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Abstract:
Multiphase flow in porous media is a common process in numerous engineering appli-
cations. While numerous studies have been conducted to investigate the impact of flow
conditions, fluid properties, and wettability, the influence of flow geometry on the flow
process remains poorly understood. Here, a theoretical model is proposed to directly
forecast the displacement patterns across a wide range of porosity and disorder. This model
is built upon the revelation that the overlap event stabilizes the invasion front, allowing us to
predict displacement patterns by computing the probability of the overlap event. A value of
1 indicates a stable invasion process, resulting in compact displacement. Conversely, a value
of 0 signifies an unstable invasion process, leading to capillary fingering. In the intermediate
range between 0 and 1, a crossover zone is observed. The predicted phase diagram is
evaluated using pore-network simulations and experiments in the literature, confirming
that this model can reasonably predict displacement patterns under varying porosity and
disorder. This contribution extends classical phase diagrams and holds practical significance
for engineering applications.

1. Introduction
Immiscible fluid displacement is a prevalent phenomenon

in various engineering applications, including geological car-
bon sequestration (Ershadnia et al., 2020; Wang et al., 2023;
Wei et al., 2023), enhanced oil recovery (Li et al., 2020; Mor-
row and Mason, 2001; Pi et al., 2023), groundwater contamina-
tion by non-aqueous liquids (Dawson and Roberts, 1997), and
water removal in the cathode gas diffusion layer of PEM fuel
cell (Tang et al., 2007). In the context of multiphase flow with
a fluid-fluid interface, the stability of the front interface holds
paramount importance, as it significantly impacts displacement
patterns and efficiency (Paterson, 1981; Glass et al., 2001;
Armstrong and Berg, 2013; Bischofberger et al., 2014; Cai et
al., 2021; Zhao et al., 2023).

In the absence of gravity effects, the instability of the
front interface is governed by viscous and capillary forces

(Måløy et al., 1985; Babchin et al., 2008; Cottin et al., 2011;
Molnar et al., 2020; Geistlinger and Zulfiqar, 2020). Lenor-
mand et al. (1988) pioneered the development of a phase
diagram to characterize fluid-fluid displacement in a porous
medium using two dimensionless parameters: the viscous ratio
(M = µi/µd) and the capillary number (Ca = µiv/γ). Here, µi
and µd represent the dynamic viscosities of the invading and
defending fluids, respectively, v is the characteristic velocity,
and γ is the interfacial tension. For M > 1, displacement
patterns transition from capillary fingering (CF) to compact
displacement (CD) with increasing Ca. Conversely, for M < 1,
displacement patterns shift from CF to the crossover zone
(CZ) and eventually to viscous fingering (Chen et al., 2017).
However, this phase diagram does not incorporate the impact
of flow geometry and is applicable solely under drainage
conditions.
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Under imbibition conditions, the fluid-fluid interface inva-
sion becomes notably intricate (Cai et al., 2010, 2014; Hu et
al., 2018; Singh et al., 2019). Menisci motion is influenced
not only by Haines jumps (bursts) but also controlled by
additional modes such as touches and overlaps (Cieplak and
Robbins, 1988, 1990; Zhao et al., 2016, 2019; Primkulov et
al., 2021). Specifically, the existence of overlap contributes
to stabilizing the front interface (Holtzman and Segre, 2015;
Hu et al., 2019; Lan et al., 2020). As the wetting phase
contact angle (θ ) decreases to around 45◦, and at lower Ca,
displacement patterns demonstrate CD rather than CF.

On the other hand, flow geometry also influences the
instability of the front interface (Spaid and Phelan, 1998;
Geiger-Boschung et al., 2009; de Anna et al., 2017; Svidrytski
et al., 2018; Nijjer et al., 2019). Given the intricate nature
and diverse characteristics of porous media, research in this
domain remains inadequately comprehensive (Lewandowska
et al., 2005; Borgman et al., 2017; Fantinel et al., 2017;
Suo et al., 2020). Recent investigations have predominantly
concentrated on disordered and ordered porous media. In
the context of disordered porous media, prior research has
indicated that reducing disorder stabilizes the invasion front
for both drainage and imbibition processes (Chen and Wilkin-
son, 1985; King, 1987; Toussaint et al., 2005; Holtzman, 2016;
Wu et al., 2021). A recent systematic study explored the
combined impact of disorder and wettability on displacement
patterns (Hu et al., 2019). The findings demonstrated that
the influence of disorder varies with alterations in wettability.
Under diverse wettability conditions, an increase in disorder
can result in either the stabilization or destabilization of the
invasion front.

