)/0.5∆x) that holds water back in the system
reduces, hence water feels less resistance to flow out and
the CEE diminishes with time. This process continues
until water saturation in the last real grid-block (and the
whole system) reaches 1−Sor and all oil is displaced out
(at steady-state conditions), however this may take a very
long time. At steady-state conditions, negative capillary
pressure gradient becomes zero and disappears. Note plot
in Fig. 13(h) where 1,441 PV of water is required to reach
a recovery factor of 0.999.

In Mixed-wet cores, when water saturation exceeds Sw =
0.5, the value of capillary pressure becomes more negative
(see the green curve in Fig. 2). Increasing the water saturation
in the last real grid-block as displacement continues with
time increases the capillary pressure gradient that favours
water flow, hence limits oil flow (as it is an incompressible
displacement process with fixed total flowrate) by reducing

oil-phase pressure gradient. For this reason, oil flows out at
a slower rate, therefore water saturation in the last real grid-
block increases at a slower rate too (i.e., oil does not flow
out to leave space for water to occupy). Oil-phase pressure
gradient continues to reduce until it becomes zero. At this
point which marks steady-state conditions, only water flows
out, and its saturation becomes “pinned” because no more
oil will flow out of the system. This region with depleted
water and stagnant oil near the outlet with zero oil-phase
pressure gradient is called the CEE region. In some cases, the
CEE region can take up the whole length of the system. The
final profile in the mixed-wet system is shown in Fig. 14(h).
This is the final oil recovery that is possible in principle at
this flowrate. Oil recovery could be increased if the flowrate
was increased. Note that after exit saturation is reached in
mixed-wet systems, water saturation at the outlet is Sw = 0.5
(asymptotically) for the rest of the displacement process.

In oil-wet cores, when water enters the last real grid-block,
capillary pressure becomes negative (the orange curve in Fig.
2), and this creates a positive capillary pressure gradient at
the end of the system which favours water flow and limits
oil flow by reducing oil-phase pressure gradient. This causes
a “downward peak” just like the long-time mixed-wet case
(Fig. 15). Like the mixed-wet case, oil-phase pressure gradient
keeps decreasing as displacement continues, and reaches zero
eventually, for which oil gets trapped, and water saturation
becomes pinned in the system at a certain value. Again,
the same CEE region (with depleted water and stagnant oil)
will exist here in which oil is trapped permanently, with no
more production at this flowrate. Note that after two-phase
flow is established, water saturation at the outlet is Sw = Swc
(asymptotically) for the rest of the displacement process.

Note that in all wetting systems, a steady-state condition
is achieved sooner when oil viscosity is lower due to higher
mobility. Two further important points for the mixed- and oil-
wet cases are as follows:

• The final phase saturation profile along the system de-
pends only on the water viscosity, however it sounds
counter-intuitive that the final steady-state saturation does
not depend on the oil viscosity.

• The steady-state phase saturation profile can be calculated
(a priori) semi-analytically which agrees perfectly identi-
cal to the results of the formulation introduced here when
it is run long enough to reach steady-state conditions (see
below).

7. Semi-analytical calculation of the final
(steady-state) saturation profiles

Another consequence of taking a discretized approach to
the problem of the CEE is that water saturation profiles at
steady-state conditions can be calculated semi-analytically.
The steady-state conditions of the system can be found numeri-
cally by running the transient code (the formulation introduced
above) sufficiently long enough that the water saturation
profile no longer changes. Three semi-analytical methods are
presented here to quickly obtain the water saturation profile
at steady-state conditions. Note that these methods are only
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for mixed- and oil-wet systems, since in water-wet systems
water saturation at steady-state conditions is Sw = 1− Sor at
all points (although this may take a very long time - in PV).

