
Advances in
Geo-Energy Research Vol. 7, No. 3, p. 164-175, 2023

Original article

Insights from Boltzmann transformation in solving 1D
counter-current spontaneous imbibition at early and late time
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Abstract:
Counter-current 1D spontaneous imbibition in scaled form is investigated using Boltzmann
transform before and after water meets the closed boundary (early and late time). At
early time the system is self-similar and only depends on position divided by square root
of time. At late time it also depends on the interaction with the no-flow boundary and
hence a second variable, which is set as the square root of time. Diffusion coefficients
shifted to high saturations result in early time spatial saturation profiles with shorter
front distance, higher average saturation within the imbibition profile and larger imbibed
amount. Strongly water-wet systems have zero oil mobility at the inlet, while mixed-wet
systems have finite non-zero mobility. The imbibition rate is proportional to inlet diffusion
coefficient, inlet saturation gradient (regarding position divided by square root of time)
and inverse square root of time. Accordingly, the saturation gradient is infinite and finite
for strongly water-wet and mixed-wet systems. At early time, the profile does not change,
thus recovery is proportional to square root of time. When the front meets the no-flow
boundary (critical time), the saturation profile deviates from the early time profile first at
the no-flow boundary, then towards the inlet. When the inlet gradient changes, imbibition
rate declines faster than inverse square root of time. The interaction at the inlet and not the
closed boundary, thus determines when recovery stops being proportional to square root
of time and explains why such proportionality after critical time is reported. The findings
were confirmed by matching experimental data.

1. Introduction
Spontaneous imbibition (SI) refers to capillary force driven

displacement of non-wetting fluid by wetting fluid (Morrow
and Mason, 2001). This process is highly relevant for recovery
of hydrocarbons during water injection, reservoir drive dis-
placement of CO2 and hydrogen plumes during subsurface
storage in porous media and water loss during hydraulic
fracturing (Bennion and Bachu, 2010; Makhanov et al., 2014;
Zhou et al., 2022). In fractured reservoirs where the perme-
ability contrast is high, SI is especially important (Mattax and
Kyte, 1962). In low capillarity reservoirs, mobility control
of dominant fractures with foam or other chemicals can be
performed to obtain better sweep and storage efficiency (Sæle
et al., 2022). SI also permits water to invade zones of high
non-wetting phase saturation and create transition zones thus

expanding the extent of injected plumes.
SI can occur counter-currently or co-currently (Bourbiaux

and Kalaydjian, 1990; Meng et al., 2019) depending on
whether the system is exposed to only wetting phase (called
water), or both wetting and non-wetting phase (called oil),
respectively. This work considers counter-current SI (COUSI)
which is modeled using a capillary diffusion equation with
saturation dependent diffusion coefficient. The 1D problem is
in focus as SI in other geometries often is approximated to 1D
by a characteristic system length (Ma et al., 1997). Andersen
(2022) showed that all 1D COUSI problems can be modeled
in the same scaled form, and that scaled recovery can be well
described using a two-parameter correlation for all relevant
shapes of the diffusion coefficient.

It is noteworthy that diffusion and its equation in general
form has many applications including heat transfer (Carslaw
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and Jaeger, 1947), molecular and chemical transport (Crank
and Henry, 1949; Crank, 1979; Cussler, 2009) and oil/gas
production (Morrow and Mason, 2001). The results are thus
transferable. Boltzmann (1894) showed that the diffusion
equation with variable diffusion coefficient can be formulated
as an ordinary diffusion equation by expressing it as a function
of x/t0.5, a combination of the spatial and temporal variables
x and t. For a constant coefficient and semi-infinite media, the
error function solution was derived. He proposed a solution for
estimating the variable dependent diffusion coefficient based
on concentration observations and the self-similar form of
the equation. See Stenlund (2011) for a summary of classical
methods to estimate diffusion coefficients. Crank and Henry
(1949) considered adsorbing diffusing species and expressed
a solution for concentration implicitly as an integral of the
spatial distribution of the diffusion coefficient and constant
factor that needed to be determined to obey the initial condi-
tion. Larsson (2021) presented various numerical techniques
to solve the diffusion equation.

