
Advances in
Geo-Energy Research Vol. 8, No. 3, p. 159-169, 2023

Original article

Gas well performance prediction using deep learning jointly
driven by decline curve analysis model and production data

Liang Xue1,2 *, Jiabao Wang1,2, Jiangxia Han1,2, Minjing Yang1,2, Mpoki Sam Mwasmwasa1,2, Felix
Nanguka3

1National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, P. R. China
2Department of Oil-Gas Field Development Engineering, College of Petroleum Engineering, China University of Petroleum, Beijing
102249, P. R. China
3Tanzania Petroleum Development Corporation, Dar es Salaam 2774, Tanzania

Keywords:
Gas well performance
long short-term memory neural network
decline curve analysis model
deep learning

Cited as:
Xue, L., Wang, J., Han, J., Yang, M.,
Mwasmwasa, M. S., Nanguka, F. Gas
well performance prediction using deep
learning jointly driven by decline curve
analysis model and production data.
Advances in Geo-Energy Research, 2023,
8(3): 159-169.
https://doi.org/10.46690/ager.2023.06.03

Abstract:
The prediction of gas well performance is crucial for estimating the ultimate recovery rate
of natural gas reservoirs. However, physics-based numerical simulation methods require a
significant effort to build a robust model, while the decline curve analysis method used
in this field is based on certain assumptions, hence its applications are limited due to
the strict working conditions. In this work, a deep learning model driven jointly by
the decline curve analysis model and production data is proposed for the production
performance prediction of gas wells. Due to the time-series characteristics of gas well
production data, the long short-term memory neural network is selected to establish the
architecture of artificial intelligence. The existing decline curve analysis model is first
implicitly incorporated into the training process of the neural network and then used to
drive the neural network construction along with the actual gas well production historical
data. By applying the proposed innovative model to analyze the conventional and tight
gas well performance predictions based on field data, it is demonstrated that the proposed
long short-term memory neural network deep learning model driven jointly by the decline
curve analysis model and production data can effectively improve the interpretability and
predictive ability of the traditional long short-term memory neural network model driven
by production data alone. Compared with the data-driven model, the jointly driven model
can reduce the mean absolute error by 42.90% and 13.65% for a tight gas well and a
carbonate gas well, respectively.

1. Introduction
The prediction of gas well performance is one of the

key tasks of natural gas development, as it can provide
the scientific basis for setting up the development plan of
natural gas reservoirs. The accurate forecasting of gas reservoir
production dynamics is crucial to the rational management of
gas production systems, as well as the dynamic evaluation of
reservoir reserves and the adjustment of the future develop-
ment plan, ultimately affecting the overall efficiency of gas
reservoir development. Gas well is the basic unit of a gas
reservoir development system, and monitoring devices at the

wellhead and bottom can provide information about changes
in the reservoir production and formation properties. A deeper
understanding of gas well production performance is beneficial
to the effective identification of the dynamic characteristics of
reservoir development as a whole. Therefore, it is necessary
to establish an accurate method to analyze the production
dynamics of gas wells and establish the tendency of gas
reservoir development to guide scientific-based and rational
exploitation.

Several methods have been developed to dynamically fore-
cast gas well production to satisfy the needs of the practical
development process of gas reservoirs. Decline curve analysis
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(DCA) and numerical simulation are examples of widely
used methods. Arps (1945) proposed three DCA methods
by studying the relationship between well production rate
and production time based on the bottom-hole pressure of
the well. These methods were used to analyze the produc-
tion rate changes of oil and gas wells in the boundary-
controlled flow stage and to establish the typical decline
curve chart. However, Arps’s methods are only suitable for
production prediction before the gas well production stage
reaches the boundary-controlled flow stage. To address this
issue, Fetkovich (1973) developed semi-analytical type curves
that combine analytically derived transient flow regime stems
with Arps’s empirically derived boundary dominated flow
hyperbolic decline stems. Blasingame and Poe (1993) utilized
a superposition time function to handle varying rate/pressure
conditions, and implemented pseudo-pressure functions to
account for the pressure-dependence of fluid properties. This
method can objectively and realistically reflect the actual
situation of gas reservoirs under the changing bottom-hole
flow pressure condition. Valkó and Lee (2010) presented
the extended exponential DCA model, and Duong (2011)
proposed a new DCA model. Both of the above models
have been applied successfully in predicting the production
of shale gas and tight gas. Shabro et al. (2011) studied
the effects of no-slip and slip flow, Knudsen diffusion and
Langmuir desorption in numerical simulation to predict shale
gas production. Frooqnia et al. (2011) simulated the fluid
flow in the wellbore based on fluid mechanics theory and
logging data to estimate the formation permeability. Despite
the above research advances, the conventional methods used
in gas well performance prediction often have limitations and
shortcomings, which are mainly due to the complexity of the
numerical simulation process constrained by specific reservoir
conditions and production system requirements.

