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Abstract:
Long horizontal wellbore sections are now a key requirement of oil and gas drilling, partic-
ularly for tight reservoirs. However, such sections pose a unique set of borehole-cleaning
challenges which are quite distinct from those associated with less inclined wellbores.
Experimental studies provide essential insight into the downhole variables that influence
borehole cleaning in horizontal sections, typically expressing their results in multivariate
empirical relationships with dimensionless cuttings bed thickness/concentration (H%). This
study demonstrates how complementary empirical H% relationships focused on pairs of
influential variables can be obtained from published experimental data using interpolated
trends and optimizers. It also applies five machine learning algorithms to a compiled
multivariate (10-variable) interpolated dataset to illustrate how reliable H% predictions can
be derived based on such information. Seven optimizer-derived empirical relationships are
derived using pairs of influential variables which are capable of predicting H% with root
mean squared errors of less than 1.8%. The extreme gradient boosting model provides
the lowest H% prediction errors from the 10-variable dataset. The results suggest that
in drilling situations where sufficient, locally-specific, information for multiple influential
variables is available, machine learning methods are likely to be more effective and reliable
at predicting H% than empirical relationships. On the other hand, in drilling conditions
where information is only available for a limited number of influential variables, empirical
relationships involving pairs of influential variables can provide valuable information to
assist with drilling decisions.

1. Introduction
Long horizontal wellbore sections are now recognized as

the most effective way to develop tight reservoirs, and the
length of the horizontal sections drilled is increasing particu-
larly in certain shale formations to optimize resource recovery.
Hole cleaning and drilling cuttings transport is a challenge for
wellbores of all configurations and inclinations due to the large
number of variables that influence it (Li and Walker, 2001).
For horizontal wellbore sections, it is a particular challenge
because cuttings beds tend to form more readily on the lower
side of the wellbore due to gravitational forces and often slow
down cuttings transport (Sun et al., 2013). Such cuttings beds,
if they are allowed to remain in the horizontal sections exert

high frictional and torque forces on the drill pipe leading to
inefficiency and slow rates of penetration (ROP) (Mahmoud
et al., 2020a).

As the length of horizontal sections increases so do the
impacts of the cuttings beds on borehole cleaning efficiency
and the ability to move logging tools and completion equip-
ment in and out of a wellbore (Nazari et al., 2010). Inefficient
borehole cleaning leading to thick cuttings beds accumulating
in horizontal sections is a major cause of drilling prob-
lems and non-productive time (Power et al., 2000). Potential
problems include the drill string becoming stuck and “pack-
offs” blocking the circulation of the drilling fluid, which can
damage subsurface equipment. High drill-string torque/friction
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associated with cuttings-bed buildups is responsible for drill-
string wear that can ultimately lead to its failure (Busch and
Johansen, 2020).

Borehole cleaning is influenced by multiple factors includ-
ing the fluid flow rate and flow regime (turbulent, laminar,
etc.) in the borehole annulus, drill-pipe rotation speed, drilling
fluid density, wellbore inclination, drill-pipe eccentricity in
the borehole, drilling fluid rheology, rate of penetration, flow
regime, annulus diameter relative to borehole diameter, drilling
cuttings size, shape, and density (Moroni et al., 2009; Wang et
al., 2013; Zico et al., 2023). Models dating back to the 1950s
have been proposed to explain the cuttings-carrying capacity
of drilling fluids (Williams and Bruce, 1951) incorporating the
key factors that influence borehole cleaning (Hopkin, 1967).

The empirical models used most widely in drilling op-
erations to provide real-time indications of hole cleaning
performance, as reviewed by Mahmoud et al. (2020b) and Al-
Rubaii et al. (2023) incorporate many of the influential factors
mentioned. However, such models struggle to incorporate all
the influential factors relevant to specific locations, and most
do not specifically focus on horizontal wellbore sections.
Formation lithology, borehole rugosity, depth, temperature,
and pressure are additional factors that most multi-variable
empirical models do not consider. Wellbore stability plays
a role in cuttings transport efficiency and depends largely
on the physicochemical characteristics of the rock formations
penetrated in relation to those of the drilling fluid (Sun et
al., 2023).

The height of accumulated cuttings beds tends to decrease
as the inclination of the borehole decreases, making them a
greater challenge in horizontal wellbores (Zhu et al., 2021).
The type of drilling fluid used (oil-based, synthetic, or water-
based) does not in itself influence hole cleaning performance,
rather it is the drilling fluid density, rheology, and fluid flow
regime that influence cuttings-transport efficiency (Hemphill
and Larsen, 1996). Turbulent fluid-flow regimes tend to be
more effective for borehole cleaning at most annulus fluid
velocities and wellbore inclinations (Nazari et al., 2010;
Piroozian et al., 2012). While drill cuttings particles of smaller
size tend to be carried more easily in the circulating drilling
fluids (Akhshik et al., 2016), drill cuttings of higher density
and flatter shapes form thinner cuttings beds at the same
flow rates than less dense more rounded particles (Tomren
et al., 1986). This is a relevant factor in horizontal sections as
denser flatter cuttings particles will take longer to reduce the
flowing area of the annulus (Pandya et al., 2019). Nevertheless,
denser cutting particles are more difficult to dislodge and
move from cuttings beds, making it important to focus on the
cuttings-lifting abilities of the drill fluids and flow regimes
applied (Jimmy et al., 2022).

