Advances in
Geo-Energy Research

Vol. 2, No. 4, p. 450-456, 2018
www.astp-agr.com

Original article

Application of the ensemble Kalman filter for assisted layered
history matching

Wenshu Zha, Shanlu Gao*, Daolun Li, Kaijie Chen
Department of Mathematics, Hefei University of Technology, Hefei 230000, P. R. China
(Received October 5, 2018; Revised November 4, 2018; accepted November 6, 2018; available online November 12, 2018)

Citation: Abstract:

Zha, W., Gao, S., Li, D., Chen, K. Ensemble Kalman filter method has been used for automatic history matching the well
Application of the ensemble Kalman filter production data such as production rate and watercut. However, the data of the connection
for assisted layered history matching. watercut and connection rate are rarely used. In this work we conducted a history
Advances in Geo-Energy Research, 2018, matching study based on the connection information using the EnKF for the first time
2(4): 450-456, doi: to improve the matching accuracy. First, the initial implementation models are generated
10.26804/ager.2018.04.09. using the sequential Gaussian simulation method. Second, we choose the well watercut

and connection watercut of each layer as production data respectively. During this step,
the data such as permeability, pressure, saturation, and production data are normalized to
improve the accuracy of history matching and reduce the simulation time. Finally, the case

Corresponding author:
*E-mail: shanlu.gao@ipp.ac.cn

Keywords: using the well watercut as historical production data is compared against the case using the
Layered history matching connection watercut using EnKF. The results show that the well bottomhole pressure and
ensemble Kalman filter connection watercut can be better matched using the connection watercut as the historical
normalization production data. In addition, the simulation time decreases significantly.

production data

1. Introduction data assimilation algorithm combining data with dynamical
models to obtain the best estimation. It assimilates years of
production data sequentially and updates static and dynamic
parameters of reservoir model through the continuous use
of observation data (Evensen, 2003). Optimal models are
estimated based on matching the production data efficiently.
It is with ease to combine EnKF with any forward simulator,
and various model parameters can be adapted with EnKF. In
the process of updating the reservoir model with the EnKF
algorithm, reservoir properties can be estimated from the
ensemble at any time step. The results are obtained by re-
running the reservoir simulator.

EnKF was presented for the first time by Evensen
(Evensen, 1994) as a supplement to the classical Kalman
filter (Kalman, 1960) about nonlinear problems. After that it
has been widely used in the petroleum engineering related
literature (Naevdal, 2002), EnKF has attracted a lot of research
attention and has now been successfully applied to automatic
history matching in the field (Haugen et al., 2008; Seiler et
al., 2009), especially for the heterogeneous channel reservoirs
(Jo et al., 2017; Jung et al., 2017).

Various conditions should be satisfied to be applied to the
real field. As reservoirs become more complicated, iterative

Reservoir characterization is important in the petroleum
industry to describe reservoir properties. The process of inte-
grating dynamic data into the reservoir model to obtain reli-
able reservoir characterization is known as history matching
(Oliver et al., 2008). Traditionally, history matching is aimed
at adjusting the geological model and parameters manually
using years of production data. These parameters including
permeability and porosity are beneficial to reproduce the well
flow rate and pressure histories reasonably (Li et al., 2003).
One aims at minimizing the square of the mismatch between
all measurements and computed values typically (Oliver and
Chen, 2011). However, history matching such as the gradient
method (Gao et al., 2017) and the genetic algorithm (Irani and
Nasimi, 2011) is an inverse problem that requires complex and
time-consuming computing.

From another perspective, the ensemble Kalman filter
method based on the Bayesian approach is one approach of
calibrating the reservoir models to save the high computational
cost, which is one of the most efficient reservoir characteriza-
tion methods.

Besides, the ensemble Kalman filter (EnKF) is a recursive
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forms of EnKF (IEnKF) are presented to give better history
matching results on the basis of EnKF (Krymskaya et al.,
2009), Li and Reynolds (2009) also proposed IEnKF which
need calculating the sensitivity matrix with the adjoint method,
but it requires multiple assimilation steps to calibrate the mod-
els for obtaining optimal estimations. The ensemble size could
be increased appropriately. There is no doubt that it increases
time in operations. In addition, many other modified methods
are presented to solve issues encountered, such as multiple
Kalman gains (Lee et al., 2013), ensemble smoother (Kang et
al., 2016), ensemble randomized maximum likelihood method
(Chen and Oliver, 2012; Stordal and Naevdal, 2018), etc.

However, owing to the complex process of layered history
matching, only a few literatures are concerned with layered
history matching. Previous researches on history matching
using EnKF mainly focused on the data measured in well.
Most scholars use the data measured in wells rather than
data combining connection information, such as connection
watercut and connection rate. The problem hinders reliable
reservoir estimation with lacking of connection information.