In recent years, the rapid development of neural network
algorithms has provided new directions for the dynamic pre-
diction of gas well production. These algorithms use deep
learning methods and big data analysis techniques to overcome
the shortcomings of traditional methods, such as the needs for
multiple sets of typical curve graphs for single well interpreta-
tion and the multi-scale nature of the modeling process. Deep
learning methods have been gradually introduced into the field
of production DCA and have achieved good results. Mollaiy
and Shahbazian (2011) proposed a new method based on a
feed-forward artificial neural network and imperialist compet-
itive algorithm to predict the oil flow rate of wells. Kuzma
et al. (2014) constructed a prediction model that can capture
oil and gas seepage rules using a small amount of actual
information combined with a generative model and statistical
methods to make accurate predictions based on production
experience. Jia and Zhang (2016) applied time series analysis
and neural network models to forecast the future production
of a gas well in the Barnett shale field, and compared it with
the Arps decline curve. Sagheer and Kotb (2019) proposed a
deep learning approach capable of addressing the limitations
of traditional forecasting approaches, and it achieved accurate
predictions. Song et al. (2020) developed a long short-term
memory (LSTM) neural network-based model to infer the

production of fractured horizontal wells in a volcanic reservoir,
which could address the limitations of traditional method and
obtain accurate predictions. Temizel et al. (2020) analyzed the
data of tight shale reservoirs using the LSTM neural network,
in which the operational interferences to the well were taken
into account to ensure that the machine learning model was
not impacted by interferences that did not reflect the actual
physics of the production mechanism effecting the behavior
of the well. At the same time, the LSTM model predictions
were compared with the numerical simulation results, which
verified the long-term accurate prediction ability of the LSTM
model. Fan et al. (2021) established a novel hybrid model that
considers the advantages of linearity and nonlinearity, as well
as the impact of manual operations. Werneck et al. (2022)
used stacked recurrent neural networks (RNN) to make short-
term predictions of fluid rates and bottom-hole pressures in
oil and gas reservoirs for 30 days. Experiments on recurrent
networks showed that long-term input data and designing
specific key time data segments can effectively improve oil
and gas production and pressure prediction. Li et al. (2022b)
developed a deep learning model based on LSTM neural
network that can consider human operations. This model can
learn shutdown time, oil nozzle size and daily production time
to predict oil well production under artificial operation condi-
tions. Ning et al. (2022) presented a machine learning-based
time series forecasting method, which considers the existing
data as time series and extracts the salient characteristics of
historical data to predict the values of a future time sequence.
Li et al. (2022a) proposed a reservoir production prediction
model based on a combined convolutional neural network
(CNN) and a LSTM neural network model optimized by the
particle swarm optimization (PSO) algorithm. Zha et al. (2022)
proposed a CNN-LSTM model to predict production in a gas
field in southwest China. Karasu and Altan (2022) proposed
a model that can cope with uncertainty, non-stationarity, and
nonlinearity in crude oil time series more effectively than
other studies in the literature, thus exhibiting higher prediction
performance in terms of both accuracy and robustness.

