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Section S1. Well-log curves evaluated for Wells A and B

Well A Recorded Well Logs Through the Top of the Reservoir Formation
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Figure S1. Recorded well logs (one recording each 0.5ft (or 0.1524m) for Well A displayed
over interval straddling the cap rock (Formation (-1)) and the top of the reservoir

(Formation (+1). 1969 recorded samples used for analysis (918 in Formation (-1) and 1051
in Formation (+1).



Well B Recorded Well Logs Through the Top of the Reservoir Formation
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Formation (-1) is a laminated shale constituting the cap rock
Formation (+1) is a limestone reservoir with high porosity near the top incorporating some shale layers

Figure S2. Recorded well logs (one recording each 0.5ft (or 0.1524m) for Well B displayed
over interval straddling the cap rock (Formation (-1)) and the top of the reservoir
(Formation (+1). 1314 recorded samples used for analysis (524 in Formation (-1) and 790
in Formation (+1).



Section S2. Formulas for statistical error metrics assessed

By assigning the two formation categories the numerical values of -1 and +1, in addition to
accuracy, it is also possible to calculate other numerical statistical error metrics, including
mean absolute error (MAE; Eqg. (E1)), root mean squared error (RMSE; Eq. (E2)), and
coefficient of determination (R?, Eq. (E3) that provide complementary prediction

performance information.

Mean Absolute Error:

1
MAE =231, |X, - Y| (E1)

Root Mean Square Error (MSE):
1an 5105
RMSE = 231, (X)) — (¥)?] (E2)

where X; = the actual formation category value and Y; = the predicted formation category

value for the i data record being predicted.

Coefficient of Determination (R?):

n ©un2
R2 -1 Zl=1(Xl Yi) (E3)

1 (Xi- Xmean)?

Where Xmean is the mean of the X variable distribution.



Section S3. Optimized feature selections for GR-PB and GR-DT attribute combinations

Table S1. Feature selections for GR-PB recorded logs plus attribute combinations applied
to Well A data based on a 0.75 (training): 0.25 (validation) split of data records and
applying a KNN prediction model with various optimizers. Only the 8 feature selections (of
the 42 optimizer runs performed) that generated the most accurate formation predictions
are shown.

Features Selected (Marked by (X)) by KNN with Various Optimizers
Using Only GR and PB Logs Plus Attributes
Jaya-D DE-C PSO-C CSO-C SCA-A Jaya-E PSO-F SCA-C
Fitness Score Increases

GRO X X X X X X X
GR1
GR2 X X X X X
GR3
GR4
GR5 X X X X X X X X
GR6 X X X X X X
PBO X X X X X X X
PBf1 X
PB2 X X X X X X X
PB3 X
PB4 X X
PB5 X X X X X X X X
PB6 X X X X X X X X
Features Selected 8 7 8 8 6 7 9 6
Accuracy (Oto 1) | 0.9857 0.9836 0.9836 0.9816 0.9795 0.9795 0.9816 0.9775
Optimizer Population 65 45 60 20 50 60 65 60
Number of Iterations | 100 100 100 100 100 100 100 100
Fitness Score 0.0199 0.0212 0.0219 0.0240 0.0246 0.0253 0.0247 0.0266
Execution Time (s) | 90.577 63.621 87.143 65.174 37.696 80.71 100.36 62.673

Table 5. Feature selections for GR-DT recorded logs plus attribute combinations applied to
Well A data based on a 0.75 (training): 0.25 (validation) split of data records and applying
a KNN prediction model with various optimizers. Only the 8 feature selections (of the 42
optimizer runs performed) that generated the most accurate formation predictions are
shown.

Features Selected (Marked by (X)) by KNN with Various Optimizers
Using Only GR and DT Logs Plus Attributes
SCA-F DE-B Jaya-A CSO-G DE-F PSO-A DE-E PSO-D
Fitness Score Increases
GRO X X X X X X X
GR1
GR2 X X X X
GR3 X X
GR4
GR5 X X X X X
GR6 X X X X
DTO X X X X X X X X
DT1
DT2 X X X X X X X
DT3
DT4
DTS5 X X X X X X X
DT6 X X X X X X X X
Features Selected 7 7 5 7 5 5 9 7
Accuracy (Oto 1) | 0.9818 0.9818 0.9898 0.9898 0.9877 0.9877 0.9898 0.9877
Optimizer Population 50 60 40 30 60 100 65 75
Number of Iterations | 100 100 100 100 100 100 100 100
Fitness Score 0.0131 0.0131 0.0137 0.0151 0.0157 0.0157 0.0166 0.0172
Execution Time (s) | 55.731 87.369 45971 84.813 60.369 99.87 93.256 98.225




Section S4. Accuracy and error metric relationships

(A) Accuracy Performance Measures (Well A)
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Figure S3. Prediction results of 90 randomly selected validation subsets involving the 15
cases, KNN, SVC and XGB models and 0.25 : 0.75 and 0.9333 : 0.0667 training :
validation splits for the Well A dataset.



The advantage of using the numerical category assignments for the two formations of interest
(-1 cap rock; +1 reservoir) is apparent in Figure S3 with respect to the alternative error
measurements it generates. Figure S3A shows a near perfect linear relationship between
accuracy and R? among the ninety cases considered, making R? a useful proxy for accuracy.

Figure S3B shows near-perfect linear relationships between MAE and the number of errors
generated by a prediction model. However, those relationships are dependent on the sample
sizes involved; the 0.25 training : 0.75 validation splits involve validation subsets generated
from the Well A dataset of 488 data records, whereas the 0.9333 training: 0.0667 validation
splits involve validation subsets generated from the Well A of 131 data records. As different
subset sizes are involved, for certain purposes, it is generally more meaningful to express

errors as percentages in addition to recording the absolute error numbers.