In the SI context McWhorter and Sunada (1990) assumed
the self-similar form to hold while expressing the flux as
declining with the square root of time. As a result, they
obtained general solutions for 1D SI valid for all saturation
functions, with the important result that saturation profiles
are invariant in shape and that recovery is proportional to
the square root of time. Schmid and Geiger (2013) derived
a general scaling time based on imbibed volume. Andersen
et al. (2020) extended the analytical solution and time scale
with viscous coupling effects, which effectively lower fluid
mobilities during counter-current flow (Qiao et al., 2018).
Andersen (2021) demonstrated that shale gas production with
rock- and fluid compressibility, adsorption, gas slippage and
permeability reduction could be treated in the same way.
Effectively, all these systems thus yield recovery proportional
to the square root of time. Deviations from such trends
have been used to identify non-standard flow mechanisms
(Makhanov et al., 2014; Tantciura et al., 2022). Khan et al.
(2018) implemented SI in a commercial simulator and showed
that the self-similar early time solution was produced under
different conditions. Le Guen and Kovscek (2006) presented
experimental saturation profiles they argued did not overlap
sufficiently to be self-similar, due to non-equilibrium effects.
Cai and Yu (2011) showed that in fractal tortuous media co-
current imbibition in capillaries could differ from square root
of time trends. Wang and Sheng (2018) showed that systems
where SI is combined with advective flow can be self-similar
if the advection rate declines with square root of time.

The main limitation of the self-similar solution is that it
theoretically is valid only at early time before the traveling
front interacts with any closed (or other type) boundaries.
During this interaction the system stops acting as infinite and
demonstrates a finite production/storage capacity. Recovery
against time eventually begins to decline faster than by the
square root of time trend. However, many studies have shown
that the square root of time trend is a very good approximation
until a much higher recovery than at the start of the interaction
(Li et al., 2006; March et al., 2016; Andersen, 2021, 2022).
Andersen (2022) estimated accurately how high recovery can

be obtained following square root of time, noting that it is
only a function of the shape, not magnitude, of the diffusion
coefficient of the relevant saturation interval. Coefficients
shifted to high water saturations (obtained at high oil-to-water
mobility ratio) can result in almost full recovery in this regime.

In this work SI for early- and full-time systems is inves-
tigated using the self-similar variable and the resulting ad-
vantages and challenges of these formulations are considered.
From our review, there seems to be a knowledge gap regarding
the self-similar behavior during the transition from early to
late time and in full-time solutions. In the full-time system
the effects of the closed boundary must be included through
a second variable. Some points of interest are: How is the
self-similar saturation profile affected by the closed boundary
at late times? How is this related to the overall impact on
recovery trends? What physical insights and understanding can
be gained from presenting the system in this form compared to
conventional formulations? First presented in Section 2, is the
mathematical system describing 1D COUSI. It is normalized
and then early- and full-time formulations based on the self-
similar variable are derived. Numerical results are presented
based on the different formulations in Section 3 and the paper
is concluded in Section 4.

2. Theory

2.1 Mathematical definition
The 1D counter-current spontaneous imbibition problem

for oil-water (i = o,w) can be formulated as a nonlinear
diffusion equation:

φ∂tSw =−∂x (Kλo fw∂xPc) , (0 < x < L) (1)
where x is position from the inlet, t time since imbibition
starts, φ is porosity, Sw water saturation, K permeability,
λi = kri/µi fluid mobility, kri relative permeability, µi viscosity,
fw = λw/(λw+λo) water fractional flow function, Pc capillary
pressure, and L system length. The initial condition is a
uniform residual water saturation Swr, the open boundary
exposed to water at x = 0 has a fixed zero capillary pressure
and the closed boundary is defined by zero fluid fluxes ui:

Sw(t = 0) = Swr, Pc(x = 0) = 0, ui |x=L= 0 (2)
The main assumptions leading to this description are incom-
pressibility of rock and fluids, homogeneity, immiscible fluids,
Darcy’s law and negligible gravitational and advective forces
compared to capillary forces.

Andersen (2022) showed that all 1D COUSI problems
can be scaled to depend on only a dimensionless diffusion
coefficient Λn with mean 1. A brief derivation is presented,
and that system is studied further. Introduce scaled position
X , time T , saturations S and Sn and capillary pressure J:

X =
x
L
, T =

t
τ
,

S =
Sw−Swr

∆Sw
, Sn =

Sw−Swr

Seq
w −Swr

, Pc = σowJ

√
φ

K

(3)

where ∆Sw = 1−Sor−Swr (Sor is residual oil saturation), σow
is oil-water interfacial tension, τ is a time scale and Seq

w is
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the saturation where capillary pressure is zero. The scaled
saturation 0 < S < 1 spans the mobile saturation interval and
is used to define saturation functions. However, the scaled
saturation 0 < Sn < 1 defines the saturation interval where
imbibition occurs. Define the dimensionless function Λ as:

Λ =
−krwkro

dJ
dS

krw

√
µo
µw

+ kro

√
µw
µo

(4)

This function is the saturation dependent part of the capillary
diffusion coefficient. Divide this function by its mean Λ over
imbibing saturations to define a normalized function Λn with
mean 1:

Λn(Sn) =
Λ(S)

Λ
, Λ =

∫ 1

Sn=0
Λ(S)dSn (5)

Λn (and Λ) depend on the saturation functions kri and J
and viscosity ratio, but no other parameters. Define the time
scale τ by:

