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Abstract:

The advancement in big data and artificial intelligence has enabled a novel exploration
mode for the study of petroleum engineering. Unlike theory-based solution methods,
the data-driven intelligent approaches demonstrate superior flexibility, computational
efficiency and accuracy for dealing with complex multi-scale, and multi-physics problems.
However, these intelligent models often disregard physical laws in pursuit of error
minimization, which leads to certain uncertainties. Therefore, physics-informed machine
learning approaches have been developed based on data, guided by physics, and supported
by machine learning models. This study summarizes four embedding mechanisms for
introducing physical information into machine learning models, including input data-
based embedding, model architecture-based embedding, loss function-based embedding,
and model optimization-based embedding mechanism. These “data + physics” dual-
driven intelligent models not only exhibit higher prediction accuracy while adhering to
physic laws, but also accelerate the convergence to improve computational efficiency. This
paradigm will facilitate the guide developments in solving petroleum engineering problems
toward a more comprehensive and efficient direction.

1. Introduction

Petroleum engineering is an important field of engineer-

throughs in artificial intelligence and big data technologies
(Liu et al., 2023) are providing a new mode to further enhance
the study of petroleum engineering problems.

ing considering problems such as seismic exploration, well
logging, production development, etc., which is essential for
providing energy resources. Petroleum engineering problems
are usually across multiple scales, with multi-physics cou-
pling and multiple fluids. Researchers have developed many
techniques to tackle the complex flow problems in petroleum
engineering, such as molecular dynamics at the microscopic
scale (Karplus and Petsko, 1990; Karplus and McCammon,
2002), Monte Carlo simulations (Metropolis and Ulam, 1949;
Rubinstein et al., 2016) and lattice Boltzmann methods (Chen
and Doolen, 1998) at the mesoscopic scale, computational
fluid dynamics (Versteeg and Malalasekera, 2007; Hughes,
2012) at the continuous scale, and reservoir simulations at
the reservoir scale (Peaceman, 2000). In recent years, break-

With the deep integration of big data, artificial intelligence,
and petroleum engineering, the research methods are expanded
into 4 models (Fig. 1): experimental investigation, theoretical
analysis, numerical simulation, and digital intelligent model-
ing. Experimental investigations use all kinds of measurement
approaches to obtain real and reliable data, then deduce and
explain the flow phenomena and laws. Theoretical analysis
is the process of analytically solving the mass conservation
equations, energy equations, and state equations constructed
by classical fluid mechanics theory under certain initial and
boundary conditions. Numerical simulations solve the fluid
motion either by the Euler or by the Lagrange approaches,
which usually consume huge computational resources and rely
on many assumptions. Digital intelligent modeling offers a
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Fig. 1. Research paradigms of petroleum engineering.

new research paradigm, which learns the implicit mapping
relationships between data and establishes an intelligent solver
in a data-driven mode to achieve accurate flow prediction
and flow field modeling without considering complex flow
mechanisms and assumptions. Thus, it significantly improves
the computational efficiency of numerical simulations by using
parameter optimization and error correction. The three theory-
driven approaches (Golparvar, 2018) described above can also
provide physical guidance and data support for the intelligent
model to enhance its prediction accuracy.

With the increasing maturity and rapid development of
monitoring technologies in petroleum engineering, there have
accumulated massive multi-source heterogeneous data bodies.
Due to the complexity of the geological structure and flow
mechanisms, it is difficult for traditional methods to adapt to
the huge observation data. Data-driven methods have ultra-
high computational efficiency, improving by several orders of
magnitude compared to theory-based numerical simulations.
However, these machine-learning methods exhibit a high de-
pendence on data and uncertainty under certain conditions.
This uncertainty is mainly reflected in the fact that the models
can ignore the physical laws that the data itself needs to follow
due to the pursuit of error minimization, which can lead to
large errors with a butterfly effect-like effect on the inversion
of subsequent parameters. To alleviate or even eliminate this
phenomenon, “data + physics” dual-driven intelligent models
have been developed by introducing physical information into
machine learning. The physics-informed machine learning not
only reduces the dependence of intelligent models on the data
amount, but also improves prediction accuracy and compu-
tational efficiency through physical guidance. Therefore, the
integration of a priori information and artificial intelligence
to construct physics-informed machine learning is one of the
inevitable trends for solving petroleum engineering problems.