Periodic back reaming during drilling can help to disrupt
and break up cuttings beds and avoid the need to trip the
drill string from the wellbore as cuttings beds accumulate
(Zhu et al., 2023). Alternatively, drilling a provisional pilot
narrow-diameter borehole followed by reaming can substan-
tially reduce the volume of the cuttings in the wellbore annulus
and lower the equivalent circulating density of the drilling
fluid (Lin et al., 2016), thereby improving hole cleaning.

Additionally, various downhole cuttings-removal tools posi-
tioned in the drill string are commonly deployed to create
vortexes when drilling long-horizontal sections to improve
hole cleaning, particularly in wells drilling shale formations
(Chen et al., 2022). Nevertheless, it remains important to
adopt drilling designs that minimize the build-up of cuttings
beds as much as possible. Indeed, efforts are being made to
develop reliable transient hole-cleaning models validated with
real wellbore results and deploying them as digital twins to
monitor borehole cleaning in real-time (Arévalo et al., 2022)
and/or automated-advisory systems (Forshaw et al., 2022).

Simulation studies, particularly those involving computa-
tional fluid dynamics (CFD), applied to horizontal wellbores
and supported by experimental validation have proved to be
effective in providing insight to cuttings-transport processes
(Zakerian et al., 2018; Yeo et al., 2021). CFD models provide
a means of better understanding cuttings particle behavior
in complex fluid-flow regimes. Hajipour (2020) developed a
CFD model to simulate turbulent two-phase flow regimes in
horizontal wellbore annuli by applying the Herschel-Bulkley
model. Vaziri et al. (2020) applied a CFD model to evaluate
the hole-cleaning influences on foam-based drilling fluids in
highly inclined wellbores. Awad et al. (2021) applied CFD
to compare cuttings particle settling velocities in Newtonian
versus non-Newtonian fluid-flow regimes. Epelle et al. (2019)
evaluated the behavior of polydisperse spherical-particulate
systems by applying both Eulerian-Eulerian and Lagrangian-
Eulerian CFD methods. Zhu et al. (2023) simulated cut-
tings particle buoyancy and waveform distributions in cuttings
beds applying a layered-mesh CFD model. The Lagrangian-
Eulerian CFD technique is more complex and time-consuming
but tends to provide more realistic representations of individual
particle dynamics in various flow regimes (Epelle and Gero-
giorgis, 2019).

Laboratory-based experimental studies play a key role
in providing insight into the inter-relationships between the
various factors influencing borehole cleaning in horizontal
wellbores (Loureiro et al., 2010; Li and Luft, 2014). The test
equipment used typically consists of a flow loop representing a
drill-string/annulus configuration through which various fluids
and cuttings-like materials can be circulated under a range of
conditions including inclinations (Ma et al., 2023). However,
most systems used to date can only operate at ambient pressure
and temperature conditions. The experimental flow loops re-
ported use both opaque (Piroozian et al., 2012) and transparent
flow-loop systems at reduced (Leporini et al., 2019) and full-
scale facilities (Xu et al., 2013). By carefully measuring the
injection rates, weights, and volumes of cuttings materials,
typically sand of different particle sizes, it is possible to
establish the equivalent ROP of the system configuration of
such flow loops. Transparent experimental equipment setups
enable slow-motion visualizations of the circulating systems.
The results of such experiments are often expressed in dimen-
sionless terms as cuttings bed concentrations (%) rather than
absolute cuttings-bed thickness measures (Song et al., 2017;
Han et al., 2022). This facilitates the scaling of the results to
various operational systems (Busch et al., 2020).

Machine learning (ML) is now extensively used to pro-
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vide accurate predictions of experimentally derived cuttings
bed data from a few (typically up to about five) influential
variables. Ozbayoglu et al. (2002) were among the first to
develop an artificial neural network (ANN) model to predict
cuttings bed thickness in inclined wellbores. Their model
considered a range of distinct fluid-flow regimes making it
of more practical value than empirical relationships that tend
to be focused on specific flow regimes. ANN, support vector
machines (SVM), and multilinear regression (MLR) models
have been widely applied for more than two decades to
estimate drilling operational data including cuttings transport
performance (Olukoga and Feng, 2021). However, as described
in Section 2.3 several other ML algorithms have also been
successfully applied to borehole cleaning datasets.

As the data available from borehole cleaning experimental
studies and horizontal wellbores drilled in specific geological
locations, ML will likely become more widely used than
multivariate empirical relationships which tend to be more
restricted to specific geological conditions and drilling fluid
flow regimes. This study interpolates the data trends from a
published experimental study to demonstrate how novel, and
potentially operationally useful, empirical relationships with
cuttings concentration in horizontal wellbores between pairs
of influential variables can be derived using optimizers to
complement a multivariate ML borehole cleaning dataset.

2. Materials and method

2.1 Cutting concentration experimental dataset
The results of a recently published hole-cleaning exper-

imental dataset (Ma et al., 2023) evaluating highly inclined
and horizontal wellbore conditions in turbulent fluid-flow
regimes, derived from an experimental setup developed by
the China University of Petroleum, are used in this study.
Those results are configured and interpolated in this study
to illustrate the benefits of applying customized empirical
formulas and multivariate ML to derive additional practical
insights from that dataset to those provided by multivariate
empirical relationships. The results as presented by Ma et
al. (2023) are in the form of seven graphical relationships,
with each graph displaying the impact of two influential
wellbore variables on dimensionless cuttings concentration in
the annulus (H%).