In this work, we introduced the data of connection watercut
to observed data and conduct the layered history matching
using the EnKF method, which improves the accuracy of the
matching results. Furthermore, we proposed to process the
state vector with normalization before the EnKF iteration to
reduce the simulation time.

2. Methodology
2.1 Ensemble Kalman filter method

EnKF method is the calibration of the traditional Kalman
filter. Eisenmenn (Eisenmenn et al., 1994) tried to apply the
traditional Kalman filter to reservoir characterization problems
which is limited to small number of parameters and only when
there is linear relationship between the observation data and
model parameters (Corser et al., 2000). The main difference
with EnKF is to use the statistics of a succession of ensembles
to obtain the covariance matrix.

EnKF is an effective data assimilation algorithm to estimate
unknown parameters in high-dimensional systems (Luo et al.,
2011), and the reservoir production estimations are improved
sequentially after data are assimilated. The EnKF method aims
at performing numerical calculations to update the reservoir
dynamic properties (Jung et al., 2018). We define the state
vector for the model data. The state vector consists of reservoir
static model parameters m, reservoir dynamic parameters p”
and the predicted data d" at time ¢, as described in the
following equation:

m

n

Ynj=|P
4"

7j:13"'7Ne (1)

where m is a N,, dimensional column vector including porosity
and permeability which is time independent; p" is a N,
dimensional column vector, including pressure, saturation,
dissolved gas-oil ratio, etc, which is time dependent during the
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production process. It is usually the solution to the flow equa-
tion; d" is a N; dimensional column vector which represents
the predicted data related to the geologic model and dynamic
field, including well bottomhole pressure, well watercut, etc.
The subscript j represents the j implementation of the whole
ensemble. y, ; is the state vector of the j implementation at
time 1.

In EnKF, the first step is to forecast. F is the forward
simulator. In forecast step, only the dynamic parameters and
predicted data are changed with time, and the static parameters
remain unchanged which is shown in Eq. (3). Utilizing given
present static parameters, the state vector to the next time step
is calculated as in Eq. (2).

yi,j =F(u-1,) 2

mf:, =my,_; 3

The observation equation is:

H=[0 I )

obs = Hyn +v(n) (5)

H is the measurement operator, consisting of only 0 and 1.
O represents Ny X (N, +N,) null matrix.  represents Ny X Ny
identity matrix. It is assumed that v(n) is the meaurement
error obeying the Gaussian distribution with zero mean and
covariance matrix given by Cpy,.

Using Bayes’ theorem, the probability density function
(pdf) for y conditional to d,, is given by (Zafari and Reynolds,
2005).

n 1 T —
f(yn|dobs)°<exp _E(yﬂ_yn)TCy,nl(yn_yVl)

1 _
5 (Hyn — djy )" Cpyy (Hyn — djy,)

(6)

By sampling the pdf, EnKF generates a succession of
implementations of the data by adding noise. For any j,

Zc.,j = dzbs +LpZp (7N
where Cp, = LpL} is the Cholesky decomposition of Cp,. Zp
is the normal random vector with zero mean and covariance
Iy, given by identity matrix.

We defined the following objective function from the
conditional probability density in Eq. (6).

1 _
O(yn,j) :E(ynyj _yﬁ,j)TCy,nl (Vn,j _)’}f,j)
1

+ 5 (Hy’hj - dbr:c,j)TCBnl (Hyn»j - d;lc,j)

®)

In the assimilation step, yi ; Tepresents the j”* forecasted
state vector at time #,. We can get standard EnKF analysis
equation by minimizing the objective function O(yy ;). The
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Fig. 1. Real permeability field.

state vectors are updated as Eq. (9) with Kalman filter gain
K, (Eq. (10)).

YZJ:Yf:

)

j+Kn(d:¢lc,j —HY,I:

)

) ©)

K, =CJ,H" (HC],H" +Cp,)"! (10)

C)f » 1s the covariance matrix of state vector, Y,{ is the
average of state vector. Superscript of # and f denote ‘updated’
and ‘forecasted’, respectively.

1 — —
Clo= s —xh v’
N, —1

(11
The covariance matrix Cﬁin can also be updated with the
following equation:

Cy, = (I-K,H)C], (12)

2.2 Normalization

Standarlization of data is to scale the data to a specific
interval. It is widely used for purposes of comparison and
evaluation. To facilitate the comparison and evaluation of data,
we eliminated the limitations of different units or magnitude
by transforming data into nondimensional value during the
process of data standardization.

