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Abstract:
Dynamic mass transfer due to spontaneous imbibition is of significant importance in
various scientific and engineering applications, including environmental remediation,
chemical reactors, microfluidic systems, and oil recovery processes. This article addresses
the challenges in mathematical modeling of the dynamic mass transfer due to spontaneous
imbibition controlled by capillary and viscous forces. A mathematical model was developed
to seamlessly integrate the effects of capillary and viscous forces on mass transfer. The
model was validated by comparison with numerical solution, which shows excellent
consistency, indicating no error in the derivation of the analytical model. Case analysis
suggested some limitations of the analytical model. The model does not work at the
starting point of imbibition because of mathematical singularity. The current computing
technology does not generate model results under all conditions due to the data-overflow
issue associated with the exponential function involved in the analytical model. Although
using numerical solution with finite difference method can eliminate the data-overflow
problem, time step size must be small enough to achieve algorithm convergence and
generate meaningful result.

1. Introduction
Spontaneous imbibition is the process by which a wetting

fluid is drawn into a porous medium by capillary action. The
transport of mass in fluid systems is inherently governed by
the interplay of various forces, three of the most significant
being capillary, gravitational, and viscous forces. In horizontal
mass transfer processes, the effect of gravity is null, and the
mass transfer rate is dominated by capillary and viscous forces.
Capillary forces arise due to the surface tension of liquids,
leading to phenomena such as capillary rise, droplet formation,
and wetting behavior (Bear, 2013). Viscous forces, on the
other hand, are associated with the resistance to fluid flow
and are influenced by the viscosity of the fluid transferring
mass (Bear, 1975, 2013). Mass transfer in porous media,
characterized by the movement of substances through intercon-

nected void spaces, is a complex and pervasive phenomenon
with significant implications for various fields, including hy-
drogeology, environmental science, and petroleum recovery
processes (Levenspiel, 1998). In such media, the interplay
between capillary and viscous forces plays a crucial role in
governing spontaneous fluid imbibition processes. Capillary
forces, driven by the surface tension of liquids, play a pivotal
role in capillary rise and simultaneous imbibition processes.
Viscous forces, on the other hand, are associated with fluid
flow resistance and impact the rate of mass transport through
the porous medium. The weight of wetting liquid imbibed
into porous media is a function of contact area, porosity,
pore fractal dimension, tortuosity, maximum hydraulic pore
diameter, liquid density, viscosity, surface tension and liquid-
solid interactions (Cai et al., 2012).

Pore-scale studies of spontaneous imbibition can help us
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disclose the underlying physics of imbibition mechanisms, and
fill the gap between pore-scale dynamics and the Darcy theory
of spontaneous imbibition. Presently, the temporal resolution
limits of existing noninvasive visualization techniques prevent
us from fully displaying the dynamic displacements of phases
at the pore-scale in a genuine three-dimension porous media
(Bartels et al., 2019), especially for cocurrent spontaneous
imbibition. Therefore, the utilization of pore-scale modeling
could yield significant advantages (Chen et al., 2022). Thus
far, popular pore-scale numerical models have been used
to study spontaneous imbibition (SI) like Volume-of-Fluid
models, Lattice-Boltzmann models, phase-filed models, and
dynamic pore-network models (Qin, 2015; Raeini et al., 2015;
Rokhforouz and Amiri, 2018; Zheng et al., 2018; Bakhshian
et al., 2020; Zhao et al., 2020; Diao et al., 2021). The
dynamic pore network model is particularly notable for its
computational efficiency (Blunt et al., 2013).

As a fundamental mass transfer process, the importance of
spontaneous imbibition mechanism has long been recognized
in many hydrological and geotechnical applications, such as
sequestration of carbon dioxide (Plug and Bruining, 2007;
Prather et al., 2016; Lyu et al., 2020), oil and gas extraction
(Standnes, 2010; Gao and Hu, 2016; Zhou et al., 2016), and
the protection of groundwater resources (Jiménez-Martı́nez et
al., 2020). In the early-time stage, the SI process is capillary
dominated and the influence of gravity might be overlooked
because of the insignificant amount of imbibed water. Nev-
ertheless, the early-stage spontaneous imbibition process in
fractured porous media, particularly in dual-porosity media
containing both matrix and filled fractures, remains intricate
and inadequately comprehended, mostly due to the widespread
variety of geologic formations (Zhao et al., 2020).