7.1 Integral method for calculating the
steady-state saturation profile

Water volumetric flowrate is known to be qw =
−kAλw(∇po −∇pc). As explained above, at steady-state con-
ditions, oil-phase pressure gradient is zero along the CEE
region, i.e., ∇po = 0. Therefore, the water flowrate in the
CEE region is qw = kAλw∇pc, which means ∇pc = ∂ pc/∂x =
∂ pc/∂Sw ∂Sw/∂x = qw/kAλw. This leads to:

∫ L

xa

dx = L− xa =
∫ 0.5

Swa

kA
dpc

dSw
qw

λw

dSw (7)

where xa is the location (distance from the inlet) of any
arbitrary value of water saturation, say Swa, that is in the
range 0.5 < Swa < 1− Sor. Therefore, xa would be equal to
L when Swa = 0.5. For any value of Swa this integral gives a
unique value for xa which can be used to plot the final water
saturation profile. Huang and Honarpour (1996) presented an
integral method suitable for oil/water co-injection problems.
However, in this work only water is injected into an oil-filled
system. Also, the calculation above is based on the fact that
oil-phase pressure gradient is zero in the CEE region at the
steady-state conditions.

7.2 Pressure-based calculation for the
steady-state saturation profile

Again, using the fact that oil-phase pressure gradient is zero
(∇po = 0) along the CEE region at steady-state conditions, the
water flow from the last real grid-block is as follows:

qw = qin j = kAλw,Nx,1
0− pc,Nx,1

0.5∆x
(8)

Eq. (8) can be rearranged to the following form:

F(Sw) = kAλw,Nx,1
0− pc,Nx,1

0.5∆x
−qin j = 0 (9)

Any non-linear solver, such as the Bisection or Newton-
Raphson method, can be used to find the water saturation in
the last real grid-block at steady-state conditions, by solving
the above non-linear equation. The same approach can be used
to obtain the water saturation in all other grid-blocks working
sequentially back from the final block all the way to the first
(inlet) grid-block, as follows:

kAλw,i,1
pc,i+1,1 − pc,i,1

∆x
−qin j = 0 (10)

An important calculation note is that, when Eq. (10) has a
solution greater than Sw > 1− Sor, then at this point in the
system the CEE region starts, i.e., a region unaffected by
the CEE is reached. The unaffected and the CEE regions are
shown in Figs. 16 and 17.

Eq. (8) helps us answer the following question: At what
water injection rate into the mixed-wet system, the CEE region
will be completely removed, and no oil would be permanently

trapped in the system? Higher injection rate reduces the length
of the CEE region and improves oil recovery, but from Eq.
(8), no matter how high the injection rate is, there will be a
distance from the outlet that satisfies the equation. Therefore,
the CEE region cannot be removed completely (theoretically),
and some oil will always be trapped in the system. For more
detailed explanation, see Chapter 7 in Goodarzian (2021).

7.3 Saturation-based calculation from
convection-dispersion formulation

This final approach to calculating the steady-state satura-
tion profile along the system comes from the convection/-
capillary dispersion formulation of the problem (Stephen et
al., 2001; Goodarzian, 2021). Flow of water from the last grid-
block through the system outlet is obtained using the following
equation:

qw = qin j = qin j fwv,Nx,1 −Aφg(Sw,Nx,1)
pcb − pc,Nx,1

0.5∆x
(11)

where g(Sw) = (−k/φ)/(1/λo + 1/λw) is the capillary diffu-
sivity term that is inherently negative and pcb = 0. Therefore,
before water saturation in the last grid-block reaches Sw = 0.5
(in this study), the second term on the RHS in Eq. (11) is
negative (since capillary pressure is positive for Sw < 0.5), thus
holding water back which creates an upward peak in the water
saturation profile. After water saturation goes above Sw = 0.5,
then the mixed-wet capillary pressure becomes negative and
the second term on the RHS becomes positive. Water outflow
is thus enhanced, which limits oil outflow via reducing the oil-
phase pressure gradient until it becomes zero at steady-state
conditions. Eq. (11) can be solved by numerical methods:

F(Sw) = qin j fwv,Nx,1 −Aφg(Sw,Nx,1)
pcb − pc,Nx,1

0.5∆x
−qin j = 0

(12)
For other grid-blocks, the following equation is used:

qw = qin j = qin j fwv,i,1 −Aφg(Sw,i,1)
pc,i+1,1 − pc,i,1

∆x
(13)

In Fig. 16, steady-state water saturation profiles obtained
from 4 methods in a mixed-wet system are shown to be
identical. This confirms that all of these methods capture the
physics of the problem correctly; explained in full detail in
Goodarzian (2021). For this simulation example, the same
relative permeability and capillary pressure functions are used
again. Also, qin j = 43.461 cc/min and µw = 0.5 cp and
µo = any value are used. Note that oil viscosity has no effect
on the steady-state water saturation profile. In Fig. 17, the
same simulation is run for an oil-wet system (with the oil-
wet capillary pressure function in Eq. (1) and Fig. 2). Again,
steady-state water saturation profiles obtained from 4 methods
are shown to be identical. This confirms that the proposed
formulation gives exact results (to machine accuracy) when
it is run sufficiently long to reach effectively the steady-state
conditions.