Other studies have examined ordered porous media, char-
acterized by variations in porosity along the flow direction,
to comprehend their influence on displacement patterns (Al-
Housseiny et al., 2012; Rabbani et al., 2018; Lu et al., 2019;
Lan et al., 2022a, 2022b). Rabbani et al. (2018) observed that
a linear variation in porosity corresponds to linear variations in
viscous and capillary forces, manifesting specific flow patterns,
such as single fingering. Lu et al. (2019) and Lan et al. (2022a)
further investigated the interplay between porosity gradient
and disorder, revealing that a sufficiently large gradient can
completely mitigate the impact of disorder. Wang et al. (2022)
explored the influence of porosity on multiphase flow in
regular porous media, finding that decreasing porosity leads
to a transition in displacement patterns from CD to CF. These
studies underscore the significance of porosity, in addition to
disorder, in multiphase flow. Nonetheless, additional research
is necessary to elucidate the combined influence of porosity
and disorder on displacement patterns.

In this study, pore-network simulations and theoretical
analysis are combined to explore the influence of porosity
and disorder on displacement patterns. Considering that over-
lap events stabilize the invasion front, a theoretical model
is introduced to predict displacement patterns by evaluating
the probability of overlap occurrences. The model produces
phase diagrams illustrating displacement patterns under varied
porosity and disorder conditions. Validation of theoretical
predictions is accomplished through numerical simulations and

referenced experiments. This study holds significant implica-
tions for advancing our comprehension of multiphase flow
control in porous media.

2. Predictive method

2.1 Pore-filling events
The pore-filling events of bursts, touches, and overlaps

were initially introduced by Cieplak and Robbins (1988, 1990)
to depict the motion of the meniscus in porous media. The
determination of the critical radius of curvature for these three
pore-filling events has been addressed in our previous work
(Hu et al., 2019). Here, a concise overview of the equations
for the three pore-filling events is provided.

The burst event and touch event involve a single meniscus.
The burst event occurs when the capillary pressure reaches its
maximum value, beyond which no stable meniscus can exist
(Fig. 1(a)). The critical radius of the burst event (Rb) can be
expressed as:

Rb =
−b1 +

√
b2

1 −4a1c1

2a1
(1)

where a1, b1, c1 are the coefficients given in Table 1.
The touch event occurs when the meniscus comes into

contact with the edge of the nearest post (Fig. 1(b)). The
critical radius of the touch event (Rt ) is formulated as:

Rt =
−b2 +

√
b2

2 −4a2c2

2a2
(2)

where a2, b2, c2 are the coefficients given in Table 1.
To determine the sequence of the burst event and touch

event, a particular fluid reconfiguration is examined, wherein
the meniscus attains its minimum radius of curvature upon
touching the nearest post (Fig. 1(c)). The critical radius of
curvature (Rc) is expressed as:

Rc =
a2 + r2

1 + r2
2 −2r2

3
4r3 +2(r1 + r2)cosθ

(3)

where r1, r2, and r3 are the radii of posts 1, 2, and 3,
respectively, and a is the distance between the centers of two
adjacent posts. If Rb < Rc, the burst event precedes the touch
event. Conversely, if Rb > Rc, the meniscus contacts the edge
of the nearest post before the burst event occurs.

The overlap event entails multiple menisci. When neigh-
boring menisci make contact at the three-phase contact point,
they merge to form a new meniscus (Fig. 1(d)). The condition
for the overlap event an be expressed as:

∠O1O2O4 ≤ 2α −β1 −β2 (4)
and the critical radius of curvature of the overlap event (Ro)
can be calculated by:

∠O1O2O4 = 2α −β1 −β2 (5)
where the expressions for α , β1, and β2 are given in Table 1.
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Fig. 1. Geometry for calculating the radii of curvature of menisci for three pore-filling events. (a) The burst event occurs when
the radius of curvature reaches its minimum value (corresponding to the maximum capillary pressure), (b) the touch event
occurs as the meniscus makes contact with the edge of the nearest post, (c) the critical condition for determining the occurrence
of the burst event and touch event, and (d) the overlap event occurs when two neighboring menisci contact at the three-phase
contact point. The red arcs depict the fluid-fluid interface, and the red arrows indicate the direction of menisci motion.