Collectively, the influential variables displayed in those
graphs are annulus velocity (Va), cuttings generation rate (Cg),
drill-pipe rotation speed (N), drill-pipe eccentricity (ε), drilling
fluid density (P f ), effective viscosity (µe), cuttings particle
(sand) size (Ds), wellbore inclination (θ ; bimodal 80° or 90°).
In addition, the power-law fluid index (n) and consistency
factor (k) were provided for each experimental setup evaluated.
These ten variables provide a useful multivariate dataset with
which to evaluate horizontal and near-horizontal wellbore
conditions.

Each graph presented (Ma et al., 2023) involves between
eight and twenty experimentally recorded data points with
a series of curved lines connecting the points. This study
interpolates between those data points along the presented
curved trends to sample those trends with between seventy-five

and one hundred and eleven data points. The greater density of
interpolated data points enables the optimizers and ML models
to establish more statistically viable relationships from which
predictions can be made.

2.2 Customizing empirical formula relationships
using optimizers

A common approach is to apply non-linear regression
methods to the experimental dataset to derive a single mul-
tivariate empirical formula for predicting H%. However, such
an approach is mathematically quite restrictive in that it
typically derives single exponents for each variable or ratios
of variables. Moreover, such relationships often do not fit the
individual variables with high precision. In this study, more
flexible formulas are fitted to pairs of influencing variables to
predict H% from the interpolated graphical information. This
is achieved using the customized-formula optimization method
described by Wood (2022) which uses optimizers to rapidly
determine the coefficients of combined non-linear and linear
terms to establish empirical relationships that generate low
prediction errors. For this study, two independent variables
are considered in each relationship to determine dependent
variable H%. By using the generalized formula displayed in
Eq. (1) for each relationship, H% can be predicted from the
interpolated dataset with very low prediction errors:

H% = axb
1 + cx1 +dxe

2 + f x2 +g (1)
where x1 and x2 are the two independent variables, and a to g
are the unknown coefficients determined by the optimizers by
minimizing the objective error functions root mean squared
error (RMSE) and mean absolute error (MAE) when the
formula is applied to the interpolated experimental dataset.

In this study, the optimal values of the coefficients are
derived in Excel spreadsheets using the built-in “Solver”
optimizers (Frontline Solvers, 2023)). These solvers are the
Generalized Reduced Gradient (GRG) method (the GRG2
extension of the Simplex algorithm) (Lasdon et al., 1978),
and the non-smooth, non-deterministic “Solver Evolutionary
Algorithm”, a genetic algorithm customized with features de-
rived from other evolutionary algorithms. The two optimizers
are configured and coded in Visual Basic for Applications
to generate multiple runs using RMSE and MAE separately
as their objective function. It would be straightforward to
use other optimizers coded in other systems to conduct such
optimization. However, it is convenient to do this in an Excel
spreadsheet as the results from each optimizer run can be
readily compiled and statistically assessed to determine the
optimum solution from multiple optimizer runs.

2.3 Machine learning for multivariate
cuttings-bed dataset analysis

Several ML model studies addressing hole-cleaning ex-
perimental datasets have been published in the past decade.
For example, Rooki et al. (2014) obtain superior cuttings-
concentration predictions from foam drilling experiments
based on drilling parameters from an ANN compared to a
multi-linear regression model. Ulker and Sorgun (2016) ob-
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tained lower cuttings bed thickness prediction errors with their
ANN model compared to MLR, SVM, and K-nearest neighbor
(KNN) models applied to an experimentally-derived dataset
for wellbore with inclinations from 60° to 90°. Rooki and
Rakhshkhorshid (2017) applied a radial basis function neural
network to model cuttings concentration during underbalanced
drilling from drilling variables. Agwu et al. (2020) developed
an ANN model to predict drilling cuttings settling velocity.
Han et al. (2022) found that an ANN model provided more
reliable predictions of cuttings bed height from flow-loop
experimental data for horizontal wellbore configurations than
support vector regression (SVR), recurrent neural network,
and long short-term memory models. These models have, for
the most part, been applied to relatively small experimental
datasets (less than about 200 data points).

Other researchers have achieved lower cuttings-bed predic-
tion errors with models other than ANN. For example, (Al-
Azani et al., 2018, 2019) found that their SVM model slightly
outperformed their ANN models in the prediction of cuttings
concentration from mud density and mud rheological variables
derived from experimental tests on deviated wellbores. Recent
studies have also shown ensemble-tree models to be very
effective for predicting cuttings-bed experimental datasets.
For example, Awojinrin (2022) applied random forest (RF),
gradient boosting (GB), and adaptive boosting (Adaboost)
models, and an ensemble of those three models, to predict
drilling cuttings concentration from drilling-fluid rheology
and operational drilling variables from published datasets.
Alsaihati and Elkatatny (2023) applied RF, GB, and extreme
gradient boosting (XGB) models to estimate drill cuttings size
from a synthetic dataset.

In this study, MLR, KNN, RF, SVR, and XGB supervised
ML models are developed to predict H% from a ten-variable
(N, θ , ε , P f , Cg, Va, n, k, µe, and Ds), 641-point dataset
compiled from all the interpolated data points extracted from
the experimental results presented by Ma et al. (2023). They
are evaluated and compared by applying the multi-K-fold
cross-validation technique (Wood, 2023) to determine their
H% prediction performance and to establish the model that
generates the lowest prediction errors. The relative influences
of each input feature on the prediction solutions of the best-
performing model are also evaluated.