Extensive research has been conducted in recent decades
using experimental and theoretical methods to study the behav-
ior of spontaneous imbibition. These studies have revealed that
the rate at which imbibition occurs, which measures the mass
transfer during the process, is influenced by factors such as
pore structure, fluid properties, initial water saturation, bound-
ary conditions, and mineralization (Morrow and Mason, 2001;
Gao and Hu, 2016; Lyu et al., 2019).

Several sophisticated mathematical models have been sug-
gested to investigate and describe the SI mechanism. Pioneer-
ing models for the spontaneous imbibition process includes the
Handy model, the Lucas-Washburn model, and the Aronofsky
model (Dou et al., 2022). Over the past few decades, advance-
ments have been made in developing models that represent
a pore system at multiple scales. These models have been
enhanced by including a shape factor to consider the influence
of pore sizes and shapes. Cai and Yu (2011) developed an
analytical model using the Lucas-Washburn model to examine
the impact of tortuosity on capillary imbibition in wet porous
media, specifically focusing on the fractal dimension of tor-
tuous capillaries. Subsequently, Cai et al. (2014) developed a
comprehensive model for spontaneous imbibition, using the
Hagen-Poiseuille and Laplace-Young equations. This model
takes into consideration the influence of tortuous capillaries
and noncircular cross-sectional geometries by incorporating
variably shaped pores. Ashraf and Phirani (2019b) devised

a comprehensive lubrication approximation model to fore-
cast the wetting front in a horizontally multi-layered porous
medium during the SI process. Their model, based on the
Washburn model, revealed that the wetting front’s location
was not consistently within the fine pores. Instead, it was
heavily influenced by variations in permeability and capillary
pressure. This outcome aligns with their prior discoveries and
suppositions (Ashraf et al., 2017; Ashraf and Phirani, 2019a).
Li et al. (2016) developed a complex fractal model to estimate
the permeability of a dual-porosity medium with randomly
dispersed fractures. The accuracy of the fractal aperture
distribution was confirmed by comparing it to the in-situ
measurement findings documented in existing literature. In
their study, Dou et al. (2022) conducted both experimental and
theoretical investigations on the process of solute infiltration
in a medium with two distinct porosities: The matrix and the
filled crack. The findings indicated that the rate of matrix
imbibition was higher in the dual-porosity media compared
to the single-porosity media. The discrepancy in the rate of
liquid absorption between the media with a single porosity
and those with dual porosity was due to the improved transfer
of mass between the matrix and the crack that was filled.
The research was analyzed either qualitatively or quantitatively
with regards to the kinetics of capillary absorption for the
solvent impregnation process.

In microfluidic systems and lab-on-a-chip devices, where
dimensions are in the order of micrometers, capillary and
viscous forces govern fluid behavior and mass transport,
impacting applications such as chemical analysis, medical
diagnostics, and drug delivery (Stone and Kim, 2001; Squires
and Quake, 2005). In chemical reactors, the control of mass
transfer is paramount for optimizing reaction rates, and the
interaction between capillary and viscous forces becomes
particularly challenging in non-ideal reactor configurations
(Levenspiel, 1998; Bird et al., 2002). Environmental pro-
cesses, including groundwater remediation and contaminant
transport, also display the significance of capillary and viscous
forces. The movement of pollutants through porous media
is intricately tied to these forces, influencing the efficacy of
remediation strategies (Lichtner, 1985; Bear, 2013). Therefore,
a comprehensive understanding of these forces is indispensable
for addressing environmental challenges and ensuring sustain-
able resource management.

Porous media, encompassing soils, rocks, and engineered
materials, constitute a common substrate for mass transfer
phenomena. The porous structure provides interconnected void
spaces through which fluids and solutes can migrate, making it
a critical medium for various applications. Spontaneous fluid
imbibition in porous media is a key consideration in environ-
mental applications, particularly in groundwater remediation
and contaminant transport. Understanding how capillary and
viscous forces influence the movement of pollutants is crucial
for designing effective remediation strategies. The work of
Bear (1975) laid the foundation for conceptualizing fluid flow
and mass transfer in porous media, providing a theoretical
framework that has since guided research in the field.