Despite of the advancement of neural network methods in
predicting the production characteristics, these methods can
only train the network through data-driven methods, and fail to
consider the physical law governing the oil or gas flow through
porous media. physics-informed neural network (PINN) is
a machine learning technique that can embed the physics
of the flow problem, i.e., the underlying partial differential
equation (PDE), into the architecture of the neural network.
Raissi et al. (2019) proposed the PINN method for solving
nonlinear PDE, such as Schrödinger, Burgers and Allen-Cahn
equations. This method can deal with the forward and inverse
problems of estimating the solutions of governing equation
and parameters from the observation data. It is a physics-
informed learning approach, which allows the integration of
physical laws in the form of PDEs into the loss function of the
neural network (Karniadakis et al., 2021). The PINN can train
a neural network to minimize a loss function, which includes
both the terms with the initial, boundary conditions and the
PDE residual along the domain and the terms reflecting the
data mismatch based on automatic differentiation (Baydin et
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Fig. 1. Schematic diagram of LSTM.

al. 2018). Almajid and Abu-Al-Saud (2022) implemented the
PINN to model the classical Buckley-Leverett problem. In
addition, Fraces and Hamdi (2021) adopted the PINN to solve
the two-phase immiscible flow problem and gained a physical
solution by adding a diffusion term to the PDEs or an amount
of observed data. Wang et al. (2020) proposed a theory-guided
neural network model for subsurface flow using heterogeneous
model parameters. More details of the research progress about
PINN can be found in Cuomo et al. (2022) and Muther et al.
(2023).

In the above-mentioned literatures, PINN-based ap-
proaches usually train the neural network through observation
data with the constraint of the partial differential equation.
However, many widely used empirical relationship models
have been derived for gas well production performance predic-
tion, such as those with the well-constructed characteristics of
declining curve that governs the production declining process.
In this work, enlightened by the strategy of PINN, a deep
learning method driven jointly by DCA model and production
data is proposed to predict the gas well production perfor-
mance. The proposed method utilizes an appropriate long and
short-term memory deep learning time series neural network
architecture based on the characteristics of gas well production
data, and embeds the conventional DCA model into the neural
network architecture to further improve the accuracy of gas
well performance prediction.

2. Methodology

2.1 LSTM neural network
Considering the temporal characteristics of gas well pro-

duction, a time series model should be adopted for production
forecasting. Time series models have achieved significant
progress due to the natural language processing techniques
in the artificial intelligence field, and have been successfully
applied in oil and gas well performance prediction. These
predictive models have improved generality because they only
consider historical data. In this paper, based on the time-series
relationship of gas reservoir production decline curve, the
deep learning algorithms suitable for time series analysis are
selected. Among these algorithms, the LSTM neural network
is preferred, as this type of neural network algorithm has great
flexibility and has made significant progress in various fields

through years of research by many scholars (Chi, 2022; Chung
et al., 2022; Rojc and Mlakar, 2022).

The LSTM neural network is an improved structure of
RNN (Gers et al., 2000). Due to the sensitivity of traditional
RNN to data gradients, the model prediction accuracy of
RNN is largely controlled by the quality of data. To address
the above-mentioned issues, researchers have introduced unit
states and three control gates based on the RNN. The unit
state is used to determine the information retention between
different time steps, and the control gates are set to adjust the
information transfer function between different positions. This
modified neural network is called LSTM neural network, and
its structure is shown in Fig. 1.

In the hidden layer of LSTM neural network, the input
gate, output gate and forget gate are added to adjust the cell
state. The forget gate can be expressed as:

ft = σ
(
Wf xt +U f ht−1 +b f

)
(1)

where the ft represents the forget gate information at time t;
σ represents the sigmoid function; Wf and U f are the weight
parameters of the forget gate; b f represents the bias of the
forget gate; ht−1 is the output information of hidden layer.

The input gate is used to input the data xt and the output
data ht−1 from the previous time step to calculate the forget
gate value of the memory cell. The input gate can be expressed
as:

it = σ (Wixt +Uiht−1 +bi) (2)
where it denotes the input information at time t; Wi and Ui are
the weight parameters of the input gate; bi represents the bias
of the input gate. It outputs a value to transfer the unit state
information and determines which information of the previous
unit state should be retained or discarded. At this point, the
candidate unit state Ct is calculated as:

Ct = tanh(Wcxt +Ucht−1 +bc) (3)
where Ct represents the candidate cell status at time t; Wc and
Uc are the weight parameters of the LSTM cell; bc denotes the
bias of the input gate; tanh represents the hyperbolic tangent
activation function.

