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Abstract:
Traditional formation evaluation via laboratory testing and wireline logging of horizontal
wells and deep formations face challenges due to several reasons and lead to uncertain
results. Real-time cuttings and drilling data analysis of horizontal wells is an actively
developing alternative approach to formation evaluation that can overcome several chal-
lenges faced by laboratory testing and wireline logging in providing improved estimates
of formation parameters relevant to reservoir and completion quality. This study presents
a state-of-the-art review of the latest methods and technologies in drill cuttings analysis
to enable real-time characterization of the entire suite of formation properties, including
chemical composition, densities and porosity, permeability, lithology, geomechanical
properties, and characterization of fracture patterns. Specifically, the methods/techniques
that enable characterizing drill cuttings in real-time and critically reviewed in this study
include Raman spectroscopy for chemical composition, nuclear magnetic resonance for
densities and porosity, liquid pressure pulse for permeability, deep learning for rock
classification, 7 different methods for geomechanical properties, and mud loss signatures
for characterization of fracture patterns. Benchmark comparison of drill cuttings analysis
with the measurements from the core samples at similar depths is also reviewed. Key
learnings are provided in 4 areas: to address the uncertainties in estimates of specific
parameters affected by physical deformations due to drill bits, minimum cutting size for
reliable nuclear magnetic resonance data, sweet spot identification, and power and network
considerations for real-time analysis, respectively.

1. Introduction
The majority of new production wells in North America

since 2012 have been horizontal, which now account for
about 87% of the 14,832 total wells that started producing in
2022. In China, onshore oil and gas development is moving
to unconventional shale and deep formations with horizontal
wells in harsh conditions. With rapid development of uncon-
ventional horizontal wells where drilling and completion times
continue to decrease with advancement of technology and its
rapid implementation, such as fully remote smart drilling rigs
and simultaneous fracturing, the advancements in formation
evaluation are yet to see similar rapid implementation in
the field. Typically, formation evaluation requires wireline
logs and conducting time-consuming core-scale experiments
to acquire parameters relevant to reservoir and completion (ge-

omechanical) quality. Acquiring laboratory-sized rock samples
(∼1 inch) from some target depths in shale reservoirs is chal-
lenging due to their relatively higher susceptibility to physical
(e.g., delamination) and chemical instabilities that may change
their actual in-situ properties, plus these samples are usually
not recovered in horizontal drilling of the lateral. Further,
wireline logging in deep formations (with high pressure and
temperature) and mudrocks with horizontal wells faces several
challenges (Yang et al., 2022). Therefore, traditional formation
evaluation methods are generally inadequate to accurately
capture the heterogeneity and anisotropy of unconventional
shale resources and other deep formations.

Advancements in digitalization of oilfield assets and op-
erations through 4th era (Industry 4.0) of digital technologies
(e.g., cloud/edge computing, real-time data streaming, machine
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learning, big data analytics, Internet of Things, etc.) has led
to the development of innovative methods that can analyze
drill cuttings and drilling data in real-time for rapid charac-
terization of parameters relevant to reservoir and completion
quality. Acquiring drill cuttings incurs no additional cost and
they cover relatively larger depth of stratigraphic section. A
significant advancement in formation evaluation is the real-
time analysis of drill cuttings, which are retrieved along with
drilling fluids at the surface before passing through shaker-
s/vibrating machines to separate the cuttings from the drilling
fluids and may be analyzed to estimate parameters relevant to
reservoir and completion quality. Typically, each well-drilling
operation produces tons of drill cuttings that are discarded,
reinjected into the subsurface, buried in-situ, or placed in
landfills (Martogi et al., 2019). Drill cuttings are an abundant
source of data that covers a larger stratigraphic section in
comparison to cores, and its analysis in near real-time en-
ables relatively economical characterization of reservoirs, such
as characterization of mineralogy, petrophysical properties,
mechanical properties. Drill cuttings provide some unique
advantages over other forms of data, which are its zero cost
of acquisition and the relatively larger depth of stratigraphic
section covered by drill cuttings. One of the main limitations
to the use of drill cuttings for reservoir characterization is
the presence of uncertainty in their tagged depths (Wittman
et al., 2020; Singer et al., 2021), besides uncertainties in
other parameters like porosity and density (Sanei et al., 2020).
Although depth-matching is not required for the horizontal
section of the well (Singer et al., 2021), depths of the drill
cuttings in the vertical section of the wellbore are usually
calibrated by comparing the properties measured from drill
cuttings with their corresponding depth-calibrated measure-
ments from well-logs. Further, one of the most promising
measurements from drill cuttings are the mechanical properties
of rocks, which are generally estimated from well-logs and/or
laboratory measurements of core samples. Specifically, recent
developments in small-scale testing (e.g., micro/nano indenta-
tion technique (Haftani et al., 2013; Glover et al., 2016; Dong
and Chen, 2017) have enabled use of drill cuttings for rapid
measurements of geomechanical properties of rocks that can
be used in optimized placement of the horizontal lateral and
in designing the hydraulic fracturing (HF) job. Particularly,
two unique advantages of drill cuttings over core samples
are continuous and rapid measurements (versus discrete and
slow measurements from cores), whereas the advantage of drill
cuttings analysis over well-logs is its low-cost. Further, the
advancements in digitalization techniques and methods have
theoretically enabled the near real-time use of drill cuttings in
predicting formation properties, which is a new and actively
developing area that can play an increasingly important role
in cost-efficient drilling and completion of horizontal wells.

The rest of the paper is organized as follows. Section 2
provides a detailed description of the latest techniques, their
novelty, limitations, and applications. Section 3 reviews the
learnings about uncertainties in key parameters and data, sweet
spot identification via trapped fluid analysis, and other con-
siderations for real-time analysis. The final section provides a
brief discussion related to the current situation, limitaiton, and

prospects... for real-time drill cuttings analysis.

2. Summary of technologies
Traditional analysis of drill cuttings involved three basic

steps, which include: sample collection at shale shakers, cut-
tings cleaned of mud (drilling fluids) and dried, and crushed
cuttings probed with X-ray fluorescence (XRF) for elemental
composition, and X-ray diffraction (XRD) for mineralogy.
The elemental composition is typically used to estimate syn-
thetic GR-log from uranium (U), thorium (Th), potassium
(K) obtained through XRF on cuttings. However, now it is
not uncommon to acquire other supplementary measurements
that are used for estimation of different parameters through
various methods and techniques as summarized in Table 1,
and discussed in detail ahead.

2.1 Chemical composition from raman
spectroscopy

The use of Raman spectroscopy to characterize subsurface
formations has become relatively more popular in the last
decade (Truong-Lam et al., 2019; Katende et al., 2021) due to
few major advantages over conventional optical microscopy
as follows: ease of implementation, molecular sensitivity,
non-destructive method, no sample drying required (unlike
Infrared radiation spectroscopy), overcomes the limitations
of wavelength dispersive X-ray fluorescence. These major
advantages of Raman spectroscopy enable identifying precise
composition of mineralogy at < 1µm scales without any
sample preparation as shown in Fig. 1. Raman spectroscopy
measures the molecular vibrational frequency and the surface
chemistry that also includes organic matter in rocks and gases,
which is of significant importance in characterization of shale
resources, for example, to determine the interactions of fluids
and proppants with the rock (Katende et al., 2021).

2.2 Densities and porosity from nuclear
magnetic resonance (NMR)

There is an increased interest in the value of NMR cutting
analysis for formation evaluation particularly for horizontal
wells that constrain the deployment of well-logging. NMR
cutting analysis senses fluids in pore spaces and relies on the
integrity of pore structure and the retention of fluids in the
pore space (Mohnke et al., 2017; Althaus et al., 2019, 2020;
Wittman et al., 2020; Singer et al., 2021).

(1) Theory
Drill cuttings are usually of the size that is ∼0.5-3 mm with

rough surfaces, such that the volume of fluid accumulated on
the surfaces (e.g., due to contamination of drilling mud) of
cuttings (Vl) can be similar to the volume of fluids present
inside the rock cuttings (Vφ ) as shown in Fig. 2.