Despite the importance of understanding spontaneous fluid
imbibition in porous media, the development of accurate
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Fig. 1. A sketch to define mass transfer into a crack of rectangular cross-section.

mathematical models faces several challenges. Cai et al. (2014)
formulated a generalized model that can be used to charac-
terize the spontaneous imbibition behavior of many different
porous media and that pore shape cannot always be assumed to
be cylindrical. Latest multi-scale simulation and experimental
methods to study multi-field coupling problems in complex
porous media were investigated by Yang et al. (2021). The
porous structure introduces complexities such as heterogeneity,
anisotropy, and variability in pore sizes, making it challenging
to derive universal models applicable across different media.
The need for models that can account for these variations
while capturing the interplay between capillary and viscous
forces remains a critical research gap (Berkowitz, 2002).
Non-linearity is another significant challenge in mathematical
modeling, especially when considering the impact of dynamic
processes on mass transfer. The transition from immobile
to mobile fluid phases and the associated changes in pore
saturation levels introduce non-linearities that complicate the
derivation of predictive models. This challenge is further
compounded by the need to integrate capillary and viscous
forces seamlessly. The transient nature of mass transfer events
in porous media adds an additional layer of complexity.
Processes such as solute transport during rainfall events or
contaminant release from industrial sites involve dynamic
interactions between capillary and viscous forces. Developing
mathematical models that can accurately capture the transient
behavior of mass transfer in response to changing environmen-
tal conditions is an open problem with great challenge.

Spontaneous imbibition processes in tight porous me-
dia have been studied in recent years, mainly focusing on
laboratory experiments, theoretical analysis, and numerical
simulations. Cai et al. (2023) provides a summary of the
most recent advances in the studies of capillary behavior in
shale gas/oil reservoirs, showing the challenge in modeling
of the spontaneous imbibition due to the complex imbibition
mechanism. Owing to the multi-influencing factors such as
petrophysical properties of shales and fluid properties, it is
difficult to understand thoroughly the microscopic and macro-
scopic flow mechanisms in spontaneous imbibition processes.

Published literature indicates several critical research gaps
in the mathematical modeling of spontaneous fluid imbibition
in porous media. Firstly, there is a pressing need for models
that seamlessly integrate both capillary and viscous forces,
recognizing the intricate interplay between these two phe-
nomena. Existing models often treat these forces separately,
limiting their applicability in scenarios where both forces act
simultaneously. Secondly, the development of mathematical
models that can accommodate external factors, such as tem-
perature variations or chemical reactions, is essential for real-
world applications. The literature in public domain suggests a
gap in understanding how these external factors influence the
interplay between capillary and viscous forces, adding com-
plexity to the modeling task. Thirdly, experimental validation
of theoretical models is crucial for establishing their reliability
and applicability. While mathematical models offer valuable
insights, experimental verification is necessary to bridge the
gap between theoretical predictions and real-world scenarios.
Integrating these experimental data into mathematical models
can enhance the accuracy of predictions and provide insights
into the role of capillary and viscous forces in dynamic
mass transfer due to spontaneous imbibition (Wildenschild
et al., 2002). Employing analytical models calibrated with
laboratory data confers numerous advantages in enhancing the
accuracy and reliability of simulations across scientific and
engineering domains. Calibration with experimental data en-
sures that analytical models accurately represent the intricacies
of real-world phenomena. This process allows for fine-tuning
model parameters to align with empirical observations, sig-
nificantly improving predictive capabilities (Kleijnen, 2018).
The integration of laboratory data facilitates rigorous val-
idation and verification, establishing the credibility of the
model outcomes (Saltelli et al., 2008). Additionally, calibrated
analytical models provide a cost-effective and time-efficient
means of understanding complex systems, optimizing designs,
and informing decision-making in diverse applications. As a
result, the combination of analytical modeling and laboratory
data contributes to more robust and applicable solutions in
fields ranging from environmental science to engineering.