τ =
∆SwL2√µoµw

σowΛ

√
φ

K
(6)

Based on the scaling and definitions above the system in Eqs.
(1) and (2) can be written as:

∂T Sn = ∂X (Λn(Sn)∂X Sn) (7)

Sn(T = 0) = 0, Sn(X = 0) = 1, [Λn(Sn)∂X Sn]X=1 = 0 (8)
where only the diffusion coefficient Λn(Sn) varies from one
problem to another, depending on saturation functions and
viscosity ratio, but not other properties (Andersen 2022). Other
parameters (permeability, critical saturations, etc) are required
only to unscale the solution. Scaled saturation Sn ranges from
0 to 1 during SI. The recovery factor (RF) is the fraction
produced oil of oil that can be produced by SI and thus equals
mean scaled saturation:

RF = Sn (9)
In this work, 1D COUSI solutions of the scaled system are
investigated by means of self-similar variables at early and
late times.

2.1.1 Self-similar early time solution

First, assume the imbibing water saturation profile has not
reached the closed boundary (defined as the critical time Tc).
This period is referred to as early time (T < Tc) . The aim is a
solution approach that incorporates important features of the
system and directly returns important output parameters. To
do so, introduce the Boltzmann variable Z which is related to
the space and time variables and derivatives through:

Z = XT−0.5, ∂T =−0.5ZT−1
∂Z , ∂X = T−0.5

∂Z (10)
and results in the following expression of the differential Eq.
(7) and associated conditions Eq. (8) (except for the closed
boundary):

Z∂ZSn =−2∂Z(Λn(Sn)∂ZSn) (11)

Sn(Z = ∞) = 0, Sn(Z = 0) = 1 (12)
A key advantage of expressing the system in this way is
that at early time the system does not interact with the
closed boundary and hence only depends on Z as an ordinary
differential equation. The one solution Sn(Z) to this system
thus represents all space-time solutions at early time.

McWhorter and Sunada (1990) derived an analytical solu-
tion for early time, which was reformulated to the scaled form
of Eq. (13) in Andersen (2022) as follows:

X(Sn) = 2AF ′(Sn)T 0.5, T 0.5
cr =

1
2AF ′(Sn = 0)

(13)

The first equation states that the position of a saturation is
proportional to the square root of time, a constant A and the
saturation derivative of a function F(Sn). The second equation
defines the critical time at which the fastest saturation reaches
the closed boundary at X = 1. From this, express the profile
in terms of Z and define the profile’s largest Z and its relation
to the critical time as:

Z(Sn) = 2AF ′(Sn),

Zcr =
X(Sn = 0)

T 0.5 =
1

T 0.5
cr

= 2AF ′(Sn = 0)
(14)

The recovery RFcr when meeting the boundary (which
also equals the average saturation behind the front position) is
(Andersen 2022):

RFcr = 2AT 0.5
cr =

1
F ′(Sn = 0)

(15)

The recovery factor during the early time period is given by
the area of the imbibed profile, which is the average saturation
of the profile, RFcr, times the distance of the profile, Zcr,
divided by the distance of the system 1/Y ≥ Zcr.

RFearly(Y ) = 2AT 0.5 = RFcrZcrY, (0 < Y ≤ 1
Zcr

) (16)

Note that only Y is non-constant above and that an increment
in Y gives a proportional increment in RF .

2.1.2 Solution for all times

At late time, defined as after the saturation front has
reached the no-flow boundary, the solution is affected by a
second variable. Especially consider that Z(X = 1) = 1/T 0.5

reflects the boundary location and how long the process
has been ongoing, while the variable Z = X/T 0.5, obeying
0 < Z < 1/T 0.5 reflects the positions between the inlet and
closed boundary at that time. For convenience select the
second variable as Y = 1/Z(X = 1) = T 0.5 and use it together
with Z, i.e., Sn = Sn(Z,Y ). When reformulating Eq. (7) Z is
used in the spatial derivatives (as in Eq. (10)) and Y in the
temporal derivative:

Y = T 0.5, ∂T = 0.5T−0.5
∂Y (17)

The system can then be written as:

∂Y Sn =
2
Y

∂Z(Λn(Sn)∂ZSn),

(
0 < Z <

1
Y

)
(18)
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Sn(Z,Y = 0) = 0, Sn(Z = 0,Y ) = 1
[Λn(Sn)∂ZSn]Z=1/Y = 0

(19)

This system can be solved from zero time or as a continuation
of the solution from the early time system Eqs. (11) and (12).

2.2 Imbibition rate
From Eq. (7), note that the scaled flux q0 of water imbibing

into the system at the open boundary is:

q0 =−Λn(Sn)∂X Sn |x=0= [−Λn(Sn)∂ZSn |Z=0]T−0.5 (20)
The last equality follows directly from the definition of Z.
During the early time / infinite-acting period the inlet flux
is proportional to T−0.5 which is consistent with the above
expression as the saturation profile against Z is fixed during
that period. However, at late time the saturation profile will no
longer only depend on Z. The saturation is at all times fixed
at Z = 0, but the saturation gradient will begin to change.