2. Physics-informed machine learning

Physics-informed machine learning (Fig. 2) is based on
data-driven machine learning models, employing direct or
indirect methods to achieve the introduction of physical in-
formation for guiding the training of intelligent models. In

general, these methods can be categorized into four mech-
anisms according to their different introduction modes: input
data-based, model architecture-based, loss function-based, and
model optimization-based embedding mechanisms. At present,
a large number of researchers have constructed physics-
informed machine learning models to solve complex problems
such as flow field reconstruction, log interpretation, and pro-
duction optimization in petroleum engineering.

2.1 Input data-based embedding mechanism

For physics-informed machine learning, input data-based
embedding mechanism mainly consists of two types of meth-
ods: direct and indirect methods. The direct approaches are
to introduce physical variables into the input data that are
strongly correlated with the model output parameters through
expert experience and existing physical knowledge, or to
improve the quality of the input data through data filtering and
cleaning so that it can show more powerful physical meaning.
For example, Ling et al. (2016) explored that embedding
invariance into the input features can significantly reduce the
computer training cost in physical systems with symmetry or
invarianceln the process of reservoir development, Song et al.
(2022b) used the physical equations of planar radial flow and
spherical centripetal flow to complete the complementary input
data including pressure and three-phase saturation to achieve
accurate prediction of the remaining oil distribution. Du et
al. (2023) performed outlier detection on production data of
coalbed methane wells with the LOF-Xgboost framework, and
the results revealed that the governance for the input data can
significantly improve the robustness of the model for long-
term production prediction.

The indirect approaches utilize reduced-order models or
attention mechanisms to reduce or capture the heterogeneous
data from multiple sources, allowing the model to extract
and focus on the important physical information with lim-
ited resources indirectly. Shan et al. (2021) fused attentional
mechanisms and convolutional neural networks to explore
intelligent predictive models for complementary logging data.
Zeng et al. (2020) developed an attention-based bidirectional
gated recurrent unit model to achieve logging prediction as
well as lithology identification. Input data-based embedding
mechanism has achieved success in both theoretical and prac-
tical applications.

2.2 Model architecture-based embedding
mechanism

Model architecture-based embedding mechanism contains
two main approaches. The general approach involves in-
troducing parameters with strong physical significance into
the deep structure of the neural network, which enhances
the learning capability of the model for those key physical
parameters and reduces the adverse effects due to the differ-
ences in data dimensionality. For instance, Wu et al. (2018)
introduced specific surface area and porosity parameters into
a deep network, combining convolutional neural networks
to rapidly predict permeability from two-dimensional digital
core images. Additionally, Tang et al. (2022) incorporated
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Fig. 2. Schematic diagram of the four embedding mechanisms for constructing physics-informed machine learning.

porosity and meander curvature into the Dense Block of the
neural network and established a hybrid structure model to
achieve three-dimensional core permeability prediction. Song
et al. (2022a) extracted the static geological parameters of the
reservoir and fracturing construction data into a deep network
to establish an intelligent evaluation model of the fracturing
effect, which can improve the prediction accuracy of fracture
length by overcoming the problem that the network ignores
the characteristics of static parameters due to the excessive
number of dynamic parameter dimensions.

The other approach is to establish hybrid model architec-
tures for the unique advantages possessed by different machine
learning that can more fully extract temporal or spatial features
in physical parameters. Choubineh et al. (2017) developed
a hybrid neural network model to predict wellhead choke
liquid critical-flow rates. Ashrafi et al. (2019) developed an
integrated hybrid network architecture to predict penetration
rates in drilling operations based on pump flow rate, pore
pressure, bit rotational speed, density log, and shear wave
velocity. Many other scholars have tapped the learning ability
of convolutional neural networks for spatial features and
long-short-term-memory networks for temporal data, creating
ConvLSTM models to implement subsurface flow prediction,
and reservoir development. Wei et al. (2022) exploited the
ConvLSTM to accurately predict the future saturation distribu-
tion of carbonate reservoirs based on logging data and dynamic
production data.