The quantity and type of fluids present in a reservoir rock
can be measured using low-field NMR (Althaus et al., 2020)
that measures the spin-spin relaxation time (T2), per Eq. (1),
which enables identifying the fluid type and pore size. There-
fore, accurate porosity measurement through NMR that works
by sensing the fluids should ensure that the contribution of
the surface fluids to the porosity are identified and eliminated;
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Table 1. Summary of parameters, and their method of measurement, acquired using drill cuttings and drilling data.

Formation characteristic Measured parameters Data source Method Application

Chemical compositions

Elemental composition Cuttings XRF Extensive

Mineralogy Cuttings
XRD Extensive

Raman spectroscopy Novel

TOC content Cuttings LECO carbon analyzer Extensive

Kerogen type, sample maturity Cuttings Rock-Eval pyrolysis Extensive

Densities Mineral and grain density maps Cuttings

Automated petrography systems Extensive

DRIFTS for kerogen part only Limited

NMR Extensive

Porosity, permeability
Porosities Cuttings

DRIFTS (only kerogen porosity) Limited

NMR Extensive

Permeability Cuttings Measurement at the well-site Limited

Lithology Rock type, lithology Cuttings DNN Novel

Fluids Trapped fluid analysis Cuttings Quadrapole mass spectrometry Limited

Geomechanics

Hardness and Young’s modulus Cuttings Indentation Novel

Poisson’s ratio Cuttings IDSTD Novel

Brittleness Cuttings Comprehensive brittleness index -

UCS, BTS and SRN Drilling Multivariate regression Novel

Dynamic Young’s modulus Drilling ANN Novel

Sonic logs Drilling ANN Novel

Fractures Mud loss, SPP, TRQ, WOB, RPM Drilling Mud loss flowing in and out Novel

Fig. 1. Identification of minerals in the Caney Shale samples using Raman spectroscopy (Katende et al. 2021).

this is usually achieved by identifying the large difference
in the transverse relaxation times between the fluid on the
rock surface versus the fluid inside the rock pores (Althaus et
al., 2020). The transverse relaxation time of fluid in a rock
sample (Eq. (1)) is the sum of the time due to pore surface
relaxation, the time due to bulk relaxation, and the time due
to heterogeneity in magnetic field (presence of gradient). For
unconventional mudrocks with nanometer size pores, the time

due to pore surface relaxation (first term on the right hand side
of Eq. (1); ρ2 is surface relaxivity, and A is surface area) is
the dominant contributor to the total relaxation time where the
transverse relaxation time in such pores is ≤ 10 ms. However,
bulk relaxation time (second term on the RHS of Eq. (1)) can
be the dominant contributor to the total relaxation time if the
cutting samples are not cleaned of the fluids on their surface.
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Fig. 2. Schematic illustrating volume of the cuttings (Vc),
which is the sum of the solid matrix volume (Vm) and pore
volume (Vφ ), with the surrounding liquid volume (Vl) on the
surfaces of the cuttings (Althaus et al., 2020).
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(1)

where T2 is transverse relaxation time; ρ2A/Vφ is pore surface
relaxation; T2b is bulk relaxation; T2D is signal dephasing.

Using NMR measurements, Vφ and Vl can be obtained
using the short relaxation peak and long relaxation peak,
respectively, as shown by an example in Fig. 3.

Further, the mass of the cutting sample weighed in air and
in the fluid are measured. These measurements are then used
to obtain the bulk density, the matrix (grain) density, and the
porosity of the cutting as follows:

ρb =
ma −Vlρl

Vc
(2)

ρm =
ma − (Vφ +Vl)ρl

Vm
(3)

φ =
Vφ

Vc
(4)

where ma is the mass of the cutting sample weighed in air;
m f is the mass of the cutting sample weighed in the fluid; ρb
is the rock bulk density; ρm is the rock matrix (grain) density;
φ is the rock porosity.

(2) Application
Uncleaned drill cuttings from unconventional oil-wet for-

mation in the Middle East were used to measure the NMR
T2 relaxation time. To ensure repeatability of results from
cutting analysis, two batches of samples (series 1 and series 2,
respectively), were separated prior to cleaning. All the samples
were then cleaned to remove the mud, which was done by
mixing them with diesel and sieving through a 3 mm mesh
and then through a 0.5 mm mesh to separate the cuttings from
mud solids (< 0.5 mm) and cavings (> 3 mm), followed by
cleaning with the diesel (for water-wet formation, water would
be a better choice as a fluid for saturation). Further, the cleaned
samples were used to measure the T2 relaxation times, where
the processed T2 spectrum along and the cumulative volume
are shown in Fig. 3. The run time to perform measurement
for each sample was approximately 2 minutes, which when
performed at the well site would mimic near real-time. The
optimum T2 cutoff for this specific was determined to be 44
ms, such that a relaxation time ≥ 44 ms is identified as the
bulk fluid and < 44 ms is identified as pore fluid. The optimum

Fig. 3. An example illustrating the measurement of pore
volume and surrounding liquid volume from drill cutting based
on the NMR measurement (Althaus et al., 2020).

T2 cutoff for each formation may vary as it is affected by
the pore size, wettability, and mineral content (Althaus et al.,
2020).

Following NMR measurements, two different masses of
each sample (and sample cup) are acquired sequentially as
follows: mass in air, and mass after immersing in diesel. The
sample cup must also be cleaned and then weighed, both in
and out of diesel. Later, the cutting samples were dried and
measured using NMR, with the results for the diesel-saturated
and dried samples shown in Fig. A-1, where the smaller (fast
relaxing) peak is likely an effect of bitumen. The NMR-
based measurements were used to estimate bulk density, matrix
density, and porosity, per Eqs. (2), (3), and (4), respectively, as
shown in Fig. A-2, which exhibit high reproducibility in all the
three measured parameters. Between the measured values of
bulk density, matrix density, and porosity for the two batches,
porosity shows the largest variation, possibly due to stresses
exerted by the drill bits during drilling that deforms the pore
space in the cuttings through induced micro-fractures.

2.3 Permeability measurement using liquid
pressure pulse

Permeability is typically estimated using empirical cor-
relations that relate permeability with pore size distribution,
and their connectivity, which are measured using one of the
following techniques: mercury porosimetry, NMR, or image
analysis.

(1) Theory
An alternative method that can directly measure the per-

meability of drill cuttings without any specific laboratory
conditioning (Egermann et al., 2002) involves using about 100
cm3 of cuttings, a pressure vessel, and viscous oil; specifically,
the cuttings are placed in the pressure vessel and the cell
is then filled with the viscous oil such that the invasion of
oil into the cuttings traps a certain amount of gas as shown
in Fig. 4. The fundamental idea behind this experiment is
to develop an effective flow inside the cuttings by injecting
a viscous liquid that compresses the residual gas contained
within the cutting; the viscous liquid helps slow down the
pressure decrease inside the rock. The experimental procedure
involves two sequential stages, which are a very short period
of constant injection rate, and a longer period of constant
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Direct permeability evaluation methods from cuttings
Only one method is proposed in the classical range of
hydrocarbon reservoir permeability (Santarelli et al. 1998).
The effective flow into the rock is achieved by imbedding the
cuttings into disks of acrylic resin. The disks are then surfaced
and mounted in a core holder to measure the permeability
under constant-flow or transient-flow technique. Another
method was proposed by Luffel (1993) which is based on
pressure diffusion. The cleaned and dried cuttings are
introduced into a cell at atmospheric pressure. Then, the cell is
put in communication with another cell under pressure and the
decrease of the pressure is recorded and interpreted in term of
permeability. The principle is similar to well testing, using gas
instead of liquids. However, due to the low viscosity of gases,
this method can only be used on very low permeabilities (≤
0.01 md).