Tavassoli et al. (2005) pointed out that the oil mobility
and hence diffusion coefficient Λn approaches zero at X = 0,
which must be compensated by an infinite saturation gradient.
Their product is however finite and constant during early time
(McWhorter and Sunada 1990). This is however only the case
for strongly water-wet media, but not mixed-wet media where
oil still has mobility at the saturation where SI stops.

2.3 Numerical implementation
Discretization procedures of the early and full time so-

lutions are outlined. They were implemented in Matlab. The
Z-axis was discretized into N = 1500 cells of fixed width ∆Z
having center positions Zi = (i− 1/2)∆Z. In the early-time
system the maximum Z value was set sufficient to satisfy
the initial condition (see Section 3.2). In the full-time system
the initial time was set in agreement with this limit, with the
maximum Z subsequently obeying Zmax = 1/Y .

2.3.1 Early time system discretization

Let saturation Sn in cell i be denoted Si, and let i = 0
be a ghost cell outside the inlet with saturation S0 = 1. The
initial condition is implemented by setting SN+1 = 0. A finite
difference approximation of Eq. (11) results in:

− 2
∆Z

[
Λi+0.5

(Si+1−Si)

∆Z
−Λi−0.5

(Si−Si−1)

∆Z

]
=

Zi(Si−Si−1)

∆Z
, (i = 1 : N)

(21)

where Λi+0.5 = Λn (0.5(Si +Si+1)). Eq. (21) can also be writ-
ten as:

Fi(Si−1,Si,Si+1)

:= [Λi+0.5(Si+1−Si)−Λi−0.5(Si−Si−1)]

+
Zi∆Z

2
(Si−Si−1) = 0, (i = 1 : N)

(22)

At i = 1, apply Si−1 = 1, while at i = N apply Si+1 = 0. The
N equations defined by Fi = 0 are solved using linearization
with Newton-Raphson’s method:

Fk+1
i = Fk

i +∑
j

(
∂Fi

∂S j

)k

∆Sk
j = 0

∆Sk
j = Sk+1

j −Sk
j, (i = 1 : N)

(23)

This linear system is tridiagonal wrt ∆Sk
j and can be solved by

direct or indirect methods. When the iterations do not affect
the coefficients or solution estimate further, the solution has
converged.

2.3.2 Full time system discretization

Saturation Sn in cell i at old time step n is denoted Sn
i .

Evaluation at new time step n+ 1 is not explicitly indicated
for Si, Si+1, Y , Λi±0.5, ∆Z. The time steps ∆Y =Y n+1−Y n are
assumed fixed. Eq. (18) can then be discretized fully implicit
as:

Si−Sn
i

∆Y
=

2 [Λi+0.5(Si+1−Si)−Λi−0.5(Si−Si−1)]

Y (∆Z)2 (24)

define γY Z = 2∆Y/Y (∆Z)2 and write Eq. (24) as a function
Fi to be zero. The boundary conditions are included the same
way as for the early time solution, while the initial condition
is included as S0

i = 0.

Fi(Si−1,Si,Si+1)

:= (Si−Sn
i )+ γY ZΛi−0.5(Si−Si−1)

− γY ZΛi+0.5(Si+1−Si) = 0, (i = 1 : N)

(25)

This system is solved with Newton-Raphson’s method each
time step.

3. Results and discussion

3.1 Saturation function correlations
The applied saturation function correlations are given by:

kri = k∗ri(Si)
ni , ni = ni1S+ni2(1−S), (i = o,w) (26)

J =−J1 ln
S

Seq
+ J2 ln

1−S
1−Seq

(27)

where S denotes scaled mobile saturations and Seq the highest
imbibing mobile saturation (where scaled imbibing saturation
is Sn = 1). Note that Sn = S/Seq. k∗ri are relative permeability
end points, ni saturation dependent Corey exponents (varying
between ni1 and ni2) and J1, J2 are J-function fitting parame-
ters. The definition of the function Λ results in:

Λ =
J2k∗ro√

µo
µw

Snw−1(1−S)no J1
J2
+Snw(1−S)no−1

S
nw+

k∗roµw
k∗rwµo

(1−S)no
(28)

Λn is simply Λ divided by its mean Λ over the imbibing
saturation interval. The shape of Λn is determined by the
relative permeabilities, J-function and the mobility ratio M =
(k∗roµw)/(k∗rwµo). Other parameters (such as J2k∗ro/

√
µo/µw

which cancels during normalization) do not affect Λn which
has magnitude 1 but affect how the scaled solutions are
converted back to unscaled dimensions.