Ridge is an MLR algorithm that applies L2 regularization
(Hastie, 2020) by adding a squared penalty to its error function
to reduce solution complexity. The learning rate (λ ) is the key
control value with an optimum value of 0.01 for the dataset
studied. Regardless of the regularization method applied, a
key limitation of MLR models is that they assume parametric
relationships between the variables, which is not the case for
the compiled dataset (Harrell, 2015).

KNN is non-parametric, regression-free, and works by
establishing the similarity between data records. The algorithm
was developed by Fix and Hodges (1951) and is widely used
for ML due to its simplicity and rapidity. KNN makes no
parametric assumptions about the datasets it evaluates. It is
widely applied for the classification of datasets with categor-
ical dependent variables and for regression of datasets with
dependent variables characterized by continuous distributions.

Its key control variables are the number of nearest neighbors
to be used in its assessment (optimized to 5 in this study) and
the Minkowski distance metric (Shahid et al., 2009) to be used
(p = 1 or Manhattan distance).

RF is a decision-tree-ensemble algorithm that varies its
“bagging” and “out-of-bag” selections for the multiple trees it
constructs and takes the mean solution of the collective pre-
dictions generated by the decision trees evaluated (Ho, 1998).
For this study, the RF model was optimized with 750 esti-
mators (individual decision trees), with each tree having a
maximum depth limit of 20 levels, a mean squared error
splitting criterion, and tree pruning to remove nodes making
low contributions controlled by the ccp-alpha cost complexity
parameter.

SVR is a widely used non-parametric algorithm able to
apply different kernel functions to define hyperplanes in multi-
dimensional (variable) space that separate the data points
for prediction purposes. It tends to generate fewer prediction
errors with highly non-linear exist between the variables when
a radial-basis-function kernel is employed (Chang et al., 2010).
SVR was initially developed by Cortes and Vapnik (1995) and
its performance is highly sensitive to the control parameter
values selected. The key control values applied in this study are
the error-regularization factor (C = 2,000,000), radial-basis-
function depth of influence or gamma (γ is set to ‘scale’), and
the error-tolerance margin (ε = 0.001) establishing an error
limit beyond which penalties are applied.

XGB is a tree-ensemble algorithm, which employs a
parallel gradient-boosting process incorporating L1 and L2
regularization terms, applied to multiple decision trees (Chen
and Guestrin, 2016). It tends to be more flexible than other
tree-ensemble algorithms because it involves more control
variables, which require careful tuning. The XGB control
variable values applied in this study are number of estimators
= 750, maximum depth limit for each tree = 10, learning rate
(eta) = 0.05, subsample = 0.7, and column sample per tree =
0.8.

These five models were selected because they apply
distinctive algorithms including both parametric and non-
parametric assumptions. Collectively they are, therefore, able
to assess and predict the non-linear datasets effectively. These
ML models were coded in Python and executed using Scikit-
Learn functions (Scikit Learn, 2023a) including the random-
ized search function to identify the optimum control- parame-
ter values (Scikit Learn, 2023b), MinMaxScaler to normalize
all data variables to the ranges of -1 to 1 (Scikit Learn, 2023c),
and the Cross-validation function (Scikit Learn, 2023d) cus-
tomized in this study, to deliver a multi-K-fold analysis of
each algorithm.

2.4 Prediction performance assessment metrics
Multiple statistical prediction performance metrics are cal-

culated to assess the results of the empirical formula optimiza-
tion methods and the ML models evaluated. The formulas used
to calculate these commonly employed metrics are described
in Fig. 1.
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Statistical Measures Used to Assess Regression-type Prediction Performance

Mean Squared Error (MSE):

Root Mean Squared Error (RMSE):

Mean Absolute Error (MAE):

Percentage Deviation (PD):

Average Percentage Deviation (APD):

Absolute Average Percentage Deviation (AAPD):

Standard Deviation (SD):

Correlation Coefficient (R):

2
Coefficient of Correlation (R ): R is expressed on a scale of -1 to +1

2R  is expressed on a scale of 0 to 1

Notes: 
Xi is the measured value and Yi is the predicted value for data record i
n is the number of data records in the set or subset being evaluated
Di is (Xi - Yi) for data record i

Fig. 1. Statistical metrics assessing prediction errors for
regression-type analysis used in this study to evaluate opti-
mized empirical formula and ML model predictions.

3. Results

3.1 Interpolated experimental data trends of
variables influencing H%

The interpolated data distributions of H% experimental
results derived from the graphical presentations of Ma et
al. (2023) are displayed in Figs. 2 and 3. From the distribution
of data points in Figs. 2 and 3 it is apparent that H% is
most sensitive to variables Va, N, and Cg (reflecting ROP),
findings that are to be expected based on historical empirical
models (Al-Rubaii et al., 2023). However, the data trends
reveal distinctive inflection points in the associated Va, Cg,
and N variations considered (Figs. 2(a) and 2(b)). Expressing
the trends displayed in Figs. 2 and 3 with non-linear empirical
formulas involving two independent variables with H% as the
dependent variable can provide insights into these relationships
with practical benefits for drilling operators.