Indirect permeability evaluation methods from cuttings
The permeability is derived using empirical correlations with
properties related to pore size distribution, pore connectivity or
the spatial correlation between the pores. These parameters are
evaluated from capillary properties (mercury porosimetry), by
NMR or image analysis.
Several approaches have been proposed to derive permeability
from mercury porosimetry curves (Purcell 1949; Thomeer
1960; Swanson 1981; Thomeer 1983; Katz and Thompson
1986). Kamath performed a comparison between these
methods and concluded that the best result is obtained with
new correlations based on the Swanson characteristic length
(Kamath 1992). Kamath and Swanson also reported a possible
use of mercury porosimetry curves obtained from cuttings.
Many papers have been published on the permeability
evaluation from NMR measurements, but very few refer to
application on cuttings. In this domain, the main effort was
conducted by Chevron in association with Exlog. They
developed a prototype fitted for rig conditions (Nigh and
Taylor 1985). The cuttings are first prepared (cleaning, drying)
and placed in a portable NMR tool. The porosity is derived
from the measured volume of water and permeability is
evaluated from the whole T2 relaxation signal using the Timur
law (Timur 1968).
A thin section can also be obtained from cuttings to evaluate
the porosity and the permeability from image analysis. The
porosity corresponds to the fraction of voids whereas the
permeability is derived from empirical law (Coskun and
Wardlaw 1993; Ioannidis et al. 1996) or from Carman-Kozeny
type laws (Tomutsa and Brinkmeyer 1990; Fens et al. 1998).
In this paper, we present an original method to perform a
direct measurement of permeability from cuttings. An
effective flow of viscous oil is achieved by compression of
residual gas initially trapped into the cuttings and the test is
interpreted in term of permeability with a numerical code. The
first part is devoted to the presentation of the method,
especially its originality and advantages. Then, the
experimental set-up for data acquisition, the procedures and
the results are presented. The next section describes the

physical model and the numerical calculation. Finally, the
method is validated by comparisons with measurements made
on crushed cores of known permeability for various sizes of
cuttings. The results and the applicability of the method on the
field are discussed in the last part.

Principle of the method
The problem is to establish a flow into the rock itself rather
than in inter-cuttings space. AGIP method uses an acrylic resin
to imbed the cuttings and force the flow through the rock but it
requires a specific conditioning. In the proposed method, the
flow is obtained by compression of residual gas initially
trapped into the cuttings. A viscous oil is used as displacing
fluid to minimize the diffusion of pressure into the rock.

Our method is close to the one proposed by Luffel (1993) as
both use pressure diffusion. To be applicable, the fluid used
must be compressible and the mobility (k/µ) must be small
enough to have an impact on the pressure regime. As Luffel
(1993) used gas, only low permeability rocks can be measured
(<0.01 md). The extension of the method to higher
permeabilities requires fluids with higher viscosity like
liquids. But they are not suitable in term of compressibility.
The originality of our method is to combine a viscous oil
(from 200 to 1200 cP) for pressure drop and a gas for
compressibility. We have tested several methods (Lenormand
and Egermann 2000, 2002), but we will present only the
constant injection pressure procedure which gives the best
results.

Experimental approach
In this part, we describe the experimental set-up, the
procedures and the results obtained using the proposed
technique.

Experimental set-up

Data acquisition

Pump

Bleed off line

Manometer

Cutting cell

Cuttings

Viscous oil

water

Viscous
oil

N2

∆P

Calibrated
capillary

Figure 1: Experimental apparatus

The experimental apparatus is very simple. It is mainly
composed of a cell, where the cuttings are introduced and a
pump to inject the viscous oil. Due to its high viscosity, the oil
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the relaxation time must be larger than 1 second (zone 1). 
However, measurements can be performed down to 0.2 s, but 
with less accuracy (zone 2), 
the relaxation must be less than 10 seconds. Longer 
experiments are biased by air dissolution in the liquid, 
the spontaneous imbibition must be finished in around 30 
minutes. In some cases, we have used a liquid at 70 °C to 
accelerate the spontaneous imbibition. This constrain is 
calculated by using standard results in the literature and is 
confirmed by the observation of the bubble production during 
the imbibition. This constrain (red line on the graph), limits 
the use of large cuttings. When measurements are performed 
on small cores or ruble cores, it is necessary to crush them to 
reduce the imbibition duration. 
the upper limit for viscosity, around 4000 cp. More viscous 
fluids can be found but they are difficult to manipulated with 
cuttings and the air bubbles produced during imbibition 
remain trapped into the liquid. 
a lower limit (blue line) is related to the fast dissolution or air 
in the liquid. In the small pores, the capillary pressure in the 
gas bubbles is high and since the viscosity of the liquid is low 
(low molecular diffusion), the dissolution is very fast. As a 
consequence, the amplitude of the signal is too low to be 
interpreted. For this reason, fluids with viscosities less than 10 
cp can not be used in general, and this dissolution mechanism 
prevents the method to be used for permeabilities below 10 
microDarcy. 
The various constrains determine the zone 1, where the 
interpretation is good and zone 2, where the interpretation is 
acceptable. 
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Figure 10 – Abacus for controlling the choice of the viscosity of 
the liquid for the measurement of permeability. 

Results on crushed cores 
Figure 11 shows the good agreement between the core 
permeability, measured by liquid displacement, and the 
cuttings permeability obtained after crushing the core samples 
(size 1-2 mm, 2-3 mm and 3-5 mm), using the standard 
interpretation. The values cover a very wide range of 
permeabilities, from around 10 microDarcy to the Darcy (for 
2-3 mm, the upper limit is around 100 md). 

For each measurement, a mass of around 3 grams of dry 
cuttings is necessary and porosity must be larger than 4-5% in 
order to have enough amplitude in the signal. 

Field test 
We have seen that we were able to determine the porosity and 
permeability on crushed cores with a good accuracy. For real 
field applications, the representativity of the cuttings with 
respect to the reservoir can be lost for several reasons: 
• shear and thermal effects during drilling (Cerri et al., 

2006)23, 
• invasion by drilling mud, 
• mixing and settling when cuttings travel from the reservoir 

to the surface (Zeidler, 1972)24. 
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Figure 11 - Comparison between core and cuttings permeabilities 

In order to quantify the mixing of cuttings when traveling in 
the well, we collected cutting every 20 cm and compared the 
properties of the cuttings to the logs: 
• porosities measured on cuttings to the porosities derived 

from density and neutron logs, 
• the amount of clay by comparing the T2 peak measured on 

cuttings to the Gamma ray (GN) log. 
The well is located in the South East of Paris Basin and the 
cuttings were collected in the Dogger formation (lower 
Callovien/Bathonien). This formation is not the main reservoir 
and cuttings do not present any oil impregnation. The 
sampling corresponds to the transition between the marly 
limestone of the Callovien to the pure limestone of the 
Bathonien. 
The well was drilled with a PDC drilling bit and with a 
synthetic oil based mud. 

Collecting the cuttings 
Three people where on the shakers to collect the cuttings every 
2 minutes, corresponding roughly to intervals of 20 cm 
between depth of 1865 and 1905 m. The cuttings with the 
remaining mud were collected in 250 cc plastic containers 
(around 125 samples). 
Cuttings and mud where put in cotton bags with a mesh 
around 0.5 mm, and cleaned with successive solvents: white 
spirit (thinner) to remove the maximum of the mud, 
isopropanol alcohol and water and surfactant. After this first 
cleaning the cuttings were dried and sieved. The fraction 

(b)

Fig. 4. (a) Schematic of the experimental setup for measuring the permeability of drill cuttings, (b) abacus to guide the selection
of viscosity of the injected liquid.
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Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size ∝ parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5×106 to 155×106 params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R© A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200 MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
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ImageNet (Russakovsky et al., 2015) challenge.
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Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size ∝ parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5×106 to 155×106 params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.
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Fig. 5. Accuracy of various DNNs since AlexNet’s breakthrough with Inception-v4 as the best performer (Canziani et al.,
2017).

injection pressure. The permeability of the drill cuttings using
the setup shown in Fig. 4 is calculated numerically through
a simple model (given in Appendix) that describes the flow
of a viscous liquid into a compressible medium of spherical
geometry, which is similar to a well test, except that the oil
and reservoir compressibilities are replaced by the trapped gas
(Egermann et al., 2002; Lenormand and Fonta, 2007).

(2) Application
One application is the total volume of oil injected into the

cuttings (chalk sample with porosity of 0.35) cell with time,
where the permeability obtained by fitting the beginning of the
curve (since the largest pores control the permeability) is 0.3
mD (Fig. A-4(a)). Another example with a carbonate sample
(porosity of 0.23) and pure glycerol (viscosity around 1200
cp), where the permeability obtained by fitting the beginning
of the curve is 5 mD (Fig. A-4(b)).