To quickly assess the diffusion coefficients Λn a quantifi-
cation is made of the fraction of the coefficient shifted to the
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Fig. 1. Numerical solutions of Eq. (11) (a) to obtain the early time solution Sn(Z) for Λn = 1 on intervals 0 < Z < Zmax for
different choices of Zmax. Selecting Zmax too low gives incorrect solutions, while sufficiently high values reproduce the correct
analytical solution (erfc). Critical values Zcr (b) are plotted for different Λn (5,500 functions from Andersen (2022)) against
their fraction z01.

right-hand side, defined by z01:

z01 =

∫ 1
Sn=0.5 ΛndSn∫ 1
Sn=0 ΛndSn

, (0 < z01 < 1) (29)

Such a fraction (or more detailed description of the shape
of Λn) determines most of the resulting recovery behavior
(Andersen, 2021, 2022).

3.2 Reasonable initial range of Z

The simplest solution to the system Eqs. (11) and (12) is
setting Λn = 1 constant. This results in the well known erfc
solution (Boltzmann, 1878; Cussler, 2009), which adapted to
our system is:

Sn = erfc
(

Z
2

)
, (0 < Z < ∞) (30)

This profile does not actually go to zero at a finite distance, but
quickly approaches extremely small values. A front at Zmax = 5
was defined such that 0.9999 of the imbibed profile is behind
this position (for comparison 0.9995 is behind Z = 4.5).

The system Eqs. (11) and (12) was solved with Λn = 1
to demonstrate the importance of selecting a sufficiently large
Zmax, see Fig. 1(a). If Zmax is sufficiently large (4 or higher)
identical solutions Sn(Z) are obtained obeying the same initial
condition and obtaining this value Sn = 0 at large enough Z.
The analytical erfc solution is reproduced. However, if Zmax
is selected too small (2 or 3 in this example), the solution
is forced to equal the initial condition at a finite rather than
infinite distance. This does not produce the correct early time
solution.

When comparing general solutions to the erfc solution

there are two trends. Coefficients Λn shifted right (high z01)
imbibe more after the same time T (or Y ) due to increasing
A with z01 but have more compact saturation profiles (higher
RFcr) (Andersen, 2022). Oppositely, coefficients shifted left
(low z01) imbibe less (lower A) but have low average saturation
of the imbibing profile (low RFcr). In both cases, the two can-
celling effects suggest that the fastest saturation may not have
travelled very differently compared to the erfc solution. Based
on a dataset of 5,500 realistic Λn coefficient functions Zcr was
calculated analytically and plotted against the corresponding
z01 in Fig. 1(b). For most cases, Zcr is between 1.5 and 5,
with Zcr decreasing as z01 increases. However, at low z01 < 0.2
it may be necessary to use a high Zcr ≈ 10.

3.3 Investigation of imbibition behavior
3.3.1 Input parameters

Input relative permeabilities and J-function were based on
experimentally measured imbibition curves from Kleppe and
Morse (1974). See Fig. 2 and the related parameters in Table
1. Their data were strongly water-wet (SWW). To consider
behavior also for mixed-wet (MW) cases a modified J-function
was added where Seq (scaled saturation S where J is zero)
is changed from 0.999 (SWW) to 0.75 (MW), with other
parameters fixed.

3.3.2 Diffusion coefficients and early time solution

Six oil-to-water mobility ratios M were considered (higher
and lower than the reference value of 4.7) for both wettability
cases to vary the shape of the diffusion coefficient Λn, see Fig.
3. Higher mobility ratio M causes the diffusion coefficients to
be shifted to higher saturations as quantified by higher values
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Fig. 2. Saturation functions adapted to measured functions from Kleppe and Morse (1974) on strongly water-wet media (J-
function (a) and relative permeabilities (b)). The MW J-function is based on shifting the crossing point of the SWW curve to
Seq = 0.75. The functions are shown on the full mobile saturation interval 0 < S < 1.

Table 1. Saturation function- and other parameters used to define Λn, based on Kleppe and Morse (1974).

Parameters nw1 nw2 no1 no2 k∗rw k∗ro µo(cP) µw(cP) M J1 J2 Seq

Value 6 2.5 2 0.5 0.07 0.75 2.3 1 4.7 0.3 0.03 0.999
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Fig. 3. Scaled diffusion coefficients Λn for SWW (a) and MW (b) cases for six different mobility ratios M varying five orders
of magnitude. The functions are shown on the imbibing saturation interval 0 < Sn < 1.
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Table 2. Quantified diffusion coefficients and imbibition behavior for different mobility ratios and wettabilities.