3.2 Empirical relationships between groups of
variables

The extrapolated experimental data makes it possible to
establish empirical non-linear relationships between groups of
the variables considered that are of practical value to drillers/
drilling engineers providing guidance during the drilling of
near-horizontal wellbore sections. Applying the customized
formulaic optimization approach (Wood, 2022) determines
empirical formulas that fit the interpolated data displayed in
Figs. 2 and 3 with minimum errors.

3.2.1 H% = f (Va,Cg)

Eq. (2) displays the optimized formulaic relationship be-
tween H%, Va and Cg (Fig. 2(a)):

H% = 437.61Va−0.2837 +73.67Va−22.11Cg−0.1711

+0.73Cg−499.96
(2)

The relatively low errors that result from applying Eq. (2)
are illustrated in Fig. 4(a) and detailed in Table 1. These results

relate to experiments conducted on a horizontal wellbore
configuration in which drill-pipe rotation speed (N) was 60
rpm, drill-pipe eccentricity (ε) was 0, and drilling fluid specific
gravity (P f ) was 1. Variable Cg is directly correlated with the
implied ROP from the experiments varying between 10 and
50 m/h to achieve a range of Cg from 7.8 to 26 kg/min.

3.2.2 H% = f (N,Va)

Eq. (3) displays the optimized formulaic relationship be-
tween H%, Va and N (Fig. 2(b)):

H% =−4.31N0.8825 +2.26N −72.01Va0.0646 −37.64Va

−0.6869
(3)

The relatively low errors that result from applying Eq. (3)
are illustrated in Fig. 4(b) and detailed in Table 1. These results
relate to experiments conducted on a horizontal wellbore
configuration in which ROP was 10 m/h, ε was 0.5, P f was
1.1, power-law fluid behavior index or exponent (n) was 0.51
and consistency factor (k) was 0.41. The experimental results
reveal (Fig. 2(b)) that the relationship between N and H% is
highly non-linear with inflection points occurring in each Va
curve between N = 30 and 40 rpm. For N values below the
inflection point, the H% value increases more steeply as N
declines.

3.2.3 H% = f (ε,Va)

Eq. (4) displays the optimized formulaic relationship be-
tween H%, Va and ε (Fig. 2(c)):

H% = 85.51ε
1.1681 −57.03ε −16.86Va1.6091 −39.96Va

+73.23
(4)

The relatively low errors that result from applying Eq. (4)
are illustrated in Fig. 4(c) and detailed in Table 1. These results
relate to experiments conducted on a horizontal wellbore
configuration in which N was 60 rpm, ROP was 10 m/h, P f
was 1.1, n was 0.585, and k was 0.1371. The experimental
results reveal (Fig. 2(c)) that the relationship between C and
H% is non-linear, with H% increasing more rapidly at all Va
speeds considered once ε increases above 0.25.

3.2.4 H% = f (p f ,Va)

Eq. (5) displays the optimized formulaic relationship be-
tween H%, Va and P f (Fig. 2(d)):

H% = 5.02Va4.9152 −63.92Va+12.25P f−1.8777

−2.30P f +63.21
(5)

The relatively low errors that result from applying Eq. (5)
are illustrated in Fig. 4(d) and detailed in Table 1. These results
relate to experiments conducted on a horizontal wellbore
configuration in which N was 60 rpm, ε was 0, Cg was 7.8
kg/min, n was 0.585 and k was 0.1371. The experimental
results reveal (Fig. 2(d)) that the relationship between P f and
H% is moderately non-linear with H% decreasing by relatively
small increments as P f increases across a wide range of Va.
The impact of P f on H% is higher at low Va rates than at
high Va rates.
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Fig. 2. Impacts of influencing variables on cuttings-bed concentration (H%) in horizontal wellbore sections with data points
interpolated from the experimental results of Ma et al. (2023). Impact of: (a) cuttings generation rate (Cg), (b) annulus veloclty
(Va), (c) annulus veloclty (Va), (d) drilling fluid density (P f ), (e) drill-pipe rotation speed (N), (f) sand cutting size (Ds).
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Fig. 3. Impacts of wellbore inclination angle on cuttings-bed
concentration (H%) in near-horizontal wellbore sections with
data points interpolated from the experimental results of Ma
et al. (2023).

3.2.5 H% = f (µe,Va)

Eq. (6) displays the optimized formulaic relationship be-
tween H%, µe and N (Fig. 2(e)):

H% = 6.9µe−0.1389 +0.27µe+10.96N−0.1330 −0.029N

+2.38
(6)

The relatively low errors that result from applying Eq. (6)
are illustrated in Fig. 4(e) and detailed in Table 1. These results
relate to experiments conducted on a horizontal wellbore
configuration in which ε was 0, P f was 1.1, and Cg was 7.8
kg/min. The experimental results reveal (Fig. 2(e)) that the
relationship between µe and H% is approximately linear with
H% increasing slightly as µe increases. The impact of µe on
H% becomes more relevant at low values of N.

3.2.6 H% = f (Ds,Va)

Eq. (7) displays the optimized formulaic relationship be-
tween H%, Ds and Va (Fig. 2(f)):
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Fig. 4. Predicted versus observed H% values and prediction errors associated with applying Eq. (2)-(7) to the horizontal
wellbore sections with data points interpolated from the experimental results of Ma et al. (2023).