56 Mahmood, M. N., et al. Capillarity, 2024, 11(2): 53-62

0

200

400

600

800

1000

1200

0 20000 40000 60000 80000

x(
t)

 (
cm

)

t (s)

Analytical Method

Numerical Method

Fig. 2. Comparison of analytical and numerical solutions.

Addressing the open problem of mathematical modeling
of dynamic mass transfer in spontaneous fluid imbibition
processes governed by the capillary and viscous forces, this
paper presents an analytical model with numerical validation.
The model was analyzed in sensitivity analysis to identify
its limit to real world applications. It was found that due
to the nature of the governing equation with singularity, the
solution does not work at location zero. The shortest distance
from the starting point for the model to work depends on the
data-overflow limit in evaluation of the exponential function
involved in the analytical model. Numerical solution of the
governing equation converges with low values of time step
size.

2. Mathematical model
Natural micro-mass transfer is induced by capillary force

and resisted by viscous force in capillary space. The mass
transfer process can be affected by gravitational force, de-
pending on orientation of motion. The capillary force (Fc) can
be formulated based on interfacial tension (σ ), contact angle
(θ ) and perimeter of capillary. It is customary to express the
capillary force as a function of capillary pressure (pc) through
capillary area (A):

Fc = Apc (1)
The cross-sectional areas for capillaries having cross-

sections of rectangular shape (Fig. 1), circular shape with
radius rc, and elliptical shape with radii of curvature r1 and
r2, the capillary areas are hw, πr2

c and πr1r2, respectively.
For capillaries having cross-sections of rectangular shape,

the capillary pressure is expressed as (Zhang et al., 2021):

pc =
2σ cosθ

hw
(h+w) (2)

For capillaries having cross-sections of circular shape, the
capillary pressure is expressed as (Young, 1832):

pc =
2σ cosθ

rc
(3)

For capillaries having cross-sections of elliptical shape,
the capillary pressure is expressed as (Laplace and Marquis
de, 1805):

pc = σ cosθ

(
1
r1

+
1
r2

)
(4)

Frictional force here refers to the resistance to flow of fluid
due to the interactions between fluid and tube wall and inter-
particles in viscous systems. The flow frictional force Ff acting
on the invading (wetting) phase over an invading penetration
length x is expressed as:

Ff = Ap f (5)
where the friction pressure p f is expressed as (Faber, 2021):

p f =
f f ρv2x

dH
(6)

where ρ is fluid density, f f is friction factor, v is the average
fluid velocity, and dH is hydraulic diameter of the capillary
and x is the distance travelled during fluid flow.

Assuming laminar flow the friction factor is expressed as:

f f =
16
NRe

(7)

where the Reynolds number NRe is given by:

NRe =
dHρv

µ
(8)

where µ is fluid viscosity.
Substituting Eqs. (7) and (8) into Eq. (6) gives:

p f =
16µvx

d2
H

(9)

For horizontal imbibition processes where gravity effect is
zero, applying Newton’s second law of motion to the flowing
fluid gives:

Fc −Ff = ρAx
dv
dt

(10)

Substitutions of Eqs. (1) and (5) into Eq. (10) yield for
flow in the pore space:

Apc −Ap f = ρAx
dv
dt

(11)

Substitutions of Eq. (9) into Eq. (11) yield:

pc −
16µvx

d2
H

= ρx
dv
dt

(12)

Because v = dx/dt, Eq. (12) is rearranged to give:

d2x
dt2 +A

dx
dt

+
B
x
= 0 (13)

where:

A =
16µ

ρd2
H

(14)

B =− pc

ρ
(15)

Eq. (13) can be solved using the following initial condi-
tions:

x = x0 at t = 0 (16)
The initial velocity is generally zero if the time is counted
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Table 1. Basic data used in a model comparison.