Finally, the output gate information is used in the output
gate, and the output data of the output gate are calculated using
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Fig. 2. Framwork of coupling neural network model.

Table 1. DCA models.

Name Equation

Arps

q(t) = qie−Dit

q(t) = qi(1+bDit)−1/b

q(t) = qi(1+Dit)−1

SEPD q = qiexp[−(t/τ)nSEPD ]

Duong q = qit−mD exp[aD(t1−mD −1)/(1−mD)]

the cell state:

ot = σ (Woxt +Uoht−1 +bo) (4)
ht = ot tanhCt (5)

where ot represents the output gate information; Wo and Uo
are the weight parameters of the output gate; bo is the bias of
the output gate.

As demonstrated above, the finely designed operational
structure of the LSTM neural network can well control the
information transfer between the historical data and the input
data, so that it has a higher prediction ability for time-series
data. Therefore, the LSTM neural network is used to learn and
extract data features from the time-series data, such that more
accurate prediction models can be obtained. Importantly, the
LSTM-based deep learning method requires the assumption
that the historical production dataset is large and representa-
tive enough to sufficiently capture the production fluctuation
tendency of the entire time series.

2.2 Production forecasting jointly driven by
DCA model and data

The conventional neural network-based approaches can
only train the network through data-driven methods, while
they do not consider the characteristics of the decline curve
governing the production decline process. Therefore, it is
proposed to incorporate the well-constructed decline curve

models into neural network methods, such as Arps and Duong
decline curve models, to improve the training performance of
the neural network. The decline curve model plays the role
of an empirical verification for controlling the dynamics of
gas production or a physically plausible law, and this prior
information can serve as the driving condition and guide for
the neural network training process. In this way, the training
process can be converged rapidly and accurately to its optimal
condition. Thus, an implicit coupling neural network driven
jointly by both data and DCA models is innovatively used to
predict the gas well performance, as shown in Fig. 2.

The construction of such method involves collecting and
recording the production dynamic data of gas fields by using
various monitoring devices. The production dynamic data can
then be organized into a time series dataset, which is subse-
quently used by the neural network method to capture and
extract potential relationships between the dataset segments,
thereby endowing the model with predictive capability. The
neural network model is established and trained based on
production data. The DCA model represents a significant
amount of prior knowledge of the empirical gas production
decline analysis. By incorporating this knowledge into the
data-driven neural network, the prediction performance of the
neural network model can be effectively improved, and its
interpretability can be enhanced.

Before incorporating the method of DCA into the neural
network, it is necessary to select a suitable DCA model
to ensure the effectiveness of the joint driving method. In
this study, five types of DCA models are selected as the
alternative options, which include exponential, hyperbolic,
harmonic, stretched-exponential production decline (SEPD),
and the Duong DCA models. The calculation formulae of the
five DCA models are shown in Table 1. These five models
are fitted to the training and testing datasets and based on
the fitting performance of these five DCA models. Then, the
optimal one is selected and then incorporated as a driving
condition into the neural network.
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Suppose that y denotes the real production rate data, y
′

denotes the output data of the neural network, y
′′

denotes the
fitted value of the DCA model, and fL denotes the loss function
of the neural network. Then, the error Lossd between the real
production data and the output data of the neural network, and
the error LossD between the real production data and the fitted
value of the DCA model, can be calculated respectively.

Lossd = fL(y,y′) (6)
LossD = fL(y,y′′) (7)

1) According to the error between the output value of the
neural network and the target value Lossd , the error
between the output value of the neural network and
the fitted value of the DCA model LossD, and the loss
function of the neural network model by weighting these
two parts, can be calculated. The weighting coefficients
λd , λD can be determined by the trial and error method.
As a rule of thumb, the weighting coefficients are adjusted
to ensure that the values of data loss and DCA loss are on
the same order of magnitude, and both losses are taken

into account during the training process of neural network
(in this case, λd is 0.7 and λD is 0.3). The total loss
function can be expressed by:

Loss = λdLossd +λDLossD (8)
2) Implement the back-propagation for the weight parameter

W based on the loss function calculated by weighting the
data loss and the DCA model loss;

3) Calculate the gradient from the back-propagated loss
∂Loss/∂W ;

4) Update the parameters of neural networks: Wn = Wo −
α∂Loss/∂W , where Wn and Wo represent updated and
initial weight values.