Figure S3C displays the near-perfect linear relationship between the MAE and accuracy
metrics. Every correct prediction generates an absolute error of zero whereas every incorrect
prediction generates an absolute error value of two (+1 minus -1 or vice versa). Although
magnitude of the absolute error value is arbitrary it provides a useful error metric that is
directly related to accuracy. On the other hand, the RMSE relationship with accuracy (Figure
S3C) is non-linear as each prediction error generates a squared-error value of 4 (22) the mean
of which is then adjusted to its square root. The RMSE scale provides a more sensitive error

scale than MAE for evaluations achieving accuracy of >=0.9.



Section S5. Confusion matrices showing prediction distributions for the best models

| Confusion Matrices For Best Performing Cases

Case 6 XGB Model
Validation Subset Well A
(0.75:0.25 split; 488 Records)

Fm (-1) Correct

Fm (-1) Error

Case 10 XGB Model
Validation Subset Well A
(0.75:0.25 split; 488 Records)
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0

Fm (-1) Correct

Fm (-1) Error

258

212

11

Fm (+1) Error

Fm (+1) Correct

260

Accuracy = 0.9857

Fm (+1) Error

Fm (+1) Correct

Accuracy = 0.9672

Case 13 XGB Model
Validation Subset Well A
(0.75:0.25 split; 488 Records)

Fm (-1) Correct

Fm (-1) Error

Case 10 XGB Model
Testing Subset Well B
(0.75:0.25 split; 1295 Records)
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256
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Fm (+1) Error
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Figure S4. Confusion matrices for best performing case solutions, all of which involve
optimized feature-selected well-log attributes and recorded well log combinations.



Section S6. XGB Case 10 actual versus predicted depth distributions

(A} well A Trained and Validated Model
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Figure S5. Case 10 XGB model results for each data record versus depth displaying actual
and predicted formation categories using 0.75 : 0.25 training : testing splits. A) Well A
trained /validated model; and B) Well B predictions using the Well A trained model. Note
that the predicted category values are shifted by 0.2 units for display purposes to make the
errors more visible.



Section S7. Well-log attribute calculation formulas

The method to calculate well-log derivative and volatility attributes has been described in detail
elsewhere (Wood, 2022c). Six well-log attributes (G1 to G6) can be calculated generically for
any recorded and quality-controlled well log (GO).

G1. First-derivative attribute
Gl; = (GOy — GOy4_1)/Abs(d — (d — 1)) (E4)

where G0, is GO value at depth d, and G0,_, is GO at depth d - 1. The depth recording interval

of each well-log sample in this study is ~15 cm.
G2. Moving-average of first-derivative attribute
G240 = (NiZT G1lg-)/a (E5)

where « is a user-defined log-sample interval covering a short depth range immediately above
depth d. Experience suggests that a values between 3 and 10 tend to work best at picking out
textural information from the recorded well log. The optimum « value varies from one
formation to another depending on the frequency of log value fluctuations within it and is best

determined by trial and error.
G3. Second-derivative Attribute
G3ap = (G1q — Glq_g)/Abs(d — (d — B)) (E6)

where g is a user-defined log-sample interval covering a short depth range immediately depth
d. B values is user-defined and is best determined by trial and error; values between 3 and 10

tend to perform well with a range of lithologies.
G4. Natural logarithm of ratio between adjacent log values
G4i@) = Ln(G04/G04-1) (E7)

where i(d) represents the depth interval of the calculated G4 considering both depths d-1 and
d.
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Gb. Standard deviation of G4 for a specified overlying interval depth interval

Z};O(G‘li(d—j)—G4i(y)mean)2
G5 = \/ v (ES)

where the attribute G5;,is referred to as volatility, i(y) represents the depth interval between

recorded log depths d-y and d. y value is user-defined and is best determined by trial and error;

values between 3 and 10 tend to perform well with a range of lithologies.
G6. Moving-average volatility
G6isy = (25 GSigg—1))/6 (E9)

where § is a user-defined depth interval immediately above depth d. & is assigned a value of
10 for this dataset, as determined by trial and error; values between 3 and 10 tend to perform

well with a range of lithologies.
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Section S8. Optimizer cost function to encourage reduced selected features

The optimizer results should ultimately be assessed and ranked in terms of their prediction
accuracy. However, a key objective of the feature selection process is to seek feature
combinations that involve a small number of features but generate prediction accuracy equal
to or higher than that achieved by larger combination of features. This is achieved by
carefully defining the fitness score (FS) or cost function used as the objective function that
each optimizer attempts to minimize over a series of iterations (Wood, 2022d). The FS

formula used for the KNN-optimizer analysis in this study is that defined in Eq. (E10).

Z
Zmax

FS=oxe+pu( ) (E10)

where o is a user-defined constant with a value close to but just below 1, € is (1- accuracy),
where accuracy refers to the formation category prediction value achieved by the KNN model
applying a specific feature selection expressed in terms of a fractional error, x« is 1-o (a very
small number), Z represents the number of features selected by a specific KNN solution, and
Zmax represents the maximum number of features available for the KNN model to choose
from. This FS configuration penalizes feature-selection solutions to a slightly greater degree

the more features they select. The ¢ * € accuracy-derived component tends to dominate the

Z
maxz

FS value but the u ( ) component adds a sufficient penalty to encourage the FS to

favour solutions with fewer features selected. In the KNN-optimizer models evaluated in this

study a value of o =0.95 was applied, so u =0.05.
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