Parameter Value Unit

Capillary pressure (pc) 105 dyne/cm2

Viscosity of fluid (µ) 0.01 poise

Hydraulic diameter (dH ) 0.0001 cm

Time (t) 0 to 86,400 s

Initial location (x0) 1 cm

Initial velocity (v0) 1 cm/s

from the original point. The model allows for using non-zero
value if the value is specified from a point other than the origin.
This makes the model general for more application scenarios.
Therefore, we use the initial condition expressed as:

dx
dt

= v0 at t = 0 (17)

The analytical solution for Eq. (13) takes the following
parametric form (see Appendix A for derivation):

x(v) =− Ae−
Av2

2

B
(

C+
∫ v

0 e−
Av2

2 dv
) (18)

where the integral relates to time t by:

t(v) =
A
B2 ln

(
C+

∫ v

0
e−

Av2
2 dv

)
+C∗ (19)

where the integral can be evaluated using error function
expressed by:

erf

(√
A
2

v

)
=

2√
π

∫ v

0
e−

Av2
2 dv (20)

where C and C∗ are integration constants determined by the
initial conditions.

To ensure that the derivation of the analytical solution has
no error, the analytical solution was validated by numerical
solution of the governing Eq. (13) subjected to the initial
conditions expressed by Eqs. (16) and (17). The numerical
solution was obtained using the finite difference method
(FDM) formulated in Appendix B. Data in Table 1 was
employed to generate results from the analytical and numerical
solutions. A comparison of the solutions is presented in Fig.
2. An excellent consistency of the two solutions is observed,
indicating no error was introduced in the derivation of the
analytical solution.

Fig. 2 illustrates the result of both analytical solution of
the model along with its validation by numerical method. It
depicts a super consistency of the two solutions as both the
curves overlap each other, indicating no error was introduced
in the derivation of the analytical solution.

3. Challenges in model applications
The analytical solution was found difficult to use in some

conditions. First, the model does not work at the starting point
because of the singularity of Eq. (1) at x = 0. Secondly, in
some cases, the current computing technology does not gen-
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Fig. 3. Numerical solution results for different time step sizes.

erate solution result due to the data overflow in the exponential
function involved in the solution form. For the data set in Table
1, the value of the coefficient A in Eq. (1) has to be less than
or equal to 852 (A ≤ 852) to generate solution result.

There are several numerical methods that can be used to
solve Eq. (13). Forward Euler’s Method is one of them which
takes the general form:

xn+1 = xn +h1 f (tn,xn) (21)
where xn+1 is value of “x” at next time step, xn is value of
“x” at current time step, h1 is step-size, f (tn,xn) is derivative
function of time tn and xn.

Here, there is a second order ordinary differential equation
which can be converted into first order ordinary differential
equation by a new variable, v = dx/dt. Then Eq. (13) turns
into:

dv
dt

=−Av− B
x

(22)

Applying Forward Euler’s Method:

xn+1 = xn +h1vn (23)

vn+1 = vn +h1(−Avn −
B
xn
) (24)

where, vn+1 and vn are the velocities at different time-steps.
To analyze stability, let’s introduce the “Amplification Fac-

tor” xn+1/xn is introduced. Substituting Eqs. (23) and (24) for
xn+1 and vn+1 with amplification factor gives:

xn+1

xn
= 1+h1

vn

xn
(25)

and:

vn+1

vn
= 1−h1

(
A− h1B

xnvn

)
(26)

Therefore, the numerical stability criterion is as follows:∣∣∣∣1+h1
vn

xn

∣∣∣∣≤ 1 (27)

or: ∣∣∣∣1−h1

(
A− h1B

xnvn

)∣∣∣∣≤ 1 (28)

For calculation finite difference method is used here. Use
of numerical solution approach with FDM can eliminate the
second problem of the analytical method. However, the time
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step size must be small enough to generate results if an explicit
algorithm is employed. Fig. 3 presents numerical solution
result for different values of time-step size (∆t). It shows that
all the curves overlap with each other when the time-step size
is less than or equal to 1 second, while the solution algorithm
does not converge for ∆t = 10 seconds.

4. Conclusions
A governing equation for mass transfer processes domi-

nated by capillary and viscous forces in spontaneous fluid im-
bibition was formulated. An analytical solution was obtained
with initial conditions. The following conclusions are drawn.

1) The analytical solution was validated by comparison with
numerical solution. The results given by the two solutions
are highly consistent, indicating no error in the derivation
of the analytical solution.