8. Summary and conclusions
The IMPES and 1D convection-capillary dispersion formu-

lations of the two-phase flow equations are modified to capture
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Fig. 16. Sw profile at steady-state conditions obtained from 4
methods for the mixed-wet system.
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Fig. 17. Sw profile at steady-state conditions obtained from 4
methods for the oil-wet system.

the point of capillary pressure discontinuity at the end of 1D
systems in a two-phase waterflood process, i.e., to model the
CEE. This modification guarantees mass conservation which
is not the case when the conventional IMPES formulation is
used for this problem. It is shown that dummy grid-blocks
are not necessary to solve this problem as they do not add
any physics to calculations. Likewise, LGR does not help to
solve the CEE effect for the same reason. Correct equations
and boundary conditions are required to solve this problem
exactly, which are described in this work. It is shown that
commercial simulators do not deal with the CEE problem
rigorously, leading to small errors for the saturation values
and mass balance calculations. The reason for this error was
diagnosed by implementing the (incorrect) “fix-up method”
which these commercial codes use and finding that their exact
values (to several decimal places) can be reproduced.

From the correct treatment of the CEE boundary condition,
then a simple implicit equation is developed to calculate the
value of “exit saturation”, i.e., the value of water saturation
in the last “real” grid-block at which water just flows out of
the system, after building up for a while. An exit saturation

with Sw,exit > Swc develops for water- or mixed-wet systems
(always less than the value at which capillary pressure is zero),
while there is no water build-up in purely oil-wet systems.
Exit saturation is lower at higher flowrates, higher oil viscosity
and lower absolute permeability because of a stronger viscous
pressure gradient in the system. It is also shown that water
viscosity has no effect on the value of exit saturation.

A central feature of the water-wet system is that no matter
how severe the CEE is, the long-term flooding behaviour is
that all the movable oil is ultimately produced, and the CEE
cannot persist “forever” even at a very slow flowrate. In mixed-
and oil-wet systems, the CEE persists “forever” at any flowrate
as a positive capillary pressure gradient develops at the end of
the system, which favours water flow and limits oil flow by
reducing oil-phase pressure gradient which ultimately drops to
zero at steady-state conditions. This causes oil to be trapped
in the system “forever” because of zero oil-phase pressure
gradient, while still being potentially mobile (for kro > 0). Oil
recovery could only be increased by increasing the flowrate
in these systems. Also, oil viscosity has no effect on the
water saturation profile at steady-state conditions in mixed-
and oil-wet systems, but steady-state conditions are reached
later when oil is more viscous. Three semi-analytic methods
are presented to calculate the steady-state saturation profile in
mixed- and oil-wet systems which is shown to agree exactly
with the numerically calculated final steady-state profile.
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Appendix.
The conventional IMPES formulation works only when all grid-blocks follow the same capillary pressure function. In the

CEE problem, at the outlet, capillary pressure suddenly becomes zero, therefore boundary point MUST be treated on its own
with its unique property (pc = 0). To honour this condition, an extra equation for the boundary is required which contains a
new variable pob (the oil-phase pressure at the outlet), which is updated in each timestep. In addition, two existing equations
for the last real grid-block and the first dummy grid-block must be modified.