2.4 Machine learning-based classification of
lithologies and rock types

Although some machine learning (ML)-based rock identifi-
cation on thin sections of cuttings and drill cuttings have been
previously proposed that use deep convolution neural network
(CNN) (Cheng and Guo, 2017, Kathrada and Adillah, 2019),
these studies classify each image of cuttings with only one
class of rock type (the most dominant) and are not suitable
for analysis of cutting mixtures in real drilling environment
where rock types show transition in lithologies during drilling.
Specifically, one of the important applications of drill cuttings
includes interpreting lithology by reconstructing and reorder-
ing geological layers, which requires interpreting variations in
intra-class and inter-class of rock types. This is an important
requirement because different cuttings with similar color and
grain size can be of different rock types as shown in Figure
5a, and multiple rock types can be present in the same sample.



24 Singh, H., et al. Advances in Geo-Energy Research, 2023, 8(1): 19-36

(1) Theory
Deep learning models that take cutting images as input and

provide output in terms of the cutting size and rock type at a
pixel-level can enable classifying the intra-class and inter-class
variation in particle size and rock types within a single image
of drill cutting, where the proportion of each rock type would
be the proportion of pixels in the image (Tamaazousti et al.,
2020; Di Santo et al., 2022; Ismailova et al., 2022; Yamada
and Di Santo, 2022). Such a pixel-level identification approach
also naturally enables predicting the size, shape, and variation
in colors of different rock types within the same image.

Deep Learning Models. AlexNet was the first deep neural
network (DNN) in 2012 used in the ImageNet dataset problem
in the field of computer vision, and since then several other
DNNs have been introduced with improved accuracy (Canziani
et al., 2017), as shown in Fig. 5(a). Fig. 5(b) shows accuracy
as a function of computational cost and number of parameters
in each network, which suggests that the versions of the
Inception models with the highest accuracy are possibly near
an inflection point on the ImageNet dataset. In other words,
Inception-v4 DNN is close to the point in terms of accuracy
and computational costs that any further improvement in
accuracy is outweighed by the added complexity in the model.

The DNNs shown in Fig. 5 are essentially CNNs with
varying number of layers. A CNN is well-suited to process
2-dimensional data like images and it does not require se-
lecting features to classify the images. A CNN architecture
is composed of multiple layers of neurons in the form of
convolutional and pooling layers. The two basic steps involved
in CNN include convolution on the input data (e.g., image)
using filters to get convolved feature, which is passed on to
the pooling layer for down-sampling operation.

Current computer vision DNNs have greater than 90%
accuracy in image classification, and take minutes to train on
parallel GPUs, compared to the time it used to take (six days
with 2 parallel GPUs) when AlexNet was introduced.

(2) Application
The architecture of DNN-based classification shown in Fig.

A-5 (Tamaazousti et al., 2020) was trained and tested using a
suite of 300 pictures of cuttings samples that were standardized
in terms of the same camera, support tray (background), and
distance from camera to tray. The cutting samples contained
three rock types (carbonate, sandstone, and shale) from dif-
ferent geographies, including dry and wet cuttings, single and
mixed rock types. Further, the 300 pictures used for training
and testing the model were separated into three scenarios,
which were dry single lithologies (240 images), dry mixtures
(50 images), and wet mixtures (10 images). Out of these 300
images, the model was trained using 200 images that contained
only single lithology cuttings samples, whereas the remaining
images were used for testing.

One of the primary reasons the model was trained using
images with single lithology was to avoid the precise segmen-
tation in rock boundary (pixel-level) that would be required
in images with multiple lithologies, which is not only time
consuming, but the segmentation provided by a human eye
may not resolve the precision required for the deep learning-
based training. Therefore, training the model required labeling

each image with only single rock type present in pixels of the
image, i.e., one binary mask per entire image. Further, pre-
processing of the images prior to assigning the segmentation
labels of rock type required removing the background from
the cutting images that was achieved using a simple image-
processing algorithm.

Learning a model directly with a single class of rock
type in each image, out of three classes of rock types, does
not lead to an accurate model due to wide variations in the
testing images that contain intra- and inter-class of rock types.
Therefore, to improve the model prediction, labeling for each
of the three classes was refined to include sub-classes (grain
size, color, etc.), referred as meta-class, in a hierarchical
manner based on visual appearance that finally leads to 72
sub-classes as shown by the workflow in Fig. A-5.

The ResNet model pre-trained on ImageNet dataset was
used and adapted for segmentation tasks for drill cuttings
images. Fig. A-6 shows the results of the trained model when
applied on blind images of cuttings that contained mixture
of lithologies, where the top two rows contain cuttings from
sandstone and carbonate lithologies, whereas the last row
contains all the three lithologies.

The second application of ML-based classification is
Equinor in-house tool called Cuillin (Cuttings Image Lithology
Interpretation with Neural-Networks) (Equinor, 2019) that uses
ML to classify and label images of rock cuttings without
manual intervention. Cuillin is developed using Inception-v3
as the DNN, as shown in Fig. A-7a, which was trained for
this particular task using offshore dataset from Norway and
UK. The key steps in deep learning of Cuillin include the
following:

a) Splitting the data into training and test set at the well-
level.

b) Assigning lithology (labels) for each training image, and
discarding the ambiguous images.

c) Making 45 sub-crops per an image.
d) Using PyTorch framework to train Inception-v3 DNN

architecture to distinguish between ∼15 lithology classes.

The total time taken for data processing and DNN training
(with ∼0.85 F1 score in ∼25 epochs) of Cuillin was ∼7 hours
on 4×V100 GPU AWS node (Equinor, 2019). Cuillin can
predict lithology distribution for a typical well with 5001-1000
images in ∼2-4 minutes (Equinor, 2019) and can be deployed
in low-power embedded systems.

An example of the multi-class lithology classification and
visualization of DNN predictions using Cuillin (Fig. A-7b),
which is also assisted by visualizations of the DNN’s working
mechanism.

The third application of ML-based classification is R-CNN
architecture-based model (Yamada and Di Santo, 2022) that
provides formation top detection, and lithology classification
based on cutting size/shape identification as shown in Fig. A-
8. The digital microscope used in capturing the photographs of
cuttings was calibrated for absolute distance measurements to
have the exact pixel size (Di Santo et al., 2022), which together
with calibrated measurements were then used to develop this
model. This ML model also allows classifying grainy textured
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object, extracting and measuring the size, shape, and color of
each grain, and separating it from the background (Fig. A-8a).
The ML model also performs particle clustering differentiating
lithologies based on multi-dimensional mathematical space in
the form of color intensity, color hue and texture homogeneity
(Fig. A-8b).

2.5 Geomechanical properties from drill cuttings
2.5.1 Diffuse reflectance infrared fourier transform
spectroscopy (DRIFTS) method

(1) Theory
DRIFTS measurements (Prioul et al., 2018) include weight

fractions of 9 inorganic mineral components (smectite, il-
lite, kaolinite, chlorite, quartz-feldspar, muscovite, calcite,
dolomite, and anhydrite; however, only major 6 of them are
used in analysis by clubbing the four clays together as clay,
and quartz, feldspar, muscovite together as qfm, as shown
by Table A-1 in Appendix), and organic matter that is only
kerogen (because drill cuttings cleaned with solvents remove
the soluble organics). The density of the combined inorganic
(mineral) and organic phases is estimated using the weight
fractions and the known densities of the minerals and the
kerogen as follows:

1

ρ
dri f ts
mo

=
Wker

ρker
+∑

i

Wmo, i

ρi
(5)

where Wker/ρker is organic matter, ∑i Wmo, i/ρi is inorganic
matter.

DRIFTS model assume that the drill cuttings samples
are organic-rich shale, strongly anisotropic, and transversely
isotropic layered medium with an axis of symmetry perpen-
dicular to the bedding layers.

DRIFTS technique measures only kerogen part of the
organic matter components, which means it does not measure
the hydrocarbon and bitumen parts. To be able to obtain the
missing data for the non-kerogen part (hydrocarbon, bitumen,
and water) in the formation, the DRIFTS technique uses em-
pirical petrophysical model that is calibrated using the volume
fractions from well-logs and it is related to the DRIFTS by
applying a correction factor (ωc) as follows: W log

tom =ωcW
dri f ts

tom ,
where ωc ≥ 1.