2) There are two challenges in using the analytical solution.
First, the solution does not work at the starting point
because of mathematical singularity. This means that
solving the equation for the mass transfer rate near the
starting point may give some error, depending on the dis-
tance from the starting point. Secondly, in some cases, the
current computing technology does not generate solution
results due to the data-overflow issue in the exponential
function involved in the solution form.

3) Use of numerical solution with FDM can eliminate the
data-overflow problem of the analytical solution. How-
ever, the time step size must be small enough to generate
result. The criterion for selection of the maximum stable
time-step size should be applied to achieving stable
algorithm for improving computing efficiency.

4) Future work should include validation of the analytical
solution through comparisons with experimental data
and/or previous solutions.
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Appendix A. Analytical solution for mass transfer in spontaneous imbibition processes
For the governing equation in form of

d2x
dt2 +A

dx
dt

+
B
x
= 0 (A1)

with u = x
′
(t), applying the chain rule du/dt = (du/dx)(dx/dt) = u(du/dx), Eq. (A1) becomes,

du
dx

+A =− B
ux

(A2)

Let v = u+Ax then

dv
dx

=
du
dx

+A =− B
ux

=− B
(v−Ax)x

(A3)

Eq. (A3) can be written as:

dx
dv

=
Ax2

B
− vx

B
(A4)

Eq. (A4) is a Riccati equation. With the substitution x =−Aw
′
/Bw

dx
dv

=−Aw
′′

Bw
+

A(w
′
)2

Bw2 =
A(w

′
)2

Bw2 +
vw

′

Bw
(A5)

Eq. (A5) becomes,

w
′′
+

vw
′

A
= 0 (A6)

The solution for Eq. (A6) is

w
′
= C1e−

Av2
2 (A7)

Therefore, solving for “w” yields,

w = C2 +C1

∫ v

0
e−

Av2
2 dv (A8)

Hence

x(v) =−Aw
′

Bw
=− AC1e−

Av2
2

B
(

C2 +C1
∫ v

0 e−
Av2

2 dv
) =− Ae−

Av2
2

B
(

C+
∫ v

0 e−
Av2

2 dv
) (A9)

C1,C2,C are arbitrary constants where C = C2/C1.
Deriving both sides of v = u+Ax with respect to t gives

dv
dt

=
du
dt

+A
dx
dt

= x
′′
(t)+Ax

′
(t) =−B

x
(A10)

Thus

dt
dv

=− x
B
=

Aw
′

B2w
(A11)

From Eq. (A11) to acquire:

t(v) =
A
B2 lnw+C3 =

A
B2 ln

(
C2 +C1

∫ v

0
e−

Av2
2 dv

)
+C3 =

A
B2 ln

(
C+

∫ v

0
e−

Av2
2 dv

)
+C∗ (A12)

where C∗ = (A/B2) lnC1 +C3.
The solution for Eq. (A1) in the parametric form is

x(v) =− Ae−
Av2

2

B
(

C+
∫ v

0 e−
Av2

2 dv
) (A13)

where the integral relates to time t by

t(v) =
A
B2 ln

(
C+

∫ v

0
e−

Av2
2 dv

)
+C∗ (A14)

where the integral can be evaluated using error function expressed by
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erf

(√
A
2

v

)
=

2√
π

∫ v

0
e−

Av2
2 dv (A15)

Appendix B. Numerical formulation for mass transfer in spontaneous imbibition processes
The governing equation is

d2x
dt2 +

16µ

ρd2
H

dx
dt

− pc

ρx2 = 0 (B1)

which is simplified to

d2x
dt2 +A

dx
dt

+
B
x
= 0 (B2)

where,

A =
16µ

ρd2
H
, B =− pc

ρ
(B3)

Using finite difference approximation we get,

xt+∆t −2xt + xt−∆t

∆t2 +
A(xt+∆t − xt−∆t)

2∆t
+

B
xt

= 0(
1

∆t2 +
A

2∆t

)
xt+∆t −

(
2xt

∆t2 − B
xt

)
+

(
1

∆t2 − A
2∆t

)
xt−∆t = 0(

1
∆t2 − A

2∆t

)
xt−∆txt −

2x2
t

∆t2 +

(
1

∆t2 +
A

2∆t

)
xtxt+∆t +B = 0

(B4)