2.3 Loss function-based embedding mechanism

The loss function-based embedding mechanism is to in-
troduce the governing equations, boundary conditions, initial
conditions, and even expert experience in the physical laws
into the neural network model by reconstructing the loss
function to guide the training of the machine learning model.
The key to a neural network’s ability to self-learn is that
it can iteratively update the weights and thresholds in the
network through a backpropagation algorithm based on the

error gradient calculated by the loss function. Therefore, the
loss function is crucial for every training of the neural network.
This mechanism is mainly derived from the physics-informed
neural network (PINN) proposed by Raissia et al. (2017) and
Raissia et al. (2019), which embeds the control equations into
the loss function to solve the forward and inverse solution
problem in fluid flow modeling. A large number of neural
network models have been explored for flow field modeling
via the loss function-based embedding mechanism. Yan et
al. (2022) reconstructed the loss function by combining the
pressure gradient operator and established a gradient-based
neural network approach to achieve accurate prediction of
pressure and saturation fields in multiphase flows under dif-
ferent geological conditions. Wang et al. (2020) considered
engineering controls and expert experience to develop theory-
guided neural network models that can rapidly predict the
subsurface flow.

Besides, a great number of improved PINN algorithms have
been applied to different fields such as biofluids and subsurface
fluids. Chiu et al. (2022) coupled numerical differentiation and
automatic differentiation to construct the can-PINN framework
providing a potential alternative for fluid flow simulation.
Zhang (2022) utilized physics-informed deep convolutional
networks to predict transient Darcy flow under heterogeneous
reservoir conditions. More PINN-based derivative frameworks
such as XPINN, cPINN have been proposed for the solution
of multi-scale flow problems (Kharazmi et al., 2019; Shukla
et al., 2021). It is worth noting that the loss function-based
embedding mechanism is mainly used in theoretical studies at
present, and less for practical applications.

2.4 Model optimization-based embedding
mechanism

Model optimization-based embedding mechanism is used
to improve the learning ability of machine learning models for
physical properties by introducing optimization algorithms. On
the one hand, the embedding of the optimization mechanism
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can automatically adjust the hyperparameters, which are pre-
defined parameters for the model. Some hyperparameters can
change the structure of the model such as the number of hidden
layers in the neural network and base learners in the random
forest, while others do not change the architecture of the model
but affect the learning efficiency (Sultana et al., 2022) such as
learning rate, regularization parameters, etc. Therefore, many
optimization algorithms have been integrated with machine
learning to solve classical fluid mechanics problems, including
stochastic search, genetic algorithms, particle swarm optimiza-
tion, and simulated annealing. Kaydani et al. (2011) integrated
particle swarm optimization and neural networks to construct
an efficient intelligent model to achieve the prediction of min-
imum miscibility pressure in carbon dioxide (CO,) injection.
Zhang’s group combined optimization algorithms and machine
learning for the optimization of well location (Qi et al.,
2022), real-time production (Wang et al., 2022), and injection
(Xue et al., 2022). A coupled architecture (Owoyele et al.,
2022) combining machine learning and genetic algorithms was
employed to solve the fluid flow prediction problem.

The embedding of optimization algorithms can also op-
timize the weights or coefficients of the whole model. For
example, Bayesian neural network models are developed,
which utilized Bayesian algorithms to change the original
weights in the neural network into a Gaussian distribution
obeying a mean of u and a variance of 6. Accurate prediction
of liquid-phase diffusion coefficients based on Bayesian neural
networks was performed by Mariani et al. (2020). Yue et
al. (2011) employed Bayesian regularized back propagation
networks to predict the oil-gas drilling costs. Sun et al. (2020)
designed a Bayesian optimization neural network model based
on physical constraints for reconstructing fluid flow in sparse
and noisy data.

3. Conclusions

Intelligent modeling approaches are important for the fu-
ture study of petroleum engineering. They have been suc-
cessfully applied to many complex multi-physics and multi-
scale problems. The physics-informed machine learning is
the inevitable trend of intelligent modeling, which is a new
research paradigm based on data, guided by physics, and
supported by artificial intelligence models. This paper provides
a comprehensive overview of four embedding mechanisms
for introducing physical information into machine learning,
including the input data-based embedding mechanism, model
architecture-based embedding mechanism, loss function-based
embedding mechanism, and model optimization-based embed-
ding mechanism. These methods not only have higher predic-
tion accuracy by following physical laws, but also accelerate
convergence to significantly improve computational efficiency.

In the future, the modeling for complex hydrodynamic
problems will be diversified, taking full advantage of the
strengths of different research methods. The fusion model-
ing combining theory-driven and data-driven approaches will
become the new research paradigm, which will accelerate
the study of petroleum engineering problems and promote
the theoretical system toward a more comprehensive direction

continuously. It holds both powerful flow evolution capability
and physical interpretability from theory-driven models, and
the improved computational efficiency from data-driven ap-
proaches under the premise of guaranteed accuracy.
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