In the neural network training process, the relationships
between the loss function and the iterations are shown in
Fig. 3. It can be inferred from the results that the data loss
converges faster than DCA loss in this case. Furthermore, both
data and DCA loss eventually decrease to levels that satisfy
the convergence stopping criteria.

During the prediction process of gas production data, as
shown in Fig. 4, the currently available gas production data
are used as the input data. These data are fitted to the decline
curve models to select the best-fitting one, which will be used
to constrain the training process of the LSTM model. The
input data are divided into two subsets: training dataset and
testing dataset. The training data are used to construct the
loss function of data mismatch, while the testing dataset is
used to determine the proper hyper-parameters. The values of
hyper-parameters are listed in Table 2. If the data and DCA
models are both used to drive the training process, the selected
DCA model fitting error and the data mismatch in the training
dataset can be used to constrain the training process. The loss
function are minimized by adjusting the neural network model
parameters. The minimization iteration will be continued until
the preset error thresholds are satisfied and the gas production
rate can be predicted.

2.3 Data preprocessing
In order to the ensure the representativeness of production

data from gas reservoirs over a certain period, an analysis of
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Table 2. The values of hyper-parameters used for the LSTM
model.

Hyper-parameter Value

Number of hidden layers 2

Time window size 15

Number of neurons 32

Number of epochs 50

Activation function Tanh

Optimizer RMSprop

Learning rate 0.001

the data is conducted to select parameters that may have an
impact on the production dynamics as an initial input data for
the model. During the production process of gas wells, the
dynamic parameters such as production rate and pressure may
fluctuate due to various factors. Therefore, it is necessary to
pre-process the raw data to remove the noise impact.

Initially, the Savitzky-Golay filter (S-G filter), proposed
in 1964, is employed to process the data. This filter is a
time-domain-based filtering method that uses the least-squares
fitting approach (Press and Teukolsky, 1990). It is mainly
used in noise reduction work and can effectively preserve the
original features of the data while reducing noise. The basic
formula for the S-G filter is as follows:

Y ∗
i =

m
∑
−m

(CiYi)

N
(9)

where Yi and Y ∗
i represent the original data and smoothed val-

ues, respectively; Ci denotes the S-G polynomial fit coefficient;
m represents the filter half-length; N is the length of the filter
and takes the value of 2m+1.

Firstly, after data denoising, it is necessary to normalize the
production history data that contain the dynamic parameters of
the gas reservoir. Normalization is a dimensionless data pro-
cessing method that transforms the physical values of the gas
reservoir production system into mathematical relationships;
it is an effective way to simplify calculations and reduce the
magnitude of values with features. Normalization processing
is achieved by a linear transformation of the numerical values.
The linear transformation method does not cause data to
“fail” after processing but instead improves the performance
of the data during the model training process. The calculation
formula for normalization is as follows:

xn =
x− xmin

xmax − xmin
(10)

where xn, xmin, xmax, and x denote the normalized data, original
data minimum, original data maximum, and original data,
respectively.

After normalizing the production history data and convert-
ing it into sequential data, the production data are transformed
into historical production data with a time window size and
corresponding known parameter values, which serve as input
parameters for the LSTM deep neural network model. The

deep neural network algorithm is utilized to calculate the
production dynamic data that need to be predicted, as shown
in the left-hand side of Fig. 4.

The preprocessed data from the previous step is divided
into three parts. The first 70% of the data are used as the
training set to train the model. The next 15% of the data
are taken as the test set to predict and validate the model’s
performance. Based on the test set error, an optimization
algorithm is used to update the model parameters. The final
15% of the data are used as the prediction set for the model.

The objective of the neural network model established
in this study is to utilize historical production dynamic data
that contains production and production controlling parameters
(such as choke size, bottom hole pressure and daily working
time) to predict the future production indicator data (such as
production volume).