M
SWW (Seq = 0.999) MW (Seq = 0.75)

z01 A RFcr Zcr RFcrZcr z01 A RFcr Zcr RFcrZcr

4.7e2 0.925 0.669 0.735 1.82 1.34 0.859 0.655 0.653 2.01 1.31

4.7e1 0.885 0.647 0.664 1.95 1.29 0.857 0.654 0.651 2.01 1.31

4.7e0 0.800 0.612 0.568 2.16 1.23 0.843 0.649 0.634 2.05 1.30

4.7e-1 0.603 0.563 0.451 2.50 1.13 0.760 0.622 0.556 2.24 1.25

4.7e-2 0.307 0.500 0.325 3.08 1.00 0.526 0.563 0.418 2.70 1.13

4.7e-3 0.133 0.432 0.214 4.03 0.86 0.267 0.490 0.279 3.51 0.98
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(b)

Higher M and z
01

Higher M and  z
01

(a)

Fig. 4. Early time saturation profiles Sn(Z) for SWW (a) and MW (b) cases for six different mobility ratios. The full lines
represent numerical solutions of the early time differential equation, while the circles represent the semi-analytical solution
(only a few points shown) included for validation.

of z01 (Table 2). CO2 and H2 have high mobility compared to
water (high M) and their spontaneous displacement by water
imbibition can be considered represented under the high M
cases. Water is considered strongly or preferentially wetting
compared to H2 and CO2 in sandstone aquifers but can be
less wetting in reservoirs where polar oils have aged the rock
surface (Iglauer et al. 2021).

The early time saturation profile for each diffusion co-
efficient is plotted as Sn(Z) for MW and SWW cases in
Fig. 4, using all six mobility ratios. Numerical solutions
of Eq. (11) (full lines) are validated by the semi-analytical
solution Eq. (14) (circles). Zmax was set to 5 which was
sufficient to achieve the initial condition Sn = 0 ahead of the
imbibition front for all cases. Zcr can be determined from
where the saturation profile reaches the initial condition and
then the critical time is found as Tcr = 1/Z2

cr , see Eq. (14).
Equivalently, Ycr = 1/Zcr.

For both wetting states (or a given set of saturation
functions), the impacts of increasing the oil-to-water mobility
ratio are (a) the front Zcr reaching a shorter distance, (b)

higher average saturation (equal to RFcr) within the imbibition
profile, (c) higher total amount imbibed, as quantified by larger
imbibition rate coefficient A, or the product RFcrZcr (the area
of the imbibed profile). This is also quantified in Table 2. Note
that the profile area RFcrZcr increases although the distance
Zcr decreases. The strong trend in RFcrZcr with z01 is expected
since the imbibition coefficient A has been shown to correlate
predominantly with z01 regardless of the saturation functions
and viscosities applied to generate the Λn (Andersen, 2022).
The lower Zcr with higher z01 is consistent with the general
trend in Fig. 1(b): The z01 between 0.1 and 0.9 and Zcr from
2 to 4 corresponds well with the rest of the data.

Considering SWW states, Λn is zero at Sn = 1 by defi-
nition (the capillary pressure goes to zero at the residual oil
saturation). To have a finite imbibition rate q0, see Eq. (20),
the inlet saturation gradient must be infinite, which is seen
in Fig. 4 for all mobility ratios. However, at more favorable
(high) M the saturation gradient declines in magnitude very
quickly when distancing from the inlet. For the MW states, Λn
is nonzero at Sn = 1 and the finite imbibition rate requires a
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Fig. 5. Saturation profiles Sn(Z) at different times Y = T 0.5 shown for SWW ((a) and (b)) and MW ((c) and (d)) cases with
high ((a) and (c)) and low ((b) and (d)) mobility ratio M. The early time solution calculated semi-analytically is included for
comparison.

finite inlet saturation gradient, which is clearly seen for all
cases. A finite saturation gradient at the inlet is also seen
for the erfc solution in Fig. 1, which is based on a constant
(and thus finite) coefficient Λn = 1 at the inlet. However, the
tendency for a gradient to be sharp in the surroundings of
the inlet seems to be how much mobility there is overall at
high saturations. If the coefficient is shifted to high saturations
(high z01), generally a flatter saturation profile (low saturation
gradient) is observed.

If the mobility ratio is sufficiently high, the mobility of
oil can be ignored compared to that of water and Λn ∝ krwJ′.
The SWW coefficients in Fig. 3 are relatively distinct although
the two cases with highest M are more comparable. At high
water saturations the oil mobility goes to zero and it cannot be
ignored compared to the water mobility. For the MW cases,
however, the three diffusion coefficients with highest mobility
ratio are almost identical and provide almost overlapping
saturation profiles. Compared to the SWW case only one
parameter was changed which is where the J-function is zero.
However, this causes the imbibition saturation range to cover
saturations where oil has finite and much higher mobility.
Under these conditions the oil mobility can be neglected at

lower (but sufficiently high) mobility ratios.