H% = 133.44µe−0.4014 +8.38Va−0.867Ds−64.1021

−1.14Ds−108.87
(7)

The relatively low errors that result from applying Eq. (7)
are illustrated in Fig. 4(f) and detailed in Table 1. These results
relate to experiments conducted on a horizontal wellbore
configuration in which N was 0, ε was 0, P f was 1.05, Cg was
7.8 kg/min, n was 0.4792 and k was 0.7959. The experimental
results reveal (Fig. 2(f)) that the impact of Ds, in the sand
particle-size range studied (1 to 3 mm) on H% was small and
almost indiscernible for Va values > 1. For Va < 1 the smaller
sand particles generated lower H% values than the larger sand
particles.

3.2.7 H% = f (Ds,Va)

Eq. (8) displays the optimized formulaic relationship be-
tween H%, θ and Va (Fig. 3):

H% = 28.96Va−1.0030 −14.17Va+65.71θ
−97.4082

+0.23θ −5.56
(8)

The relatively low errors that result from applying Eq. (8)
are illustrated in Fig. 5 and detailed in Table 1. These results
relate to experiments conducted on a highly deviated wellbore
with θ varying from 80° to 90° with a configuration in which
N was 0, ε was 0.75, P f was 1.05, Cg was 7.8 kg/min, n was
0.5526 and k was 0.2284. The experimental results reveal (Fig.
2) that the impact of θ on H%, for the high-angle wellbore
deviation range evaluated, was small but more discernible at
the lowest Va values evaluated. The H% value was lower at
θ = 80° than at θ = 90° (Fig. 3).

3.3 Machine learning models to predict H%
from multiple influential variables

By compiling the interpolated experimental data (Figs. 2
and 3) into a dataset involving ten variables (N, θ , ε , P f , Cg,
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Table 1. Prediction errors associated with formulaic optimized solutions.

Eq. Influencing vanables RMSE (%) MAE (%) R2 APD (%) AAPD (%) SD (%)

(2) Va, Cg 1.3876 1.1035 0.9868 22.1694 29 .3386 1.930

(3) N, Va 1.7868 1.4303 0.9554 -0.5630 7.0783 1.7940

(4) ε , Va 0.3935 0.3386 0.9989 0.0284 1.0127 0.3957

(5) P f , Va 0.5692 0.4485 0.9949 0.3273 3.5349 0.5720

(6) µe, Cg 0.4050 0.3086 0.9987 0.0168 1.4045 0.4071

(7) Ds, Va 0.3528 0.2853 0.9988 -0.0085 0.7890 0.3547

(8) θ , Va 0.4986 0.3727 0.9977 0.6019 1.1337 0.4628
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Fig. 5. Predicted versus observed H% values and prediction
errors associated with applying Eq. (8) to the near-horizontal
wellbore sections with data points interpolated from the ex-
perimental results of Ma et al. (2023).

Va, n, k, µe, and Ds) supervised machine learning models
can be used to predict H%. The machine learning method
applied to the 10-variable dataset adds the ability to consider
situations where a more comprehensive set of input variables
are available rather than rely on the empirical relationships
each based on just two variables. The specific advantage
offered by a machine learning approach is that it does not
rely on a single multivariate non-linear equation. That means
that ML methods can be: adapted to suit different subsurface
and borehole conditions; periodically updated as the number
of available experimental data points increases; and, readily
modified to include or exclude certain influential variables,
depending on the data points available.

The results of the 10-fold cross-validation analysis (re-
peated three times) applying the Ridge (multi-linear regres-
sion), KNN, SVR, RF, and XGB models to the compiled 10-
input-variable compiled dataset (641 data records) to predict
H% are shown in Table 2. From those results, it is apparent
that the XGB model generates the lowest H% prediction errors
of the models considered. As the relationships between several
of the input variables and H% are substantially non-linear, it is
not surprising that the Ridge model provides H% predictions
with high errors than the other ML models which are better
able to deal with non-linearity. The mean plus one standard
deviation (SD) metric (Table 2) is considered the most useful
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Fig. 6. Predicted versus observed H% values and prediction
errors associated with applying the XGB model to all data
records of the 10-input variable dataset for horizontal wellbore
sections with 641 data points interpolated from the experimen-
tal results of Ma et al. (2023).

in comparing the prediction performance of the models. The
performance of the ML models is ranked XGB (best) > RF
> SVR > KNN > Ridge (worst) in terms of RMSE mean
plus one SD. However, using the MAE mean plus one SD,
the ML models are ranked XGB (best) > RF > KNN > SVR
> Ridge (worst). The ensemble decision tree models (XGB
and RF) provide predictions with substantially fewer errors
than the other models evaluated based on that metric for both
MAE and RMSE.

Table 3 provides the results of the multi-K-fold cross-
validation analysis for the best-performing XGB model. This
demonstrates that the 5-fold (repeated 6 times), 10-fold (re-
peated 3 times) and 15-fold (repeated twice) cross-validation
analyses generate lower prediction errors compared to the 3-
fold (repeated 10 times) and 4-fold (repeated 8 times) cross-
validation analyses. For the RMSE metric, the 15-fold analysis
generates the lowest mean values but due to higher standard
deviations for the 10-fold and 15-fold analysis, it is the 5-
fold analysis that generates the lowest mean plus one SD
RMSE (Table 3). For the MAE metric, the 15-fold analysis
generates the lowest mean and mean plus one SD value (Table
3). These results suggest that assigning 80% or more of the
data records for model training (20% or less to validation)
generates the most repeatable H% prediction results for the
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Table 2. 10-fold cross validation H% prediction error statistics based on thirty cases applying different ML algorithms to
compiled dataset with ten input variables (641 Data Records; 3 Repeat 10-fold Cross-validation Runs).