Table 1. Coefficients in Eqs. (1)-(5).

Modes Coefficients

a1 = 2− 2
a2 (r1 − r2)

2 cos2 θ

Burst b1 =
2
a2 (r1 − r2)

2 (r1 + r2)cosθ −2(r1 + r2)cosθ

c1 = r2
1 + r2

2 −
a2

2
− 1

2a2

(
r2

1 − r2
2
)2

a2 = 4r2
3 +4cos2 θ

(
r2

1 + r2
2 −4r1r2

)
+4r3 cosθ (r2 + r1)−3a2

Touch b2 = 2a2 (r1 cosθ + r2 cosθ −2r3)+2r1 cosθ
(
r2

2 + r2
3 −2r2

1
)
+2r2 cosθ

(
r2

1 + r2
3 −2r2

2
)
+2r3

(
2r2

3 − r2
1 − r2

2
)

c2 = a2(a2 − r2
1 − r2

2 − r2
3)+

1
2
(r2

1 − r2
2)

2 +
1
2
(r2

1 − r2
3)

2 +
1
2
(r2

2 − r2
3)

2

α = cos−1

 r2 −Ro cosθ√
r2

2 +R2
o −2r2Ro cosθ


Overlap β1 = cos−1

a2 + r2
2 − r2

1 +2(r1 − r2)Ro cosθ

2a
√

r2
2 +R2

o −2r2Ro cosθ


β2 = cos−1

a2 + r2
2 − r2

4 +2(r4 − r2)Ro cosθ

2a
√

r2
2 +R2

o −2r2Ro cosθ
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Fig. 2. Variation of overlap probability (Pov) with porosity
(φ ) and normalized disorder index (λ/λmax). The overlap
probability (Pov) is visually represented in red for higher
values and blue for lower values, serving to classify different
displacement patterns. The displacement patterns include CD
for Pov = 1, the CZ for 0 < Pov < 1, and CF for Pov = 0. The
boundary curves lCD and lCF demarcate the transition from CD
to CZ to CF.

2.2 Phase diagram under varying porosity and
disorder

Section 2.1 describes the identification and critical radius
of curvature calculation for pore-filling events in a four-post
system (Fig. 1(d)). Given that the burst and touch events
consistently yield an irregular invasion morphology, in contrast
to the overlap event, which produces a compact invasion front
(Holtzman and Segre, 2015; Singh et al., 2019), the displace-
ment pattern can be anticipated by evaluating the probability
of the overlap event, denoted as Pov (Hu et al., 2019).

Initially, the probability density function is computed,
denoted as f (r), for a post radius. This study assumes a
uniformly distributed geometry, with the posts’ radius (ri)
defined as:

ri ∼U [(1−λ )r̄,(1+λ )r̄] (6)
where λ is the disorder index, and r̄ is the average radius of
posts, which is related to porosity (φ ) and can be calculated
by:

r̄ =

√√
3a2(1−φ)

2π
(7)

The probability density function, f (r), for the post radius
distribution is expressed as:

f (r) =


1

2λ r̄
, r ∈ [(1−λ )r̄,(1+λ )r̄]

0, else
(8)

For a four-post system (r1, r2, r3, and r4), the probability

density function for the system distribution is determined as
follows:

f (r1,r2,r3,r4) =

{
(2λ r̄)−4, (r1,r2,r3,r4) ∈ G
0, else

(9)

where G = {(r1,r2,r3,r4) : (1 − λ )r̄ ≤ ri ≤ (1 + λ )r̄, i =
1,2,3,4} is a bounded closed region with a volume of (2λ r̄)4.
As the occurrence of the overlap event can be determined by
Eq. (4), the probability of the overlap event for an arbitrary
four-post system can be expressed as:

Pov =
∫∫∫ ∫

G∩Gov

(2λ r̄)−4 dr1 dr2 dr3 dr3 (10)

where Gov is the bounded closed region in which the overlap
event occurs and is defined as:

Gov(λ ,φ ,θ) = {(r1,r2,r3,r4) : 2α(λ ,φ ,θ)