3.3.3 Full time solution

Next, consider the full-time system Eqs. (18) and (19) and
its solutions. Time steps ∆Y smaller than Ycr = 1/Zcr should
be used to ensure the early time solution is captured. From
Fig. 1 and Fig. 4 it is found that ∆Y < 1 ensures this.
Practically, to get accurate derivatives more time steps were
necessary. Simulation was performed until Y = 2.5 using 500
time steps, i.e., ∆Y = 0.005. Two SWW and two MW cases
were considered with mobility ratios M equal 4.7e-2 and 4.7e0.
The saturation profiles Sn(Z) are shown at different times Y
in Fig. 5.

At the two lowest times Y the profiles (blue and red lines)
overlap and are identical to the unique early time solution
(also shown as blue circles calculated by the semi-analytical
solution for validation).

The closed boundary at Z = 1/Y moves closer to the early
time profile and the vertical axis with time. When the closed
boundary meets the saturation profile, the saturation profile
covers a shorter interval on the Z-axis, but the saturations
on that interval increase as the imbibing profile cannot pass.
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The dashed lines indicate the extended early time solution RF = RFcrZcrY . The critical time points (Y = 1/Zcr,RF = RFcr) are
shown for each curve.

The brown full-line curve is the first to deviate from the
early time profile and marks that the critical time Ycr = T 0.5

cr
has passed. An interesting observation is that although the
profile has interacted with the closed boundary, the impact
is local and most of the profile that is not near the closed
boundary looks like the early time solution. The late time (post
critical) profiles terminate at saturations higher than the initial
condition, with a zero saturation gradient indicating the closed
boundary. Notably, the interaction with the closed boundary
travels as a wave towards the inlet, showing deviation from
the early time profile on a greater interval with time.

Eventually the deviation is noticeable across the full pro-
file, including the gradient at the inlet position Z = 0 (the inlet
saturation itself is fixed). The profiles where this is visible
are dashed. The change in inlet saturation gradient ∂zSn |Z=0
marks a change in imbibition rate from being proportional to
T−0.5 = 1/Y (and thus recovery being proportional to Y ) to
declining faster as the magnitude of ∂zSn |Z=0 decreases, see
Eq. (20).

To evaluate the relation between the saturation profiles
and recovery behavior, recovery factor is plotted against Y
in Fig. 6. Of main interest is to determine what controls when
recovery stops being linear with square root of time, i.e. linear
with Y .

First of all, note that the saturation profiles in Fig. 5 have
encountered the closed boundary at Y = 0.5, 0.35 (SWW, high
and low M), 0.5 and 0.4 (MW, high and low M), roughly
defining the critical times (exact times are indicated in Fig.
6). However, the corresponding times where a clear visual
separation can be detected between the recovery curve and
the straight line (extended from early time) is at Y = 0.65,
0.5 (SWW, high and low M), 0.65 and 0.55 (MW, high
and low M). In all the four cases, the onset occurs at a

delay of Yonset −Ycr ≈ 0.15 and the difference in recovery
is RFonset −RFcr ≈ 0.15 to 0.20. Such consistent delays in
deviation from square root of time recovery compared to the
critical time were reported for large datasets of simulations
in Andersen (2021, 2022). Andersen (2022) also showed that
experimental early time 1D COUSI data from Fischer et al.
(2008) were linear when plotted against square root of time.
Li et al. (2006) tested 1D water-oil imbibition and their data
showed that the front met the closed boundary at 90 sec0.5,
while recovery was linear with square root of time until 110
sec0.5. They could match both features with simulation.

The onset times correspond very well with the times of the
last profiles which have similar inlet saturation gradient as the
early time solution (the full line with highest saturations): Y =
0.65, 0.55 (SWW, high and low M), 0.6 and 0.55 (MW, high
and low M). This confirms that it is not the interaction with
the closed boundary, but the subsequent interaction with the
inlet boundary that determines when the square root of time
recovery behavior ends.

3.4 Interpretation of experimental data
Ruth et al. (2016) measured in-situ saturation profiles and

production vs time during 1D COUSI. Before interpretation,
data consistency was checked such that the recovery based on
both saturation profiles and production became zero at zero
time and that the recovery from both sources overlapped at
identical times. A corrected time was required by shifting the
square root of time as t0.5

cor = t0.5 +∆t0.5. ∆t0.5 was equal 0.7
min0.5 for saturation profile data and -1.1 min0.5 for production
data. Ultimate oil production was set slightly higher than the
last observed cumulative production when defining recovery.

Four saturation profiles were from early time and a fifth at
late time. Data from six core locations were reported. The ea-
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rly time data were first plotted against X/t0.5 (t in min)
which collected the curves to one spatial profile Sn

(
X/t0.5

)
,

see Fig. 7(a). The critical value where the curves approach
zero saturation was found as

(
X/t0.5

)
cr = 1/t0.5

cr ≈ 0.10 and
used to define the critical (root of) time: tcr = (1/0.10)2 =(
10 min0.5

)2
= 100 min.