The most typical one is the normalization of data, which
is to map the data to the interval of [0, 1] uniformly. The
method we used in this work is min-max scaling, the formula
of normalization is:

X— Xmin
X = 13
norm Xmax — Xmin ( )

where X is the initial sample data. X4y, X are the maximum
and minimum of X respectively, and X, is the normalization

data. Then, the value can be returned with the following Eq.
(14) after each iteration.

X = Xnorm (Xmax - Xmin) + Xmin (14)

In this work, we processed the state vector with normal-
ization during the iteration of the EnKF loop. The results are
improved because of eliminating the big difference of each
layer.

3. Experiments

3.1 Application of EnKF updating

We applied the EnKF algorithm to a reservoir model
to match the history production data. The reservoir model
consists of 11 x 11 x 3 grid blocks with two phases of oil
and water. The size of each gridblock is 30 m x 25 m x 20 m.
Four producers and one injector are exerted in this reservoir.
In order to combine layered history matching with EnKF,
we utilized EnKF to update permeability on the ensemble
models and match the production data, including well watercut
and connection watercut. The permeability field was estimated
by matching production data above. Their performances were
compared among well bottomhole pressure (WBHP), well wa-
tercut (WWCT), connection watercut (CWCT). We generated
100 initial models by using sequential Gaussian simulation
(SGS). Just several points were used from the data, so there
are considerable uncertainties between the initial models and
true field.

We took permeability data on the production wells as input
reservoir information. Take second layer of the reservoir for
example. The real permeability field is shown in Fig. 1. Four
models of the initial ensemble are listed which is shown in
Fig. 2. The average over the propagated ensemble models is
displayed in Fig. 3.

The production time lasts for 25 years that the state vector
is updated every month by choosing the monthly WWCT and
CWCT as production data. Two cases of EnKF updates were
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Fig. 2. Four models of the initial ensembles.

Fig. 3. Average prior model.
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Fig. 4. The permeability field after EnKF updates. (a) Case 1 after EnKF updates; (b) Case 2 after EnKF updates.
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Fig. 5. EnKF updates with normalization. (a) EnKF of case 1 with normalization; (b) EnKF of case 2 with normalization.

run for comparison: i) In case 1, we choose the monthly
WWCT as the production data; ii) we choose the CWCT as
the production data considering layered information in case
2. Meanwhile, we compared the permeability fields of case 1
and case 2 as in Fig. 4.

Compared with the average prior model (shown in Fig. 3),
we found that the updated permeability fields of case 1 (shown
in Fig. 4(a)) and case 2 (shown in Fig. 4(b)) are both similar
to the real permeability field. However, the latter provides
a better estimation of the permeability field because layered
information is included.

3.2 Improvement with normalization

To eliminate the large difference between different layers
and reduce the simulation time, we normalized the state vector
according to each category during the iteration of EnKF. Then
the value is returned after each iteration according to Eq. (14)
as the input value in the reservoir simulator.

We normalized the data of case 1 and case 2 before EnKF
updates, according to each category of model parameters re-
spectively. EnKF updates with normalization are shown in Fig.

5. Compared with the real permeability field, the permeability
fields of both cases are improved with normalization.

In addition, Fig. 5(b), which is the result after two itera-
tions, shows that the values of some grid points are closer to
the real values compared to the estimation result after eight
iterations in Fig. 5(a). Therefore, though case 2 utilizes the
same ensemble as case 1, the simulation time is cut by 75%
and a better result is obtained.

3.3 Comparison of two cases

We compared the matching results of both cases of EnKF
updating with normalization. Fig. 6 compares two matching
results of WBHP in two cases. Case 2 is close to the true value
in the early days, and as more and more data are assimilated,
it matches the true value better after approximately 6,000
days, which proves that the matching result in case 2 is more
accurate. Fig. 7 compares fitting results of WWCT in two
cases. Case 2 achieves better goodness of fit than case 1. Fig.
8 compares fitting results of CWCT in each layer. Although
the goodness of fit in the first layer is not as good as that of
the second and third layer, the value of case 2 is always closer
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Fig. 6. Comparison of fitting results of WBHP in two cases.
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to the true value than case 1. On the whole, it provides better
results in the second and third layers, especially in the third
layer. Case 2 combining connection information shows better
results on matching results than case 1.

4. Conclusions

In this work, we introduced the layered history matching
into EnKF, compared the difference between the well watercut
and connection watercut as historical production data. Results
show that the latter improves the accuracy of matching in each
layer. Layered history matching utilizing EnKF provides more
accurate results. Also, EnKF with normalization is valid for the
model to update and perform the history matching. Meanwhile,
it reduces the simulation time up to 75%.
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