−β1(λ ,φ ,θ)−β2(λ ,φ ,θ)≥
2π

3

}
(11)

The theoretical model (Eq. (9)) can predict displacement
patterns under different contact angles, disorder, and poros-
ity. However, the specific influence of contact angles on
displacement patterns is not within the focus of this study.
Consequently, we have opted to showcase results for a singular
contact angle (θ = 60◦) while considering fluctuations in
porosity (0.2 ≤ φ ≤ 0.8) and disorder (0 ≤ λ/λmax ≤ 1), as
illustrated in Fig. 2. The transition of the displacement patterns
from CF to the CZ to CD is delineated by the boundary curves
lCF and lCD. The inflection point in lCD arises due to the shift
from a single pore-filling event dominated by the touch event
to being dominated by the burst event. When the porosity is
below the boundary curve lCF (blue area in Fig. 2), Pov = 0, and
only the burst and touch events occur. In this case, the invasion
front is irregular, and the displacement pattern exhibits CF.
When the porosity is above the boundary curve lCD (red area
in Fig. 2), Pov = 1, and the overlap event occurs in all four-
post systems, resulting in a stable invasion front and CD. For
porosities between the two curves, the competing effects lead
to the CZ. Consequently, the displacement patterns at varying
porosities and disorders are predicted.

3. Evaluation of the predicted model

3.1 Overview of the pore-network model
The predicted model is evaluated using a pore-network

model previously introduced in studies by Hu et al. (2019)
and Lan et al. (2020). This pore-network model has been
experimentally validated in prior research. Originally proposed
by Cieplak and Robbins (1988, 1990), the model has un-
dergone enhancements in subsequent studies (Holtzman and
Segre, 2015; Primkulov et al., 2018, 2019; Zhao et al., 2019;
Lan et al., 2022a).

The pore-network system is comprised of posts, throats,
and pores. As depicted in Fig. 3, the grey circles in the diagram
represent posts arranged in a triangular lattice, maintaining a
constant distance of a = 250 µm. Each set of three adjacent
posts forms a pore, and the dashed line between two pores
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Fig. 3. Schematic diagram of pore-network model. (a) Initially, all pores are filled with the defending phase (blue), except for
the pores at the inlet, which are filled with the invading phase (red). The upper and lower boundaries are designated as the
no-flow boundary and (b) The grey circles represent posts arranged in a triangular lattice with a distance of a = 250 µm. The
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Fig. 4. Flow chart of pore-network model. The threshold
capillary pressure is calculated using the pore-filling events
depicted in Fig. 1. At each step, the pore with the lowest
threshold capillary pressure is invaded. The simulation con-
cludes when any pore in the outlet is filled.

represents the throat (Fig. 3(b)). The flow chart of the pore-
network model is presented in Fig. 4. Initially, all pores are
filled with the defending phase, while the invading phase
occupies the pores at the inlet. The upper and lower boundaries
are designated as no-flow boundaries. In each simulation cycle,
the fluid-fluid interface’s flowing state is initially determined.
The interface is identified based on the pore-filling state and
then separated into the front interface (flowable) and the
trapped interface (non-flowable). Next, the threshold capillary
pressure for all menisci on the front interface is calculated
using Eqs. (1)-(5). The pore adjacent to the meniscus with the

minimum threshold capillary pressure, initially filled by the
defending phase, becomes filled by the invading phase. By
repeating these steps until any pore in the outlet is filled by
the invading phase, the quasi-static fluid invasion process in
the porous media is simulated.

As the pore-network model is specifically devised for a
two-dimensional (2D) system, the simulation does not account
for the fluid advancements with three-dimensional charac-
teristics, along with associated mechanisms such as corner
flow (Dong and Chatzis, 1995; Weislogel and Lichter, 1998),
snap-off (Roof, 1970), and spreading of thin wetting films
(Levaché and Bartolo, 2014; Odier et al., 2017). These crucial
mechanisms typically play a significant role in displacement
processes under strong imbibition conditions (θ < 45◦) (Con-
cus and Finn, 1969). Consequently, the applicability of this
pore-network model is limited to 2D porous media with
θ > 45◦.