The petrophysical volumetric models assumes 3 volumetric
(1 phase for water and 2 phases for solid/matrix) phases as
follows:

a) Brine/water phase: with associated volume as φw.
b) Solid/matrix phase: with associated volume as (1− φw)

and composed of following:

i) Mineral or inorganic phase: composed of 6 major
minerals shown in Table A-1 associated with corre-
sponding volumes φm, i.

ii) Organic matter phase: composed of kerogen, hydrocar-
bon, and bitumen with associated volume as φtom(=
φker +φhyd +φbit). For low-maturity, oil-bearing reser-
voirs, a single organic matter phase (with its volume
depicted as φtom) is reasonable because of sufficiency
small contrast in bulk densities and elastic properties
of kerogen, hydrocarbon, and bitumen.

The procedure to estimate the geomechanical model from
drill cuttings includes two steps, which are summarized on a
flowchart shown in Fig. A-9.

(2) Application
This case study involves estimation of in-situ stress using

cutting-based measurements and the data used come from two
vertical pilot wells (drilled through the Quintuco and Vaca
Muerta Formations in the Neuquén Basin, Argentina), and one
horizontal lateral well in the Vaca Muerta Formation. Drill
cuttings measurements along with a comprehensive logging
suite, cores, and in situ stress tests, from a vertical control
well were used to define and calibrate four models: petrophys-
ical, rock physics, dynamic-static elastic, and geomechanical.
Dynamic anisotropic elastic moduli are calculated using the
rock-physics model, whereas static elastic properties and the
minimum stress are calculated using the dynamic-static and
geomechanics models. DRIFTS data from cuttings in the target
lateral well are used to calculate stresses, which is verified by
accurate reconstruction of sonic-log-derived elastic moduli, as
shown in Fig. A-10.

A major observation relevant to well completion opti-
mization is that the elastic-property heterogeneity in these
wells can be solely explained on the basis of variations in
mineralogy and total organic matter (TOM), as shown in
Fig. A-11. Specifically, with the increase in TOM plus clay
content, the horizontal and vertical Young’s moduli (EH and
EV ) decrease, but elastic anisotropy (EH/EV ) increases and a
cumulative decrease in minimum horizontal stress (σh); if the
calcite content increases, the opposite trend holds, i.e., EH and
EV increase, but elastic anisotropy (EH/EV ) decreases and a
cumulative increase in σh. The variation in minimum stress
estimated using the above method can be used as an input to
optimize HF job design.

2.5.2 Micro/Nano indentation method

(1) Theory
Recent advancements in small-scale testing enable mechan-

ical testing on drill cuttings that can provide measurements
from nanoscale (load < 100 mN) to microscale levels (load
< 15 N) (Martogi et al., 2019; Shi et al., 2020; Alipour
et al., 2021; Esatyana et al., 2021; Katende et al., 2021).
Indentation measurements at the nanoscale-level enable ac-
quiring mechanical properties of different constituent phases,
and measurements at the microscale-level enable acquiring the
bulk mechanical properties of the composite behavior of all
constituent phases present at the nanoscale-level. The inden-
tation measurements on shale samples require the following 3
steps:

1) The table on which indentation is performed is vibration-
proof by pressurizing it to about 20 psi to prevents
imperfections during the test.

2) This is followed by calibrating the vickers diamond
indenter tip using a steel block. This calibration ensures
that the elastic modulus and hardness measured during
indentation are comparable to the ideal values of steel.

3) Indentation test is performed in three sequential steps:
indenting the sample to a maximum load, holding the
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Fig. 6. (a) General loading/unloading sequence for indentation tests, which include loading the sample, holding, and unloading
the sample, (b) a conceptual plot depicting indentation process with load versus displacement curve, where P is the load (force)
that is referred as F (in place of P) in the provided derivation, and displacement is referred as h (Martogi et al., 2019).

load for ten seconds, andremoving the load progressively
(Fig. 6). Both the loading and unloading sequence was
performed at a constant loading rate.

The two elastic mechanical properties obtained from the
load vs. displacement (depth) plot shown in Fig. 6 are:
indentation modulus and hardness. The hardness (H) of the
cuttings is measured using (Katende et al., 2021):

H =
Fmax

Ac
(6)

where Fmax is the maximum load applied, and Ac is defined
as follows:

Ac = 24.5×

hmax −
3Fmax

4
(

dF
dh

)
at max h


2

(7)

Indentation depths (h) are measured using laser surface
profilometer linked to the Raman microscope. The Young’s
modulus of the cuttings is measured as follows:

E =
(1−ν2)ErEi

Ei − (1−ν2
i )Er

(8)

Er =
S
√

π

2
√

Ac
(9)

where Ei is the Young’s modulus of the indenter (e.g., dia-
mond; 1,140 GPa for Berkovich indenter), νi is the Poisson’s
ratio of the indenter (e.g., diamond; 0.07 for Berkovich in-
denter), ν is the sample Poisson’s ratio, Er is the reduced
modulus.

(2) Instrumentation
An illustration of instrumentation required to perform

indentation tests on a rock cutting, and the experimental
preparation required for indentation, are shown in Fig. 7.

(3) Application
The study uses indentation along with Raman spectroscopy

on drill cuttings from Caney shale formation (an organic-rich
play in Oklahoma) to measure their geomechanical properties
that are validated using a numerical model of the experiment
(Fig. A-12). The modeling results for these samples, show that

proppant embedment, which significantly reduces a fracture’s
aperture, can vary significantly within a fracture, especially
in weaker formations. Proppant embedment can be limited
through close proppant packing per the results in Fig. A-12.
Some of the observations depicted that can be used to optimize
the completion are as follows:

1) Plastic deformation and plastic strength properties for
proppant embedment can accurately describe the local-
ized shale failure just below the proppant-shale contact.

2) Low hardness and elastic modulus imply zones suscepti-
ble to proppant embedment.

3) Smaller indents imply higher hardness and elastic mod-
ulus.

4) Higher clay contents reported least hardness and elastic
modulus.

5) Variation in composition of the rock fabric impact the
degree of proppant embedment along the surface of the
same material.

6) Axial and radial cracks can dominate for indentation on
samples cored at 45◦ to the bedding planes.

2.5.3 Inclined direct shear testing device (IDSTD)

(1) Theory and instrumentation
IDSTD enables mechanical properties characterization un-

der variable confining pressure with drill cuttings, where
the volume of material required is as small as 2.3 cm3

(Abousleiman et al., 2007, 2010), which is close to penny-
shape samples (∼20 mm diameter and 7 mm thickness).
IDSTD setup, measures acoustic velocities (VP90, VS90), which
enable estimation of Young’s modulus and Poisson’s ratio as
follows (Abousleiman et al., 2010):

ρV 2
P90 =

E(1−ν)

(1+ν)(1−2ν)
(10)

ρV 2
S90 =

E
2(1+ν)

(11)

Due to the small IDSTD sample size, only three acoustic
measurements are possible during loading, namely VP90, VS90,
and VPθ .
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(a) (b)

(c)

Fig. 7. (a) Schematic illustrating the planned design and execution of indentation, (b) illustration of the final surface after
indentation obtained using Raman Surface Profilometry discussed in Section 2, (c) illustration depicting the load versus
displacement curve during indentation and the indentation impress after removing the load (Katende et al., 2021).

(2) Application
Shale samples from Middle Woodford in Oklahoma were

used to estimate compressive strength in contact with different
oil-based muds. Acoustic measurements were used during
confinement and deviatoric loading to monitor the changes
in anisotropic dynamic stiffness coefficients (Ci j) and Biot’s
pore pressure coefficients (αi j) (Abousleiman et al., 2010). The
dynamic elastic and poroelastic properties were measured by
acoustics (sonic velocities) under both confining pressure and
deviatoric stress. The anisotropy ratio of P- and S-wave during
hydrostatic confinement and deviatoric loading are given by
the variation in Thomsen’s coefficients ε ((C11 −C33)/2C33)
and γ ((C66 −C44)/2C44), as shown in Fig. A-13. An initial
increase in ε and γ during deviatoric loading at 13.79 MPa
confining pressure might be due to formation of micro-cracks
parallel to the bedding planes or the shale fabric, whereas the
decrease in their values during confinement is likely due to
closure of preexisting micro-cracks in the sample.

