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Section S1. Well-log curves evaluated for Wells A and B 

  

 

Figure S1. Recorded well logs (one recording each 0.5ft (or 0.1524m) for Well A displayed 

over interval straddling the cap rock (Formation (-1)) and the top of the reservoir 

(Formation (+1). 1969 recorded samples used for analysis (918 in Formation (-1) and 1051 

in Formation (+1). 
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Figure S2. Recorded well logs (one recording each 0.5ft (or 0.1524m) for Well B displayed 

over interval straddling the cap rock (Formation (-1)) and the top of the reservoir 

(Formation (+1). 1314 recorded samples used for analysis (524 in Formation (-1) and 790 

in Formation (+1).
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Section S2. Formulas for statistical error metrics assessed 

By assigning the two formation categories the numerical values of -1 and +1, in addition to 

accuracy, it is also possible to calculate other numerical statistical error metrics, including 

mean absolute error (MAE; Eq. (E1)), root mean squared error (RMSE; Eq. (E2)), and 

coefficient of determination (R2, Eq. (E3) that provide complementary prediction 

performance information. 

 

Mean Absolute Error: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖|

𝑛
𝑖=1                                                                                          (E1)            

 

Root Mean Square Error (MSE): 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ ((𝑋𝑖) − (𝑌𝑖))2𝑛

𝑖=1 ]
0.5

                                                                       (E2) 

where Xi = the actual formation category value and Yi = the predicted formation category 

value for the ith data record  being predicted. 

 

Coefficient of Determination (R2): 

𝑅2 = 1 − 
∑ (𝑋𝑖 – 𝑌𝑖)𝟐𝒏

𝒊=𝟏

∑ (𝑋𝑖 – 𝑋𝑚𝑒𝑎𝑛)𝟐𝒏
𝒊=𝟏

                                                                                    (E3) 

Where Xmean is the mean of the X variable distribution. 
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Section S3.  Optimized feature selections for GR-PB and GR-DT attribute combinations 

Table S1. Feature selections for GR-PB recorded logs plus attribute combinations applied 

to Well A data based on a 0.75 (training): 0.25 (validation) split of data records and 

applying a KNN prediction model with various optimizers. Only the 8 feature selections (of 

the 42 optimizer runs performed) that generated the most accurate formation predictions 

are shown. 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Feature selections for GR-DT recorded logs plus attribute combinations applied to 

Well A data based on a 0.75 (training): 0.25 (validation) split of data records and applying 

a KNN prediction model with various optimizers. Only the 8 feature selections (of the 42 

optimizer runs performed) that generated the most accurate formation predictions are 

shown. 
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Section S4.  Accuracy and error metric relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Prediction results of 90 randomly selected validation subsets involving the 15 

cases, KNN, SVC and XGB models and 0.25 : 0.75 and 0.9333 : 0.0667 training : 

validation splits for the Well A dataset. 
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The advantage of using the numerical category assignments for the two formations of interest 

(-1 cap rock; +1 reservoir) is apparent in Figure S3 with respect to the alternative error 

measurements it generates. Figure S3A shows a near perfect linear relationship between 

accuracy and R2 among the ninety cases considered, making R2 a useful proxy for accuracy.  

 

Figure S3B shows near-perfect linear relationships between MAE and the number of errors 

generated by a prediction model. However, those relationships are dependent on the sample 

sizes involved; the 0.25 training : 0.75 validation splits involve validation subsets generated 

from the Well A dataset of 488 data records, whereas the 0.9333 training: 0.0667 validation 

splits involve validation subsets generated from the Well A of 131 data records.  As different 

subset sizes are involved, for certain purposes, it is generally more meaningful to express 

errors as percentages in addition to recording the absolute error numbers. 

 

Figure S3C displays the near-perfect linear relationship between the MAE and accuracy 

metrics. Every correct prediction generates an absolute error of zero whereas every incorrect 

prediction generates an absolute error value of two (+1 minus -1 or vice versa). Although 

magnitude of the absolute error value is arbitrary it provides a useful error metric that is 

directly related to accuracy. On the other hand, the RMSE relationship with accuracy (Figure 

S3C) is non-linear as each prediction error generates a squared-error value of 4 (22) the mean 

of which is then adjusted to its square root. The RMSE scale provides a more sensitive error 

scale than MAE for evaluations achieving accuracy of >=0.9. 
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Section S5.  Confusion matrices showing prediction distributions for the best models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Confusion matrices for best performing case solutions, all of which involve 

optimized feature-selected well-log attributes and recorded well log combinations.  
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Section S6.  XGB Case 10 actual versus predicted depth distributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Case 10 XGB model results for each data record versus depth displaying actual 

and predicted formation categories using 0.75 : 0.25 training : testing splits. A) Well A 

trained /validated model; and B) Well B predictions using the Well A trained model. Note 

that the predicted category values are shifted by 0.2 units for display purposes to make the 

errors more visible. 
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Section S7. Well-log attribute calculation formulas 

 

The method to calculate well-log derivative and volatility attributes has been described in detail 

elsewhere (Wood, 2022c). Six well-log attributes (G1 to G6) can be calculated generically for 

any recorded and quality-controlled well log (G0). 