3.2 Evaluation using numerical simulations
Pore-network simulations are conducted within the same

parameter range as the predicted phase diagram of displace-
ment patterns (Fig. 2), namely θ = 60◦, 0.2 ≤ φ ≤ 0.8, and
0 ≤ λ/λmax ≤ 1. φ × λ/λmax = 7 × 6 = 42 conditions are
considered, with 10 independently generated geometries for
each condition, totaling 420 computational cases.

For the purpose of comparison with the theoretical model,
the typical displacement patterns under each condition are
illustrated in Fig. 5, while the saturation (Sbr) and the fractal
dimension (D f ) of the simulation at the breakthrough time
are depicted in Fig. 6. The predicted boundaries lCF and lCD
indicating the transition from CF to the CZ and to CD are also
presented in Fig. 6. Displacement patterns are characterized
using invasion morphology, saturation (Sbr), and D f . In CF,
the invasion front is unstable, resulting in minimum values
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Fig. 5. Simulated displacement patterns at various porosities (φ ) and normalized disorder indices (λ/λmax), covering the range
0.2 ≤ φ ≤ 0.8 and 0 ≤ λ/λmax ≤ 1. The flow direction is from left to right. Colors ranging from dark red to yellow represent
the initial stage to the breakthrough time. As porosity (φ ) increases, the displacement patterns translate from CF to the CZ
and ultimately to CD. The extent of the CZ expands with increasing disorder.
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time of breakthrough.

of Sbr (≤ 0.55) and D f (≤ 1.72) (Fig. 6). CD features a
stable invasion front, reaching maximum Sbr (≥ 0.85) and D f
(≥ 1.90) values (Fig. 6). The CZ witnesses the transition from
an unstable to a stable invasion front, with 0.55 ≤ Sbr ≤ 0.85
and 1.72 ≤ D f ≤ 1.90 (Fig. 6). The predicted boundary curves
lCF and lCD, as depicted in Fig. 6, align well with the
simulation results.

3.3 Evaluation using experiments in the
literature

The predicted phase diagram is further validated using
experimental results from the literature (Jung et al., 2016; Hu
et al., 2019). In the experiment by Hu et al. (2019), the contact

angle is θ = 67◦, porosity is φ = 0.56, and the disorder is var-
ied as λ/λmax = 0, 0.23, 0.47, and 0.70. For λ/λmax = 0 and
0.23 the displacement pattern is CD (red circles in Fig. 7(a)),
while for λ/λmax = 0.47 and 0.70 the displacement pattern is
the CZ (green circles in Fig. 7(a)). In the experiment by Jung
et al. (2016), two microfluidic geometries were employed. One
geometry has φ = 0.85, and λ/λmax = 0.69, while the other
has φ = 0.7, and λ/λmax = 0.41. Two fluid pairs were used
with contact angles of θ = 46◦ and 79◦. For θ = 46◦, CD is
observed in both geometries (Fig. 7(b)), whereas for θ = 79◦, a
CZ is observed in both geometries (Fig. 7(c)). As shown in Fig.
7, the experimental points representing various displacement
patterns fall within or very close to the corresponding regions
of the predicted phase diagram. Consequently, our theoretical
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Fig. 7. Evaluation of the phase diagram using experiment data from the literature (Jung et al., 2016; Hu et al., 2019). The
phase diagram is recalibrated to align with experimental conditions, featuring (a) θ = 67◦, (b) θ = 46◦, and (c) θ = 79◦.
The experimental data are represented by red circles for the CD and green circles for the CZ. The dashed line and solid
lines, derived from the theoretical model, depict the transition of displacement patterns from CF to CZ and from CZ to CD,
respectively.

model can reasonably predict the transition of displacement
patterns under varying porosity and disorder.

4. Conclusions
A combination of pore-network simulations and a the-

oretical model is employed to investigate the transition of
displacement patterns under varying porosity and disorder.
Through theoretical analysis of the probability of overlap
events, which stabilize the invasion front, a model is proposed
to describe the transition of displacement patterns from CF
to the CZ and then to CD. The predicted phase diagram is
evaluated using pore-network simulations and experimental
data from the literature.

Unlike previous studies that consider factors such as flow
rate, wetting conditions, and fluid properties, our model can
predict displacement patterns under arbitrary flow geometries
with given porosity and disorder. Consequently, our work
extends the classic phase diagram to incorporate the influence
of porosity and disorder in porous media. This research holds
practical significance for engineering applications, including
geological carbon sequestration, oil recovery, and shale gas
production.
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