2.5.4 Comprehensive brittleness based on mechanical and
mineral properties

(1) Theory
A comprehensive brittleness model that includes the ef-

fect of mineral brittleness and mechanical brittleness (Shi et
al., 2020) enables reliable estimations of the homogenized
Young’s modulus and Poisson’s ratio by the integration of
nano-indentation method with the deconvolution technique,
whereas mineral compositions of the indentation area are
obtained using energy dispersive spectrometer (EDS) (Shi et
al., 2020).

(a) Young’s modulus and Poisson’s ratio from indentation
technique

The model to predict Young’s modulus and Poisson’s ratio
of the drill cutting sample using indentation technique is given
by Eq. (6) through Eq. (9).

(b) Deconvolution technique
The deconvolution technique provides an experimental

cumulative distribution functions (CDF) of the mechanical
properties, including hardness, modulus, and creep viscoelastic
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properties. The CDF of a mechanical parameter (X) measured
at various gridded-locations (i) on the cuttings sample through
indentation technique is developed as follows:

DX (Xi) =
i
N
− i

2N
, for i = 1, ..,N (12)

The corresponding probability density function (PDF) of
the mechanical property for phase J, PJ(x), measured using
indentation is typically given using a Gaussian mixture model
(Shi et al., 2020) (with µJ and SJ as the mean and standard
deviation of the phase J, respectively) as follows:

PJ(x) =
1√

2πS2
J

exp
(
− (x−µJ)

2

2S2
J

)
(13)

The unknown parameters of theoretical PDF are estimated
by fitting it over the experimental CDF and optimizing their
difference with µ

j
X + S j

X < µ
j+1

X − S j+1
X , j = 1, ...,n − 1 as

follows (the number of phases, n, is an assumed parameter):

N

∑
k=1

∑
X

(
DX (Xi)−

n

∑
j=1

f jPJ(x)

)2

(14)

Eq. (14) enables predicting mechanical properties of each
phase in the cuttings sample, and relative volume fraction of
each phase, which are then used to determine homogeneous
mechanical properties.

(c) Homogenization method (Scale-up)
Homogenization method is a technique to scale-up small-

scale predictions to macro-scale that is self-consistent. Specifi-
cally, the particular model used for homogenization is a multi-
scale multi-component model by Mori-Tanaka (Shi et al.,
2020) to predict homogenized isotropic bulk modulus (Kh) and
shear modulus (Gh) composed of 3 phase (with µr, kr as the
shear moduli and bulk moduli of each phase r = 0, 1, 2 with fr
as their corresponding volumetric fraction; µ0, k0 as the shear
moduli and bulk moduli of reference matrix) as follows:

Kh =

∑
r=0

frkr

3kr +4µ0

∑
r=0

fs

3ks +4µ0

(15)

Gh =

∑
r=0

frµr

µ0(9k0 +8µ0)+6µr(k0 +2µ0)

∑
s=0

fs

µ0(9k0 +8µ0)+6µs(k0 +2µ0)

(16)

Using Eqs. (15) and (16), the homogenized Young’s mod-
ulus (Eh) and Poisson’s ratio (νh) of shale are calculated as
follows, respectively:

Eh =
9KhGh

Gh +3Kh
(17)

νh =
3Kh −2Gh

2Gh +6Kh
(18)

(d) Comprehensive brittleness model
The comprehensive brittleness model is developed using

the mineral-based and mechanical-based brittleness, where the
mineral-based brittleness (B1) is calculated using quartz, clay,
and carbonate components, as follows (Shi et al., 2020):

Bn1 =
Wqt

Wqt +Wcal +Wc
(19)

Young’s modulus and Poisson’s ratio are typically used
to calculate brittleness as these parameters can be generally
obtained from laboratory experiments or well-logs. However,
for the drill cuttings, homogenized values of Young’s modulus
and Poisson’s ratio are derived through deconvolution tech-
nique and homogenization method based on nano-indentation
measurements, which are used to calculate mechanical-based
brittleness (B2) as follows (Shi et al., 2020):

Bn2 =
Enh +νnh

2
(20)

where Enh and νnh are the normalized values of the Eh and νh
distributions, respectively, which are calculated as follows:

Enh =
Eh −Eh,min

Eh,max −Eh,min
(21)

νnh =
νh −νh,min

νh,max −νh,min
(22)

The comprehensive brittleness (Bc) is simply the mean of
the mineral-based brittleness and mechanical-based brittleness
parameter as follows:

Bc =
Bn1 +Bn2

2
(23)

(2) Application
The method is applied to estimate the brittleness of a shale

gas well in Lower Silurian Longmaxi Formation (China) where
15 to 19 drill cuttings were used for nanoindentation tests
and to measure comprehensive brittleness parameter for each
well. Mineral distribution on gridded area for indentation tests
was interpreted using a combination of EDS and backscattered
electron images from SEM, as shown in Fig. A-14(a), which
are used to correlate with the mechanical properties shown in
and Fig. A-14(b). Results in Fig. A-14(c) show three different
peak values that correspond to 3 different phases in the sample,
which are used to divide all the nano-indentation sites into 3
groups: i) G1, which includes the softest indentations, ii) G3,
which includes the hardest indentations, and iii) G2, which
includes the remainder. Using Eqs. (17) and (18), homogenized
Young’s modulus and Poisson’s ratio can be estimated for
indentation measurements from all cuttings, which vary from
14.21 to 22.1 GPa (with an average of 19.72GPa), and from
0.18 to 0.26 (with an average of 0.22), respectively. Similarly,
mineral-based Young’s moduli and Poisson’s ratio of the 3
identified phases (G1, G2, G3) are approximately 25, 43, and
97 GPa, and 0.3, 0.25 and 0.25, respectively.

Therefore, the mechanical-based and mineral-based brittle-
ness values from all the samples (averaged values of 0.51 and
0.47, respectively) are used to calculate the comprehensive
brittleness values per Eq. (23) and plotted versus the depth
as shown in the last track of Fig. A-15. The last track in
Fig. A-15 shows two intervals (1 and 2) with relatively larger
brittleness values that can be target for HF, however, interval
1 was selected for HF due to its higher gas potential.

Pressure versus time data from HF treatment for one stage
of a horizontal well drilled along interval 1 had the largest Bc
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Fig. 8. (a) Laboratory-scale rotary drilling machine and its labeled components, (b) igneous rock samples, (c) drill bit (Khoshouei
and Bagherpour, 2021).

(Fig. A-16). The fracturing-treatment pressure dropped sharply
to fracture-closure pressure when the fracturing pump (blue
colored legend) stopped (zero rate), such that this similar
sharp drop was exhibited in fracturing treatment of all other
stages of this well, indicating formation of complex fracture
network in this interval. The higher value of comprehensive
brittleness for this interval was verified and supported by the
gas production rate from i) this well (Fig. A-16) that was much
higher (34.3× 104 m3 per day) than the other wells, and ii)
two other wells with similar comprehensive brittleness were
also relatively high (11.2× 104 m3 per day) than the other
wells.

2.5.5 Using drilling data

Although some tools/techniques enable predicting geome-
chanical properties at the well-site, these tools only sense
organic matter (e.g., DRIFTS Method), so the predicted val-
ues lack robustness due to simplified assumptions in the
underlying rock physics models used for prediction. In this
respect, predicting geomechanical properties via statistical and
machine learning regression of the drilling data is helpful as
it allows overcoming the assumptions and constraints of the
rock physics models. The variation in drilling parameters used
in the regression analysis directly captures the effect of the
underlying chemical compositions.

(1) Estimating formation strength parameters
(a) Theory and instrumentation
Acoustic and vibration signals propagated during the

drilling process, using the instrument and sample shown in
Fig. 8, were found to statistically correlate with uniaxial
compressive strength (UCS), brazilian tensile strength (BTS)
and schmidt rebound number (SRN) (Khoshouei and Bagher-
pour, 2021). Specifically, UCS, BTS, and SRN were predicted
through multivariable regression by using Sound Pressure
Level (SPL), First Dominant Frequency (FDF), and Vibration
Level (VL), respectively, as the predictor variables.

(b) Application

To predict the physical and mechanical properties based
on the proposed approach, 13 samples of igneous rock each
with 9 cm × 9 cm × 9 cm dimension were used and fixed by
a special clamp prior to the drilling operation. The operating
conditions of the drilling tests, such as diameter of the drill
bit, the thrust force or weight on bit (WOB), the cooling fluid
rate, the speed of the drill bit, etc., are described in Table A-3.