G1. First-derivative attribute 

𝐺1𝑑 = (𝐺0𝑑 − 𝐺0𝑑−1)/𝐴𝑏𝑠(𝑑 − (𝑑 − 1))                                                                   (E4) 

where 𝐺0𝑑 is G0 value at depth d, and 𝐺0𝑑−1 is G0 at depth d - 1. The depth recording interval 

of each well-log sample in this study is ~15 cm.  

G2. Moving-average of first-derivative attribute 

𝐺2𝑑𝛼 = (∑ 𝐺1𝑑−𝑖
𝑖=𝛼
𝑖=1 )/𝛼                                                                                               (E5) 

where 𝛼 is a user-defined log-sample interval covering a short depth range immediately above 

depth d. Experience suggests that 𝛼 values between 3 and 10 tend to work best at picking out 

textural information from the recorded well log. The optimum 𝛼  value varies from one 

formation to another depending on the frequency of log value fluctuations within it and is best 

determined by trial and error.  

G3. Second-derivative Attribute 

𝐺3𝑑𝛽 = (𝐺1𝑑 − 𝐺1𝑑−𝛽)/𝐴𝑏𝑠(𝑑 − (𝑑 − 𝛽))                                                              (E6) 

where 𝛽 is a user-defined log-sample interval covering a short depth range immediately depth 

d. 𝛽 values is user-defined and is best determined by trial and error; values between 3 and 10 

tend to perform well with a range of lithologies. 

G4. Natural logarithm of ratio between adjacent log values 

𝐺4𝑖(𝑑) = 𝐿𝑛(𝐺0𝑑/𝐺0𝑑−1)                                                                                            (E7) 

where 𝑖(𝑑) represents the depth interval of the calculated  G4 considering both depths d-1 and 

d. 
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G5. Standard deviation of G4 for a specified overlying interval depth interval 

𝐺5𝑖(𝛾) = √
∑ (𝐺4𝑖(𝑑−𝑗)−𝐺4𝑖(𝛾)𝑚𝑒𝑎𝑛)2𝛾

𝑗=0

𝛾−1
                                                                             (E8) 

where the attribute 𝐺5𝑖(𝛾)is referred to as volatility, 𝑖(𝛾) represents the depth interval between 

recorded log depths d-𝛾 and d.  𝛾 value is user-defined and is best determined by trial and error; 

values between 3 and 10 tend to perform well with a range of lithologies. 

G6. Moving-average volatility 

𝐺6𝑖(𝛿) = (∑ 𝐺5𝑖(𝑑−𝑖)
𝑖=𝛿
𝑖=0 )/𝛿                                                                                        (E9) 

where 𝛿 is a user-defined depth interval immediately above depth d. 𝛿 is assigned a value of 

10 for this dataset, as determined by trial and error; values between 3 and 10 tend to perform 

well with a range of lithologies. 
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Section S8. Optimizer cost function to encourage reduced selected features 

The optimizer results should ultimately be assessed and ranked in terms of their prediction 

accuracy. However, a key objective of the feature selection process is to seek feature 

combinations that involve a small number of features but generate prediction accuracy equal 

to or higher than that achieved by larger combination of features.  This is achieved by 

carefully defining the fitness score (FS) or cost function used as the objective function that 

each optimizer attempts to minimize over a series of iterations (Wood, 2022d). The FS 

formula used for the KNN-optimizer analysis in this study is that defined in Eq. (E10). 

𝐹𝑆 = 𝜎 ∗ 𝜖 + 𝜇 (
𝑍

𝑍𝑚𝑎𝑥
)                                                                                               (E10) 

where σ is a user-defined constant with a value close to but  just below 1, 𝜖 is (1- accuracy), 

where accuracy refers to the formation category prediction value achieved by the KNN model 

applying a specific feature selection expressed in terms of a fractional error, μ is 1-σ (a very 

small number), Z represents the number of features selected by a specific KNN solution, and 

Zmax represents the maximum number of features available for the KNN model to choose 

from. This FS configuration penalizes feature-selection solutions to a slightly greater degree 

the more features they select. The 𝜎 ∗ 𝜖 accuracy-derived component tends to dominate the 

FS value but the 𝜇 (
𝑍

𝑚𝑎𝑥𝑍
) component adds a sufficient penalty to encourage the FS to 

favour solutions with fewer features selected. In the KNN-optimizer models evaluated in this 

study a value of  𝜎 =0.95 was applied, so 𝜇 =0.05. 

  