ML model
RMSE (%) MAE (%)

Mean SD Mean + 1 SD Mean SD Mean + 1 SD

XGB 0.8217 0.2116 1.0333 0.5077 0.0792 0.5870

RF 1.2241 0.2019 1.4260 0.8280 0.1000 0.9280

SVR 2.1788 0.2071 2.3859 1.6550 0.1552 1.8102

KNN 2.0924 0.4588 2.5512 1.0494 0.1964 1.2459

Ridge 6.9101 0.6639 7.5740 5.3410 0.4994 5.8404

Table 3. Multi-fold cross validation H% prediction error statistics for the XGB model applied to the compiled dataset with
ten input variables (641 Data Records; Multi-fold Cross-validation Runs).

ML model
RMSE (%) MAE (%)

Mean SD Mean + 1 SD Mean SD Mean + 1 SD

3-fold (10 repeats) 1.0422 0.1440 1.1862 0.6550 0.0655 0.7205

4-fold (8 repeats) 0.9311 0.1556 1.0867 0.5752 0.0772 0.6525

5-fold (6 repeats) 0.8908 0.1132 1.0040 0.5445 0.0572 0.6016

10-fold (3 repeats) 0.8217 0.2116 1.0333 0.5077 0.0792 0.5870

15-fold (2 repeats) 0.7613 0.2825 1.0438 0.4723 0.1069 0.5792

compiled dataset.
Fig. 6 displays the prediction performance of the XGB

model trained randomly with 90% of the data records to the
entire compiled dataset.

3.4 Influence of the input variables on the H%
predictions of the XGB model

The ensemble decision tree models (XGB and RF) provide
information on the relative importance of the input variables
to their model solutions. This feature-importance information
is displayed in Fig. 7.

Although the XGB and RF models both provide H%
prediction for the compiled 10-variable borehole cleaning
dataset (641 data records), they do so by assigning different
levels of relative importance to each of the ten input variables
available. The RF model relies heavily on just two input
variables (Fig. 7), Va and N, with weightings of 0.52 and 0.34,
respectively. The RF model assigns importance weighting of
≤ 0.05 to the other eight variables.

On the other hand, the XGB model assigns meaningful
weightings to seven of the variables, n, N, k, Va, P f , ε ,
and Cg, with weighting arranged in descending value order
of ∼0.25, ∼0.21, ∼0.17, ∼0.12, ∼0.09, ∼0.07, and ∼0.06,
respectively. Neither of the models assigns weighting above
∼0.01 to the variables θ , µe, and Ds. The broader spread
of input-variable weightings employed by the XGB model
enables it to outperform the RF model in terms of the accuracy
of its H% predictions for the compiled dataset (Fig. 7).

There is a tendency in hole cleaning and cuttings transport

studies to attempt to develop multivariate empirical equations
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Fig. 7. Feature importance comparisons for the XGB and
RF model solutions applied to the 10-input variable compiled
dataset to predict H.

to predict cuttings bed thickness/concentrations or hole-
cleaning indices from combinations of experimental, simu-
lation, and actual wellbore data. However, such empirical
formulas tend to be limited to a specific set of subsurface
geological and borehole conditions, wellbore trajectories, and
drilling techniques, which makes them difficult to rely upon
for more generalized applications. Also, as so many variables
influence borehole cleaning performance, with greater or lesser
impacts in different areas, the multivariate empirical formulas
proposed to date do not take into account all influential factors.
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4. Discussion
Rather than attempt to develop cumbersome multivariate

formulas with ten or more variables, a case can be made to
focus on the relative impacts of pairs of influential variables
on hole cleaning based on specific sets of conditions. This
can provide simpler and more easily applied and tested em-
pirical equations that can reliably reproduce the relationships
between variable pairs established by experimental results.
Experiments typically only record a limited set of data points
across the ranges of interest for each influential variable. It
is often, therefore, helpful, to interpolate between the limited
experimentally recorded data points to downscale the available
dataset and provide more (albeit approximated) data points at
smaller scale intervals to improve the derivation of feasible
empirical equations for the range of conditions considered.

A large number of interpolated data points used to develop
multiple pair-wise relationships for specific borehole config-
urations can also be compiled to form multivariate datasets
for evaluation by ML models to predict hole-cleaning metrics
such as cuttings bed thickness/concentration. The advantage of
this approach, compared to cumbersome multivariate empirical
relationships to predict hole-cleaning indices is that the ML
dataset can be periodically updated/expanded with additional
data points. It is much easier to retrain and/or adjust ML
models in terms of variable feature selection to suit the
conditions pertinent to specific wellbores than to customize or
redefine multivariate empirical equations to suit specific well-
bore conditions. Additionally, over time, it should be possible
to compile larger ML multivariate datasets, incorporating both
experimental and historical wellbore recordings covering a
wide range of subsurface conditions. Such ML datasets should
eventually become more easily generalized for applications to
suit a wide range of wellbore configurations in a specific area.