1. Modification of the IMPES method in the presence of 200 dummy grid-blocks
Equation for the outlet prescribing oil flux continuity

Water outflow at any time is qw,out = 2aλw,Nx,1

(
pn+1

o,Nx,1 − pn+1
ob + pcb − pn

c,Nx,1

)
, as in Eq. (2). If qw,out ≤ 0, only oil leaves

grid-block i = Nx which enters grid-block i = Nx +1, therefore,

aλo,Nx,1
pn+1

o,Nx,1 − pn+1
ob

0.5
= aλo,Nx,1

pn+1
ob − pn+1

o,Nx+1,1

0.5
(A1)

where a = k∆y∆z/∆x. Upstream weighting must be applied because what goes into grid-block i = Nx +1 is determined by the
phase mobility in grid-block i = Nx.
Modification of equations for grid-block i = Nx

If qw,out ≤ 0, oil and (possibly) water can enter this grid-block but only oil leaves it,

aλt,Nx−1,1

(
pn+1

o,Nx−1,1 − pn+1
o,Nx,1

)
+aλw,Nx−1,1

(
pn

c,Nx,1 − pn
c,Nx−1,1

)
= aλo,Nx,1

pn+1
o,Nx,1 − pn+1

ob

0.5
(A2)

Water saturation in this grid-block is calculated by the following equation, in which qw,out is reset to zero automatically
in the code since it cannot be negative.

Sn+1
w,Nx,1 = Sn

w,Nx,1 +
∆t

∆x∆y∆zφ

{
aλw,Nx−1,1

(
pn+1

o,Nx−1,1 − pn+1
o,Nx,1 + pn

c,Nx,1 − pn
c,Nx−1,1

)
−qw,out

}
(A3)

Modification of equations for grid-block i = Nx +1
If qw,out ≤ 0, only oil flows in and out of this grid-block and enters the next dummy grid-block,

aλo,Nx,1
pn+1

ob − pn+1
o,Nx+1,1

0.5
= aλt,Nx+1,1

(
pn+1

o,Nx+1,1 − pn+1
o,Nx+2,1

)
(A4)

In this case λt,Nx+1,1 = λo,Nx+1,1. Water saturation in this grid-block does not change, as shown below,

Sn+1
w,Nx+1,1 = Sn

w,Nx+1,1 +
∆t

∆x∆y∆zφ
{zero}= Sn

w,Nx,1 (A5)

This “zero” is because no water enters or leaves this grid-block, hence saturation remains constant.
Equation for the outlet prescribing total mass flux continuity

For an incompressible displacement, total flowrate is constant at all points. If qw,out > 0 (or when Sw,Nx,1 ≥ Sw,exit ), both oil
and water leave the last real grid-block which enter the first dummy grid-block,

aλt,Nx,1
pn+1

o,Nx,1 − pn+1
ob

0.5
+aλw,Nx,1

pcb − pn
c,Nx,1

0.5
= aλt,Nx,1

pn+1
ob − pn+1

o,Nx+1.1

0.5
+aλw,Nx,1

pn
c,Nx+1.1 − pcb

0.5
(A6)

Modification of equations for grid-block i = Nx
If qw,out > 0, there is a two-phase flow of oil and water into and out of this grid-block, therefore,

aλt,Nx−1,1

(
pn+1

o,Nx−1,1 − pn+1
o,Nx,1

)
+aλw,Nx−1,1

(
pn

c,Nx,1 − pn
c,Nx−1,1

)
= aλt,Nx,1

pn+1
o,Nx,1 − pn+1

ob

0.5
+aλw,Nx,1

pcb − pn
c,Nx,1

0.5
(A7)

Water saturation in this grid-block is calculated by the following expression, knowing that outgoing water leaving this
grid-block is the water outflow term, i.e., qw,out = 2aλw,Nx,1(pn+1

o,Nx,1 − pn+1
ob + pcb − pn

c,Nx,1).

Sn+1
w,Nx,1 = Sn

w,Nx,1 +
∆t

∆x∆y∆zφ
{aλw,Nx−1,1(pn+1

o,Nx−1,1 − pn+1
o,Nx,1 + pn

c,Nx,1 − pn
c,Nx−1,1)−qw,out} (A8)

Modification of equations for grid-block i = Nx +1
If qw,out > 0, both oil and water enter and leave this grid-block, then,

aλt,Nx,1
(pn+1

ob − pn+1
o,Nx+1,1)

0.5
+aλw,Nx,1

(pn
c,Nx+1,1 − pcb)

0.5
= aλt,Nx+1,1(pn+1

o,Nx+1,1 − pn+1
o,Nx+2,1)+aλw,Nx+1,1

(
pn

c,Nx+2,1 − pn
c,Nx+1,1

)
(A9)