SPL, FDF, and VL were obtained during the drilling tests.
Multivariable regression of the sound pressure level (dB), the
dominant frequency (Hz), and vibration level (m/s2) were used
to obtain the mechanical properties of the rocks, i.e., UCS (R2

= 0.92), BTS (R2 = 0.81), and Schmidt hardness (R2 = 0.83).
The mechanical properties of the rock samples obtained using
this approach, as shown in Fig. A-17, are consistent with the
measured values and verifies the accuracy of the method.

(2) Estimating dynamic Young’s modulus
(a) Theory
Static Young’s modulus value is an important parameter

in hydraulic fracturing design, which is obtained using the
dynamic Young’s modulus (Edyn) based on one of the several
empirical correlations applicable to specific rock types. The
Edyn is typically estimated by analyzing the compressional
velocity (VP), shear velocity (VS), and bulk density (ρ) per Eq.
(24), where these three parameters are obtained using wireline
logs and may not be available for all the formations readily
(Mahmoud et al., 2021):

Edyn =
ρV 2

S (3V 2
P −4V 2

S )

V 2
P −V 2

S
(24)

An optimized artificial neural network (ANN) trained using
drilling parameters from different three well located in the
same field in the Middle East was shown to predict Edyn
accurately with an error of less than 4% in all the tested wells
(Mahmoud et al., 2021).

(b) Application
The ANN model was trained using the following 6 drilling

parameters: rate of penetration (ROP), WOB, stand-pipe pres-
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sure (SPP), torque (TRQ), drilling mud flowrate, and the DSR.
The trained ANN model (with n = 6 input features and

single hidden layer with m = 25 neurons) was represented in
the form of a mathematical function based on its weights (w),
transfer function (tangent-sigmoid function), and biases (b) as
follows (Mahmoud et al., 2021):

Edyn =
m=25

∑
j=1

w j1

n=6

∑
i=1

1
1+ e−wi jxi+b j

(25)

The numerical values of the weights and biases of the
optimized ANN depicted by Eq. (25) are provided in Table
A-4. The ANN model was trained using 2,054 data samples
from Well-A (Fig. A-18), followed by its testing using 871 data
samples from Well-B (Fig. A-19), and validation using 2,912
data samples from Well-C (Fig. A-20). The average absolute
percentage error of the Edyn estimated using the optimized
ANN model for the training, testing, and validation datasets
were 3.09%, 3.38%, and 3.73%, respectively.

(3) Estimating sonic logs
(a) Theory
A sonic well log measurement is the time taken by the

acoustic wave to travel through the formation and return back
to the receiver (called transit time), which is a measure of
slowness within the formation. This transit time (∆tm = t f −tn),
typically reported in the units of µs/ft, is the difference
between the times acquired at two receivers (tn and t f ) and
is used to compute the compressional wave (P-wave) velocity
(Vp) as follows:

Vp

(
f t
s

)
=

106

∆tm
(26)

Sonic logs play an important role in formation evaluation
of unconventional reservoirs, which include modeling elastic
properties of the rock that allow generating stress data to de-
sign hydraulic fracturing treatment, optimize well placement,
evaluate wellbore stability, evaluate sand production, etc.

(b) Application
The ANN model was trained using the following 5 drilling

parameters (Hadi and Nygaard, 2021): ROP, true vertical depth
(TVD), rotation per minute (RPM), WOB, and TRQ.

The trained ANN model for travel time denoted as DT
(with n = 5 input features and single hidden layer with m = 3
neurons; b1 is the bias between input and hidden layers, and b2
is the bias between hidden and output layers) was represented
in the form of a mathematical function based on its weights
(w1i are the neuron weights between the input and hidden
layers; w2i are the neuron weights between the hidden and
output layers;), transfer function (tangent-sigmoid function),
and b as follows (Hadi and Nygaard, 2021):

DT =
N

∑
i=1

2w2i

1+ exp
[
−2

n=5
∑

i=1

(
w1i,1xi +b1i

)] (27)

The numerical values of the weights and biases of the
optimized ANN depicted by Eq. (27) are provided in Table
A-5. The ANN model was trained and validated using well
logs from one of the Iraqi oil fields (Fig. A-21), where the

R2 and root mean squared error of the DT estimated using
the optimized ANN model for the training and validation
datasets were (0.91, 3.27) and (0.90, 3.38), respectively. The
DT estimated via optimized ANN model was validated on
another carbonate formation of interest (Fig. A-22), which
closely resembled the measured DT.

2.6 Identification and characterization of
fracture patterns

(1) Theory
Advanced flow meters (e.g., Coriolis type flow meter)

installed between the mud pumps and the mud returns flow line
enable accurate flow monitoring during drilling operations.
The real-time monitoring of micro mud flow in the formation
via their differential can be used to characterize fracture
patterns based on its loss signatures as shown in Fig. 9
(Chiniwala et al., 2018). This mud flow loss is also called
‘Delta Flow’, which is the change in flow out and flow in
mud rate. The impact of flow variations in Delta Flow due
to surface drilling operations are removed with the help of
drilling parameters like stand pipe pressure, TRQ, weight on
bit, and rotation per minute.

Different types of fractures can be characterized using the
Delta Flow as follows:

1) Natural open fractures: The flow sensor continues to
show a decrease in the Delta Flow volume until the mud
penetrating the fracture gradually plugs the fracture and
the Delta Flow volume returns to the baseline, which
indicates no loss in mud with time.

2) Induced fractures: The Delta Flow volume shows a sharp
fall in its value, followed by an immediate recovery of
the lost Delta Flow volume.

3) Micro-fractures or matrix permeability: The Delta Flow
volume shows a gradual decrease in its value until the
drilling bit has moved past the zone of micro-fractures
or matrix permeability. The Delta Flow can detect very
fine micro-fractures that can not be seen with the wireline
image logs (Dashti et al., 2021).

4) Cavern or large-aperture fractures: The Delta Flow vol-
ume shows a high and sudden decrease, with no recovery
and return to the baseline.

(2) Application
The Delta Flow ‘signatures’ have been used successfully

to detect fractures in the Anadarko Basin (U.S.) and in a
basin in the Middle East. examples from four different areas
in an exploratory well located in West Kuwait region where
the Delta Flow signatures accurately predicted the presence of
open natural fractures, matrix permeability, and induced frac-
tures (Fig. A-23). The Delta Flow signatures that characterized
the fractures in each of the 4 different regions were confirmed
via core inspection and image log interpretation.

3. Key learnings from current state of the art
The 4 key learnings from current state of the art in

real-time formation evaluation are related to: addressing the
uncertainties in porosity and geochemical analysis, minimum
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Fig. 9. Delta Flow signatures and the corresponding fracture characterization (Chiniwala et al., 2018).

Fig. 10. Photomicrographs of ARcutt and ARcore samples
(Sanei et al., 2020). Images exhibit widespread occurrence
of micro-fractures in the silt grains of the ARcutt (c and d),
whereas the ARcore samples (a and b) show no such physical
deformation (Sanei et al., 2020).

cutting size for reliable NMR data, sweet spot identification
via trapped fluid analysis, and power and network considera-
tions for real-time analysis, respectively. These key learnings
are discussed in detail as follows:

3.1 Addressing the uncertainties in porosity and
geochemical analysis

Although drill cuttings have significant value as data, they
are also likely to be relatively more prone to issues that can
add uncertainties in the analysis, which include issues like
contamination with drilling mud, physical deformations, and
lack of geological representativeness. Therefore, appropriate
measures must be taken to ensure suitability of the drill cutting
samples for their application in wide range of analysis as
discussed earlier in this study.

3.1.1 Uncertainty in porosity

Porosity measured from drill cuttings can often include
uncertainties, such as artificial deformation of pore space (e.g.,

Fig. 11. Distributions of T2 relaxation time obtained from
NMR measurements on cleaned and sieved cuttings (Singer
et al., 2021).

induced micro-fractures) due to stresses exerted by the drill
bits (Solano et al., 2012; Althaus et al., 2020; Sanei et al.,
2020). Photomicrographs of samples (from Canadian Montney
tight gas) shown in Fig. 10 exhibit widespread occurrence of
drilling-induced micro-fractures in the silt grains of the as-
received cuttings (ARcutt) (Figs. 10(c) and 10(d)) compared to
the as-received core (ARcore) samples (Figs. 10(a) and 10(b))
that show no such physical deformation.