The normalized production data are transformed, with pro-
duction control parameters used as feature data and multiple
time steps set as a time window. The production data from
the current time step corresponding to the last time step in the
window are taken as label data. Each time window corresponds
to one sample, and different samples are constructed by
moving the time window. The data are then transformed into
a three-dimensional matrix of input features (sample size ×
time steps × number of features) and a corresponding two-
dimensional matrix consisting of production volume (sample
size × 1). These matrices are used as training data for the
deep learning neural network model. A LSTM neural network
algorithm is employed to predict the production data and
the errors between the predictions and the measurements are
calculated. Finally, an error back-propagation algorithm is
employed in conjunction with a data-driven method based on a
decreasing pattern to iteratively train and obtain the production
prediction model.

2.4 Model settings and parameter optimization
In order to examine whether there is still room for im-

provement in the model being trained, the following steps are
taken after completing the model training on the training set:
First, the fitting effect of the model on the training set and the
prediction error of the model on the test set is evaluated. If
the performance of the model on both sets is unsatisfactory,
the hyper-parameters of the model are adjusted to improve the
prediction accuracy. These hyper-parameters include time step,
number of neurons, regularization coefficient, etc. Finally, the
trained and optimized model is applied to forecast the future
production dynamics in the prediction set.

Traditionally, the approach to forecast one or several future
time steps is to directly use the actual historical data as
input data. However, this forecasting method only predicts a
short period in the future and cannot reflect the long-term
decreasing trend in production in the forecasting process.
During production prediction in the testing and forecasting
sets, the gas production data for each step is unknown. Thus,
it is impossible to construct the input data for the forecasting
set directly. Instead, the forecasting model is utilized to predict
the value of the previous time step and construct the input data
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for the current time step. This involves adding the predicted
production value of the previous time step to the production
time series data and shifting the time window to achieve a
cyclic prediction of future production. Finally, the predicted
production results for the forecasting set are obtained. The
process of cyclic prediction and data reconstruction of the
model is illustrated in Fig. 5. During the prediction process,
the controlling factors associated with the gas production data,
such as production time and choke size setting, can be used as
features. The historical feature data and the production data are
used as input data for the deep learning LSTM model jointly
driven by data and DCA model to predict the gas production
rate in the next step. The input data window continues to slide
towards the next time step, so that the time series prediction
can be achieved, and the gas production rate fluctuation can
be predicted as the time series.

3. Results and discussion
In order to demonstrate the predictive capability of the

proposed innovative method, field data on gas production are
collected from well X1 in a tight gas reservoir and well X2
in a carbonate reservoir in Southwest China. By using the five
types of decline curve models mentioned above, the fitting
process of the decline curves are performed on the training
and testing datasets of well X1 and well X2. The results are
illustrated in Fig. 6. Based on the fitting errors of the decline
curves in the testing set, the optimal decline curve model
is selected as the driving condition for the neural network
models.

In Fig. 6, it can be observed that all five decline curve
formulae exhibit satisfactory fitting results on well X1 and well
X2. As the fitting results of the testing set have a significant
impact on the prediction performance of the LSTM neural
network model jointly driven by the DCA model and data on
the prediction set, it is necessary to select the DCA model with
the smallest prediction error on the testing set. To confirm
which DCA model has the best fitting performance on the
testing set, the mean absolute error (MAE), mean absolute

percentage error (MAPE), and root mean square error (RMSE)
of these five models are calculated as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (11)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

×100% (12)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

where yi denotes the ith true value, and ŷi denotes the ith

prediction.
The results are shown in Table 3. As can be seen from

the table, the hyperbolic DCA model best fits the actual
production curve for well X1, and the Duong DCA model
best fits the actual production curve for well X2. Therefore,
the hyperbolic and Duong DCA models are incorporated into
the neural network as the driving condition for the performance
predictions of gas wells X1 and X2.