Water saturation in this grid-block is calculated as follows.
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Sn+1
w,Nx+1,1 = Sn

w,Nx+1,1 +
∆t

∆x∆y∆zφ

{
qw,out −aλw,Nx+1,1

(
pn+1

o,Nx+1,1 − pn+1
o,Nx+2,1 + pn

c,Nx+2,1 − pn
c,Nx+1,1

)}
(A10)

2. The case with one dummy grid-block
The methodology is the same for only one dummy grid-block. The equations for the boundary and for the last real grid-

block will be the same in each continuity formulation, as shown above. Only the equation for the first dummy grid-block
needs to be modified, in which the well is now located, therefore the fluid leaving this dummy grid-block is the fluid that is
produced, as shown in Fig. A1.

Fig. A1. Arrangement of grid-blocks when only one dummy grid-block is employed.

Modification of equations for grid-block i = Nx +1 prescribing oil flux continuity
If qw,out ≤ 0, only oil leaves grid-block i = Nx which enters grid-blocki = Nx +1.

aλo,Nx,1
(pn+1

ob − pn+1
o,Nx+1,1)

0.5
=Windexλt,Nx+1,1

(
pn+1

o,Nx+1,1 − pwell

)
(A11)

where a = k∆y∆z/∆x, Windex = (2π)k∆z/ ln(rb/rw), and rb =
√

∆x∆y/eπ . In this case λt,Nx+1,1 = λo,Nx+1,1. Water saturation
stays the same in this dummy grid-block because of no water inflow and outflow.
Modification of equations for grid-block i = Nx +1 prescribing total mass flux continuity

If qw,out > 0, both oil and water enter and leave this grid-block, then,

aλt,Nx,1
(pn+1

ob − pn+1
o,Nx+1,1)

0.5
+aλw,Nx,1

(pn
c,Nx+1,1 − pcb)

0.5
=Windexλt,Nx+1,1

(
pn+1

o,Nx+1,1 − pwell

)
(A12)

Incoming water to this grid-block is water outflow. Then, water saturation in this grid-block is as follows,

Sn+1
w,Nx+1,1 = Sn

w,Nx+1,1 +
∆t

∆x∆y∆zφ

{
qw,out −Windexλw,Nx+1,1

(
pn+1

o,Nx+1,1 − pwell

)}
(A13)

Now there are 1,000 equations for 1,000 real grid-blocks, one equation for the boundary, and one equation for one dummy
grid-block, therefore 1002 equations compared to 1201 equations when there were 200 dummy grid-blocks which reduces the
simulation time significantly.

3. The case with no dummy grid-blocks
Capillary pressure at the outlet is zero and oil and water have equal pressures, say 4,500 psi (as in Fig. A2). It is now only

needed to modify the equation for grid-block i = Nx as there is no dummy grid-block.

Fig. A2. Arrangement of grid-blocks when no dummy grid-block is employed.



98 Goodarzian, S., Sorbie, K. S.. Capillarity, 2025, 14(3): 82-99

Modification of equations for grid-block i = Nx prescribing oil flux continuity
If qw,out ≤ 0, only oil leaves grid-block i = Nx and is produced through the outlet.

aλt,Nx−1,1(pn+1
o,Nx−1,1 − pn+1

o,Nx,1)+aλw,Nx−1,1(pn
c,Nx,1 − pn

c,Nx−1,1) = aλo,Nx,1
(pn+1

o,Nx,1 − pob)

0.5
(A14)

Water may be flowing into this grid-block, but no water leaves this grid-block due to capillary hold-up. Water saturation is
obtained by the following equation,

Sn+1
w,Nx,1 = Sn

w,Nx,1 +
∆t

∆x∆y∆zφ

{
aλw,Nx−1,1

(
pn+1

o,Nx−1,1 − pn+1
o,Nx,1 + pn

c,Nx,1 − pn
c,Nx−1,1 − zero

)}
(A15)

Modification of equations for grid-block i = Nx prescribing total mass flux continuity
If qw,out > 0, both oil and water enter and leave this grid-block, then,

aλt,Nx−1,1(pn+1
o,Nx−1,1 − pn+1

o,Nx,1)+aλw,Nx−1,1(pn
c,Nx,1 − pn

c,Nx−1,1) = aλt,Nx,1
(pn+1

o,Nx,1 − pob)