Additionally, NMR and mercury intrusion capillary pres-
sure (MICP) measurements performed on solvent-cleaned cut-
tings (SCcutt) and solvent-cleaned core (SCcore) samples from
the same formation exhibit the consistent presence of larger
pore diameters in SCcutt than the SCcore samples, as shown
in Fig. 12, which further verifies the widespread occurrence of
drilling-induced micro-fractures in drill cuttings (Sanei et al.,
2020). Data with higher T2 relaxation time indicates larger pore
diameters compared to data with lower T2 relaxation times.
This significant variation in distributions of pore sizes from
drill cuttings (obtained using T2 relaxation time from NMR
measurements) and the intact formation (obtained using T2
relaxation time from LWD NMR log) can also be confirmed
by another study (Singer et al., 2021) as shown in Fig. 11. To
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Fig. 12. Depth versus (a) T2 relaxation time obtained from NMR measurements on solvent-cleaned cuttings and solvent-cleaned
core samples, and (b) logarithmic of mean pore throat diameters obtained using MICP measurements on SCcutt and SCcore
samples (Sanei et al., 2020).

ensure the porosity measured using drill cuttings are reliable
and free of uncertainties, it should be compared with the other
data that are free from such uncertainties, such as core samples
and/or well-logs.

3.1.2 Uncertainty in geochemical analysis

Microscopic study of the drill cuttings (from Canadian
Montney tight gas) as shown in Fig. 13 (Sanei et al., 2020)
exhibited three major sources of contamination, which are
identified as cavings (organic and inorganic matter) from
overlying formations, clay-like matter from drilling mud, and
volatile, oil-based invert emulsion drilling fluids, respectively.
It is hypothesized (Sanei et al., 2020) that these contaminations
impact the bulk geochemistry of the cutting samples.

3.2 Minimum cutting size for reliable NMR data
Integrity of pore structure is mainly affected by cutting

sizes and the shear induced rock matrix distortion, which
varies by rock type and grain size. Suitability of using cuttings
to derive NMR petrophysical properties, such as porosity and
bound volume index (BVI), is summarized in Table 2 (Singer
et al., 2021), where OBM is oil-based mud and WBM is water-
based mud.

3.3 Sweet spot identification via trapped fluid
analysis

One of the least-focused part about drill cuttings analysis
is the analysis of trapped fluids in drill cuttings. Trapped fluid
analysis can aid in inferring sweet spots through characteriza-
tion of the distribution and abundance of encapsulated fluids,
besides providing other quantitative data about the formation
fluids, such as hydrocarbon composition, GOR, API gravity,

Fig. 13. Photomicrographs of ARcutt exhibit three major
sources of contamination, which are identified as i) cavings
(organic and inorganic matter) from overlying formations, ii)
clay-like matter from drilling mud, and iii) volatile, oil-based
invert emulsion drilling fluids. Images on the left column show
results of reflected light organic petrography, and images on
the right column show the same view in fluorescence light
(Sanei et al., 2020).
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Table 2. Summary of suitability of cuttings for NMR-derived formation evaluation (Singer et al., 2021).

Lithology Minimum cutting size (mm) Porosity BVI In OBM In WBM

Carbonate 0.875 No No No No

Carbonate 2.0 Yes No No Yes

Sandstone 0.875 No Yes No Yes

Sandstone 2.0 Yes Yes No Yes

(a) (b)

Fig. 14. (a) Trapped fluids in a sandstone thin section, and (b) same thin section under UV light (Schlumberger, 2021).

saturation state of hydrocarbon (HC) fluid, and salinities
that can be useful in estimating irreducible water saturation
(Swir). Direct quadrapole mass spectrometry allows ioniza-
tion, isolation, detection, and monitoring of hydrocarbons to
distinguish volatile organic species (C1-C13) and inorganic
volatiles (CO2, H2S, He) (Schlumberger, 2021). Usually, 3
types of data are collected to analyze trapped fluid (Welker et
al., 2016), as follows:

1) Homogenization temperature (Th) of aqueous and
petroleum inclusions: It represents the minimum encap-
sulation (trapping) temperature of the fluid that can be
used to estimate cementation temperatures, emplacement
temperatures of hydrocarbon fluids, and maximum burial
temperature.

2) Final melting temperatures (Tm) of aqueous inclusions:
It can be used to determine the total salinity of trapped
aqueous fluids that can be further used to estimate water
saturation.

3) API gravity of liquid petroleum inclusions: It provides
an indication of petroleum type and quality, especially
when combined with Th data. API gravity of petroleum
inclusions can be quantified based on fluorescence color
that can be resolved optically (Fig. 14), with a total range
of 21◦ to 48◦ API.

3.4 Power and network considerations for
real-time analysis

An important element to enable real-time analysis of
drill cuttings is the power and network consideration for the

devices used in measurements, computations, data reporting,
and remote operations, typically referred to as the internet-
of-things devices. Six important parameters in required to
enable real-time analysis of drill cuttings at the well-site from
power and network consideration are: the rate at which data
is transmitted, the range over which devices can communicate
with each other, power consumed by the devices, scalability,
network security, and cost. The tools and devices used at the
well-site are typically battery-operated and are required to
run for as long as possible with minimum power consump-
tion, which is generally addressed by low-power embedded
systems. Another fundamental concept relevant to the power
and network considerations is the frequency limit of the ISM
(Industrial, Scientific and Medical) radio band, which varies
between 6.765 MHz to 246 GHz based on its type (e.g.,
regional, worldwide). Oilfield applications that use SCADA
(supervisory control and data acquisition) to transmit the data
are typically deployed using 400 MHz and 900 MHz ISM band
frequency, but they are not an ideal solution to transmit data
like live video streaming that require high throughput. Live
video data can be transmitted either using high throughput ISM
band (e.g., 5 GHz, 6E GHz) that enable live video streaming
(constant polling), or using cellular modems that can be costly
depending on the data limits.

4. Conclusions

4.1 Current situation
Cuttings analysis for formation evaluation has been used

for the past 50 years, but it relied on manual inspection
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with specialized skills, which led to a slow and tedious
process. However, advancements in Industry 4.0 technologies
can now enable automated real-time formation evaluation via
cuttings and drilling data analysis. Automation and data-driven
models are leading to tangible commercial and environmental
successes in the oil and gas industry, with successes related
to smart drilling, faster completion techniques, and improved
reservoir management. However, implementation of such tech-
niques has been slow and not as prevalent in formation
evaluation, which still mostly relies on traditional methods that
are slow and costly.

4.2 Limitation
It is clear that real-time formation evaluation via cuttings

and drilling data analysis directly benefits reservoir characteri-
zation as discussed earlier, but its current use is mostly limited
to the task of lithology and rock type identification to support
drilling and lateral placement. Reservoir characterization is
essential to build up a geological model of the reservoir, which
is traditionally a slow process, so its traditional use is limited to
reservoir simulations. The state-of-the-art techniques reviewed
in this paper can predict parameters relevant to reservoir and
completion quality, which can enable rapid development of
the geological and geomechanical models in near real-time,
compared to the limited analysis for lithology and rock type
identification that is currently the practice.

4.3 Prospects
Automated real-time formation evaluation can enable tak-

ing more robust real-time decisions via remote operation and
collaboration between multiple teams than what the current
practices allow. This will enable reducing costs, safety-related
incidents, required specialized skills, inconsistencies due to
data quality issues, and ultimately aid drilling, completion, and
stimulation via rapid development and integration of geologi-
cal/geomechanical models into the well construction process.
Field results from the well construction process of CNPC
employing geology-engineering integration show significant
benefits (compared to the wells constructed without integra-
tion) (Chen et al., 2022) in terms of reducing the average
drilling complexity (from 18% to 4.6%) and reducing the
drilling cycle (from 326 days to 257 days at 8,500 m depth).
Data-driven workflows (informed and assisted by physics)
have an important role in enabling improved predictions than
possible through empirical/physics-based models alone by
removing the underlying bias and simplifying assumptions,
plus their modularity allows additional improvements through
continuous updates and development of new algorithms and
workflows.
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