Next, the LSTM models driven jointly by production data
and DCA model are trained and used for forecasting, and their
performances are compared with that of the LSTM neural
network models without the DCA models. The input data in
the data-driven LSTM and jointly driven LSTM models are
the historical gas production observation data. Fig. 7 illustrates
the predictive performances for gas production rate in wells
X1 and X2 when using the purely data-driven and the jointly
driven LSTM models. As shown in Fig. 7, the DCA models
alter the production trends predicted by the data-driven LSTM
model on the testing set, making them more consistent with
the production situation of wells X1 and X2.

Table 4 shows the performances of the two types of LSTM
models with and without the constraints of DCA models.
The accuracy evaluations are measured by the MAE, MAPE,
and RMSE that occur in predicting the gas well production
performance on the testing set. As seen in Table 4, after
incorporating the DCA model into the LSTM model driven
by data, the average absolute error decreases by 0.8845,
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Fig. 6. Prediction results of five DCA models for wells X1 (a) and X2 (b).

Table 3. Fitting error of DCA models on the testing dataset.

Well Predictive Models MAE MAPE (%) RMSE

X1

Exponential 2.6761 9.01 3.2341

Hyperbolic 1.9686 6.66 2.4313

Harmonic 5.7199 21.16 6.1448

Duong 2.3852 8.02 2.9368

SEPD 2.3663 7.95 2.9154

X2

Exponential 1.6957 36.49 2.7937

Hyperbolic 1.7828 38.17 2.9294

Harmonic 1.7818 38.07 2.8994

Duong 1.6461 35.37 2.7148

SEPD 1.6957 36.49 2.7937

the relative percentage error decreases by 3.29%, and the
root mean square error decreases by 0.9928 for well X1.
From the perspective of the mean absolute error analysis, the
LSTM model jointly driven by the production data and DCA
model yields a 42.90% reduction for well X1 in the average

absolute error compared to the LSTM model driven purely
by production data. The average absolute error decreases by
0.093, the relative percentage error decreases by 1.44%, and
the root mean square error decreases by 0.1138 for well X2.
From the perspective of the mean absolute error analysis, the
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Fig. 7. Comparisons of prediction results based on data-driven and jointly driven LSTM models for wells X1 (a) and X2 (b).

Table 4. Errors of the data-driven and jointly-driven LSTM models in the prediction dataset.

Well Models MAE MAPE (%) RMSE

X1
Data-driven LSTM 2.0618 8.14 2.4720

Jointly-driven LSTM 1.1773 4.85 1.4792

X2
Data-driven LSTM 0.6811 7.72 0.8258

Jointly-driven LSTM 0.5881 6.28 0.7120

LSTM model jointly driven by the production data and DCA
model results in a 13.65% reduction for well X2 in the average
absolute error compared to the LSTM model driven purely
by production data. Therefore, the proposed jointly driven
approach significantly improves the ability of the LSTM model
to predict the gas well production performance on the testing
set and enhances its interpretability.

4. Conclusions
This study presents an interpretable and accurate time

series neural network model jointly driven by production
data and DCA model to forecast the gas well production
performance. The following conclusions can be drawn:

1) The proposed method can incorporate prior knowledge
related to gas production forecasting, including Arps,
Duong and extended exponential DCA model, into the
training process of the LSTM neural network. This
knowledge is used as the driving force for neural net-
work training, which greatly improves the conventional
approach in which the neural network is trained only
through data-driven methods. Consequently, a deep learn-
ing model jointly driven by both DCA model and pro-
duction data can be innovatively established.

2) The forecasting performances of the purely data-driven
deep learning model and the jointly driven deep learn-
ing model are compared with the conventional DCA
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methods. The results show that the purely data-driven
and jointly driven deep learning models have smaller
prediction errors than the conventional decline curve
methods, indicating that these deep learning models have
better capability to extract the time dependence features
from the gas well production data.

3) The methods jointly driven by DCA model and data
are introduced as the driving conditions for the loss
function of the LSTM neural network training, which
improves the interpretability and prediction ability of gas
well performance. In a practical example, deep learning
models with both DCA model and data-driven training
reduce the mean absolute error by 42.90% for the tight
gas well and 13.65% for the carbonate gas well compared
to data-driven deep learning models, which verifies the
effectiveness of this training method in improving the
accuracy of the deep learning-based prediction of gas well
production performance.
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