Boundary conditions:
Eq. (B2) can be solved using the following conditions:

xt=0 = x0 at t = 0

dx
dt

∣∣∣
t=0

= v0 at t = 0

x∆t − x−∆t

2∆t
= v0

x−∆t = x∆t −2v0∆t

(B5)

Let us consider t starting with “0” and t ends with tend . We divide time with “n” intervals to get ∆t = (tend − 0)/n or
tend = n∆t. We denote t = 0 by t0, t = ∆t by t1, t = 2∆t by t2s. Then tn = n∆t = tend and in general ti = i∆t.

Regarding x, we denote x(t = i∆t = ti) by xi, then Eq. (B5) can be writen as

x−1 = x1 −2v0∆t (B6)
Now we write Eq. (B4) as (

1
∆t2 − A

2∆t

)
xi−1xi −

2x2
i

∆t2 +

(
1

∆t2 +
A

2∆t

)
xixi+1 +B = 0 (B7)

Let us write Eq. (B7) for every “t” to form a system of non-linear equations:
For t = 0, (

1
∆t2 − A

2∆t

)
x−1x0 −

2x2
0

∆t2 +

(
1

∆t2 +
A

2∆t

)
x0x1 +B = 0

−
(

1
∆t2 − A

2∆t

)
(x1 −2v0∆t)x0 −

2x2
0

∆t2 +

(
1

∆t2 +
A

2∆t

)
x0x1 +B = 0

(B8)

For t = ∆t, (
1

∆t2 − A
2∆t

)
x0x1 −

2x2
1

∆t2 +

(
1

∆t2 +
A

2∆t

)
x1x2 +B = 0 (B9)

For t = 2∆t,
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(
1

∆t2 − A
2∆t

)
x1x2 −

2x3
2

∆t2 +

(
1

∆t2 +
A

2∆t

)
x2x3 +B = 0 (B10)

· · ·
In this way, for t = (n−1)∆t,(

1
∆t2 − A

2∆t

)
xn−2xn−1 −

2x2
n−1

∆t2 +

(
1

∆t2 +
A

2∆t

)
xn−1xn +B = 0 (B11)

Let

1
∆t2 − A

2∆t
= c

2
∆t2 = d

1
∆t2 +

A
2∆t

= e

(B12)

The system of non-linear equation becomes:

−2cv0∆tx0 −dx2
0 +dx0x1 +B = 0 (B13)

cx0x1 −dx2
1 + ex1x2 +B = 0 (B14)

cx1x2 −dx2
2 + ex2x3 +B = 0 (B15)

cx2x3 −dx2
3 + ex3x4 +B = 0 (B16)

· · ·

cxn−2xn−1 −dx2
n−1 + exn−1xn +B = 0 (B17)

For example, if t0 = 0, tn = 1, ∆t = 0.1, then n = 10 and we have
t0 = 0, t1 = 0.1, t2 = 0.2, t3 = 0.3, t4 = 0.4, t5 = 0.5, · · · , t9 = 0.9, t10 = 1.0

Therefore,
x(t0) = x0, x(t1) = x1, x(t2) = x2, · · · , x(t9) = x9, x(t10) = x10

We then have
−2cv0∆tx0 −dx2

0 +dx0x1 +B = 0

cx0x1 −dx1
2 + ex1x2 +B = 0

cx1x2 −dx2
2 + ex2x3 +B = 0

cx2x3 −dx3
2 + ex3x4 +B = 0

cx3x4 −dx4
2 + ex4x5 +B = 0

cx4x5 −dx5
2 + ex5x6 +B = 0

cx5x6 −dx6
2 + ex6x7 +B = 0

cx6x7 −dx7
2 + ex7x8 +B = 0

cx7x8 −dx8
2 + ex8x9 +B = 0

cx8x9 −dx9
2 + ex9x10 +B = 0

Now any numerical method can be used to solve this system of equation for x1, x2, x3, · · · , x10.
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