The results presented in this study illustrate the benefits of
the proposed approach applied to recently published experi-
mental results about a specific set of highly deviated/horizontal
wellbore conditions to determine influences on dimensionless
cuttings-bed thickness/concentration (Ma et al., 2023). That
study established a multivariate empirical equation based on
the observed experimental results that were evaluated using
historical data from an actual horizontal wellbore section of
1,230 m length drilled at greater than 2,500 m true vertical
depth. Their evaluation involved the comparison of wellbore
pump pressure predicted by their developed cuttings-carrying
relationships, combined with a multi-phase fluid-flow model
with measured data collected from the historically drilled hori-
zontal section. The predicted versus measured pump pressures
agreed within 5%, verifying the veracity of the relationships
established from the experimental data. The pair-wise empiri-
cal relationships established in this study (Eq. (2)-(8)) provide
additional, complementary relationships that could be used
in real-time to inform drillers on how best to adjust drilling
conditions to minimize cuttings-bed thickness/concentration in
horizontal wellbore sections, as drilling progresses, based on
the limited data available in real-time. Moreover, the multivari-
ate interpolated experimental dataset could be used together
with a previously trained XGB model to rapidly predict

with reliable accuracy the likely dimensionless cuttings-bed
concentration that would likely result from various alternative
combinations of drilling conditions.

To further develop the proposed approach and expand the
conditions over which it could be reliably applied, further
experimental data combined with actual wellbore recordings
are required. This is particularly the case for relationships
between H% and variables n and k, which exert a substantial
influence on the XGB model applied to the dataset studied
(Fig. 7). The specific conditions evaluated experimentally in
the dataset studied are restricted in several ways. The specific
restrictions are (1) the cuttings lithology evaluated is limited
to sand with particle size varying from 1 to 3 mm; (2) the
borehole inclinations considered are limited to 80° and 90°;
and, (3) drilling fluid specific gravities considered are limited
to 1.05 to 1.25. Many long, near-horizontal well bore sec-
tions are now being drilled into shale reservoirs with various
lithological and physical properties. Further experiments are
therefore required that evaluate cuttings of larger sizes, shapes
and different shale compositions/densities. As the inclinations
of many near-horizontal wellbores varies intermittently along
their lengths, further experiments are required that consider
multiple inclinations in the range of 70° to 90° to determine
the impacts of wellbore inclination in more detail. Likewise,
experiments addressing a wider range of drilling fluid spe-
cific gravities and rheological properties are required. The
information gained from such additional experiments would
substantially improve the generalizability of the multivariate
ML database currently available.

In addition to wider-ranging experimental conditions being
evaluated, observations from real wellbores are required to
establish the impacts of various subsurface conditions on
key wellbore variables influencing hole cleaning performance.
For instance, further information is required regarding the
impacts on pair-wise variable relationships related to borehole
cleaning of (1) a wide range of subsurface pressures and
temperatures, (2) borehole and annular diameters, (3) wellbore
pump pressures, and (4) ROPs in different lithologies. With the
addition of test results from a broader range of experimental
conditions combined with observations from a diverse range
of real horizontal wellbore sections, the pair-wise empirical
relationships established in this study could be further refined.
Moreover, such information would strengthen the multivariate
dataset available for ML models, making their predictions
more reliable and generalizable across a wider range of
sub-surface conditions. Additionally, for larger datasets deep
learning algorithms may be more effective than the XGB
algorithm in generating even lower prediction errors. Future
studies should therefore also consider a wider range of both
ML and deep learning models in attempts to further reduce
prediction errors with larger multi-variate datasets.

5. Conclusions
Experimental testing of the factors influencing cuttings-

bed formation in horizontal wellbore sections provides useful
guidance regarding conditions to avoid and strive for during
drilling operations. However, as there are so many factors that



182 Wood, D. A. Advances in Geo-Energy Research, 2023, 9(3): 172-184

influence cuttings-bed concentration most multivariate empir-
ical relationships proposed as potentially useful operational
indicators of horizontal wellbore cleaning performance work
only for a limited set of downhole conditions. This study uses
recently publish experimental results to demonstrate that by
interpolating between test data points it is possible to derive,
with the aid of optimizers a series of empirical relationships
that capture the influences of pairs of variables on H%. Seven
empirical equations, each involving two independent variables,
are derived using standard spreadsheet Solver optimizers.
These equations fit the interpolated data with RMSE for H%
predictions of less than 1.8% for cuttings concentration values
between ∼2% and 60%.

The interpolated experimental data is also compiled into a
multivariate dataset involving ten independent variables with
H% as the dependent variable and involving 641 data records.
Five machine learning algorithms (multi-linear regression, K-
nearest neighbor, random forest, support vector regression,
and XGB) are optimized to predict H% using this dataset.
Based on multi-K-fold cross-validation analysis, the XGB
model predicts H% for the compiled dataset with the lowest
errors: mean RMSE = 0.76%; mean MAE = 0.47% for the
15-fold cross-validation case. The XGB model, through its
feature importance function, reveals that it utilizes information
primarily from seven of the ten influential variables available
in the compiled dataset when making its H% predictions.

As more experimental and real horizontal wellbore data
become available in specific plays, it is considered likely that
ML models applied to multivariate datasets (10 + influen-
tial variables) will become more reliable for hole cleaning
prediction than multivariate empirical relationships proposed
for more general use. However, simpler non-linear optimized
empirical relationships (with two or three influential variables),
such as those derived in this study, are likely to complement
the ML models for assisting with real-time drilling decisions.
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