0.5
+aλw,Nx,1

(pcb − pn
c,Nx,1)

0.5
(A16)

Note that pob will remain fixed during the whole displacement process. Now there are both incoming water and outflowing
water, therefore water saturation is calculated using the following equation,

Sn+1
w,Nx,1 = Sn

w,Nx,1 +
∆t

∆x∆y∆zφ

{
aλw,Nx−1,1

(
pn+1

o,Nx−1,1 − pn+1
o,Nx,1 + pn

c,Nx,1 − pn
c,Nx−1,1

)
−qw,out

}
(A17)

In this method there are only 1000 equations for 1000 grid-blocks, hence an even faster formulation.

4. Modified 1D convection-diffusion formulation-explicit scheme
The various arguments and developments in the main text of the paper are based on IMPES formulation, and its discretization.

Here, a convection-capillary dispersion form of the two-phase transport equation is used to solve the CEE problem, without
employing dummy grid-blocks. The differential equation representing the evolution of water saturation with respect to time
and location is given by Eq. (A18),

∂Sw

∂ t
=− qt

Aφ

∂ fwv

∂x
+

∂

∂x

(
− k

φ

λoλw

λo +λw
∇pc

)
(A18)

This equation can be solved numerically by taking an explicit scheme, with no need to calculate pressure value in grid-
blocks. The correct boundary condition (as explained in the text) is implemented to properly represent the outlet point with
zero capillary pressure. For this formulation, the equation for the last real grid-block is as follows,

Sn+1
w,Nx,1 −Sn

w,Nx,1

∆t
=

qt

Aφ

fwv,Nx−1,1

∆x
− qt

Aφ

fwv,Nx,1

∆x
+

−Aφg(Sw)
n
Nx−1,1

pn
c,Nx,1 − pn

c,Nx−1,1

∆x
A∆xφ

−
−Aφg(Sw)

n
Nx−1,1

0− pn
c,Nx,1

0.5∆x
A∆xφ

(A19)

where g(Sw) = −(k/Φ)(λoλw/(λo +λw)) is inherently negative. In Eq. (A19), the first term on the RHS denotes amount of
water entering the last grid-block and the second term denotes amount of water leaving this grid-block, due to advection and
capillarity. The third term indicates amount of water entering the last grid-block in each timestep under capillary action only
and the fourth term denotes amount of water withheld by capillary action in water-wet systems or discharged in oil-wet systems
(all terms shown in Fig. A3).

Fig. A3. Water flowrate into the last grid-block due to advection and capillary action.

The important point here is that at the outlet, either no water flows out or water outflow is positive. Negative water outflow
should not be allowed, therefore whenever water outflow from the outlet, Eq. (A20), becomes negative, it is automatically
reset to zero.
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qw,out = qt fwv,Nx,1 −Aφg(Sw)
n
Nx,1

0− pn
c,Nx,1

0.5∆x
(A20)

As mentioned before, g(Sw) is always negative, therefore the second term in the water outflow equation is always positive
(in water-wet systems) which means capillary action tends to hold water back in the system and not let it flow out. When
water reaches the last real grid-block and water starts rising in this grid-block, the term qt fwv,Nx,1 is still very low and the
term −Aφg(Sw)

n
Nx,1 (0− pn

c,Nx,1)/(0.5∆x) is a large negative value and this makes the water outflow negative. It is during this
time that water outflow is automatically reset to zero in the code. This accumulates water in the last grid-block in water-wet
systems as water is allowed to enter this grid-block but is prevented from flowing out because of capillary action.

In oil-wet systems, the second term in the water outflow equation, Eq. (A20), is always negative which means capillary
action favours water flow as soon as it enters the last grid-block, thus a depletion occurs in the water saturation in the last
grid-block.

In mixed-wet systems, water accumulates until water saturation reaches a value at which capillary pressure is zero. After
that, water depletes in the last grid-block. Note that positive capillary pressure gradient is set by the oil-wet (or mixed-wet)
rock but actually generated/provided by the injection pump at the inlet of the system.
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