The spatial axis was then scaled wrt the critical value,
yielding Z/Zcr. This plot was matched with numerical simula-
tion in Fig. 7(b) by selecting a SWW function Λn (to capture
the strong gradient at the inlet), shifted to high saturations
(to capture the high average saturation in the profile), but
with somewhat limited mobility at the highest saturations (to

capture that the highest saturations travel slowly). The curve
fits the four early time profiles well.

Two late time profiles were also generated: one predicting
the experimental data at 12.6 min0.5 and one at 11.5 min0.5

(after the critical time). Both these curves differ from the
early time curve, but the 12.6 min0.5 curve is the first to
show deviation near the inlet, suggesting recovery should
stay proportional to square root of time until 12.6 min0.5, a
significant period later than the critical time 10 min0.5, almost
an hour delay.

That predicted delay is confirmed by the recovery data in
Fig. 8. The recovery at the critical time is ∼0.7, but simulated
deviation from the straight line only occurs at recovery of 0.83.
The experimental data suggests the linear behavior to last even
longer (∼0.9 recovery).

Spatial profiles in regular spatial coordinates X are also
shown in Fig. 7(c). The model solution simply expands the
same invariant profile until meeting the no-flow boundary and
then obtains a zero saturation gradient at X = 1 with increasing
saturations. The early time solution meeting the boundary at
t = 10 min0.5 is confirmed in this plot.

3.5 Comparison with traditional approaches
The standard way of considering the diffusion system is

with variables position x and time t. That approach may
however provide little insight. By first scaling the system to
variables X and T the solution only depends on whether the
coefficient Λn is shifted to low or high saturations (Andersen
2022). By further presenting the system in the early time form
the solution is invariant in shape and can thus determine the
profile at any early time, as a simple expansion, as well as
directly calculating the critical time when this solution form
ceases to be valid (from the output Zcr), as illustrated in the
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previous section.
The full-time solution expressed with Z, Y preserves the

invariant solution form until late time and is independent of
Y initially but captures the transition when the imbibition
profile meets the closed boundary. At early time less volume
imbibes per unit time T , however, the same amount imbibes
per unit Y , which is more visual and intuitive. For example,
recovery is linear against Y while it is difficult to present
recovery data visually in a linear time plot. Equivalently, early
time imbibition profiles at same increments in Y have same
difference in imbibed volume.

A practical challenge of the Z-variable is that the solution
on the applied range 0 < Z < Zmax the applied range must
contain the initial condition. For diffusion coefficients shifted
to high saturations (high z01) lower Zmax could be used, even
lower than the erfc solution. However, for coefficients shifted
to low saturations (low z01) high Zmax are necessary. From our
analysis, accurate estimates of Zmax > Zcr can be made for any
diffusion coefficient resulting in correct early time solutions.

4. Conclusions
The 1D counter-current spontaneous imbibition problem

was considered, first in a general scaled form and then trans-
lated to a new set of variables. At early time only the variable
Z = X/T 0.5 is needed to determine the unique solution Sn(Z),
while at late times it depends on a second variable which
was selected to be Y = T 0.5. Early and full-time systems were
investigated. Diffusion coefficients Λn were characterized by
the fraction z01 of their area on the top-side saturation interval.
High oil-to-water mobility ratios correspond to high z01. The
following was concluded:

1) When increasing M or z01 the impacts on the early
time profile are: the front position Zcr travels shorter;
the imbibition profile obtains higher average saturation;
higher total amount imbibes.

2) The imbibition rate at any time is determined by Λn times
∂ZSn, both evaluated at the inlet, times inverse square
root of time. For SWW cases the coefficient is zero
since capillary pressure is zero at immobile oil saturation,
yielding an infinite saturation gradient. For MW cases the
coefficient is nonzero since capillary pressure is zero at
a saturation where both fluids are mobile. This results in
a finite saturation gradient.

3) At early time Sn(Z) is invariant, hence the inlet ∂ZSn
is constant and imbibition rate remains proportional to
inverse square root of time. At critical time, water meets
the no-flow boundary. Sn(Z) begins deviating from the
early time profile, first at the no-flow boundary, then
towards the inlet. After sufficient time the inlet ∂ZSn is
affected, causing imbibition rate to decline faster than by
inverse square root of time. Since the interaction with
the inlet boundary, not the closed boundary, determines
imbibition rate; recovery can stay linear with square root
of time much longer than the early-time period.

4) At high M the mobility of oil becomes negligible com-
pared to that of water and Λn becomes independent of
M. So do the resulting solutions. For SWW cases the

mobility of oil goes to zero at high saturations making
it very difficult to be fully negligible. However, for MW
cases oil mobility stays finite and the solutions become
insensitive to M at much lower M.
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