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1 Appendix 

1.1 Densities and Porosities from NMR 

 

Figure A- 1: T2 relaxation times for cutting samples saturated with diesel (blue legend) and after drying (green legend). From 
(Althaus et al., 2020). 

 

Figure A- 2: NMR-based measured values of bulk density, matrix density, and porosity, for two batches of samples (series 1 and 
series 2, respectively, separated prior to cleaning) to ensure repeatability. From (Althaus et al., 2020). 



1.2 Permeability Prediction 

1.2.1 Numerical Model 
The model is derived using perfect gas law (Eqn. A- 1), mass balance (Eqn. A- 2), momentum balance 

(Darcy’s law; Eqn. A- 3)  
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 Eqn. A- 1 
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Using Eqn. A- 1: 
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Substituting Eqn. A- 3 and Eqn. A- 4 in Eqn. A- 2: 

Δ𝑃 =
𝜇0𝜙𝑆𝑔0

𝐾
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 Eqn. A- 5 

 
Writing Eqn. A- 5 in spherical coordinates, which gives the pressure diffusion equation (Eqn. A- 6) 
weighted by initial gas saturation (𝑆𝑔0) and a factor 1/𝑃2 (due to compressibility) as follows: 

𝜕
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 Eqn. A- 6 

Where, 𝛼 =
𝜇0𝜙𝑆𝑔0𝑃0

𝐾
 

Using the variables given in Eqn. A- 7 and Eqn. A- 8 (coefficient of diffusion), Eqn. A- 6 is converted to a 
dimensionless form given by Eqn. A- 9.   
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Permeability is obtained through an inverse solution of Eqn. A- 9, which is solved in two stages that 

represent the two boundary conditions, respectively, which are i) a period of constant injection rate, 

and ii) a period of constant injection pressure. The boundary and initial conditions used in solving the 

model are as follows: 

Boundary conditions:  



𝜕𝑃

𝜕𝑟
(0, 𝑡) = 0 Eqn. A- 10 

 
𝑃(1, 𝑡) = 𝑃𝑒𝑥𝑡 Eqn. A- 11 

 
Initial condition:  

𝑃(𝑟, 0) = 1 Eqn. A- 12 
 
The first boundary condition (Eqn. A- 10) is used to deduce 𝑃𝑒𝑥𝑡 through a loop of convergence as 

described by a flowchart in Figure A- 3(a), where Eqn. A- 9 is solved in an explicit finite difference 

scheme. The 𝑃𝑒𝑥𝑡 at the end of the initial period (first boundary condition) is now used to calculate the 

pressure profile using the pressure diffusion equation (Eqn. A- 6) and the corresponding volume of oil 

injected during the second stage of the experiment from the gas saturation profile. 

 

(a) 



 

(b) 

Figure A- 3: (a) Steps to calculate 𝑃𝑒𝑥𝑡 using a convergence criterion. (b) An example depicting the solution from the model that 
involves two-stages depicting two different boundary conditions. From (Egermann et al., 2002). 

 

(a) 

 

(b) 

Figure A- 4: Total volume of oil injected into the cuttings with time for (a) chalk sample with a porosity of 0.35, (b) carbonate 
sample with a porosity of 0.23. (Lenormand and Fonta, 2007) 



1.3 Machine Learning-Based Classification of Rock Types 

1.3.1 Application-1 

 
Figure A- 5: Illustration of the workflow of the deep learning approach to identify intra-class and inter-class rock types, including 
variation in shale and colors, from the same image of the drill cuttings (Tamaazousti et al., 2020). 

 
Figure A- 6: Results of the trained model when applied on blind images of cuttings that contained mixture of lithologies, where 
the top two rows contain cuttings from sandstone and carbonate lithologies, whereas the last row contains all the three 
lithologies (sandstone, carbonate, and shale). From (Tamaazousti et al., 2020). 

1.3.2 Application-2 

 
(a) 



 
(b) 

Figure A- 7: (a) Architecture of Equinor’s cuttings image lithology interpretation with neural-networks (Cuillin) tool. From 
(Equinor, 2019). (b) Visualizations of the multi-class lithology classification and DNN predictions in Cuillin. From (Equinor, 2019). 

1.3.3 Application-3 

  

(a) 



 

(b) 

Figure A- 8: (a) Object based image analysis used to identify color, shape, and size for characterization and analysis of the 
particles, including the characterization of cuttings with grainy texture. From (Di Santo et al., 2022). (b) Particle clustering 
differentiating sand from shale based on color intensity, color hue and texture homogeneity. From (Di Santo et al., 2022). 

1.4 DRIFTS Model 
Table A- 1: Mechanical properties of the standard mineral components and brine as used in the DRIFTS measurements. From 
(Prioul et al., 2018). 

Mineral and fluid components Density 
(kg/m3) 

Bulk 
modulus 
(GPa) 

Shear 
modulus 
(GPa) 

P-wave 
modulus 
(GPa) 

Reference 

Clay (cla) 2.80 22.1 8.5 33.4 (Vernik and Kachanov, 
2010) 

Quartz + Feldspar + Mica (qfm) 2.65 36.6 45.0 96.6 (Ellis et al., 1988) 

Calcite 2.71 76.8 32.0 119.5 (Ellis et al., 1988) 

Dolomite 2.87 76.4 49.7 142.7 (Mavko et al., 2009) 

Pyrite 5.01 138.6 109.8 285.0 (Ellis et al., 1988) 

TOM* 1.10 3.4 2.7 7.0 (Prioul et al., 2018) 

Brine 1.06 2.2 − 2.2 (Mavko et al., 2009) 
*The values for the organic matter are a function of the maturity and are given solely as an example of values for the studied 

case (the effective organic matter values given here also include kerogen, hydrocarbon, and bitumen, and so they are not pure 

kerogen values). 

1.4.1 Elasticity Conventions for Anisotropic Medium 
A TI medium (e.g., organic-rich shales) are classified with 5 independent elastic stiffness constants 

(𝐶11, 𝐶33, 𝐶55, 𝐶66, 𝐶13) that are related to elastic engineering constants as discussed below. 

𝐶𝑖𝑗 =

(

 
 
 

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶55 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66)

 
 
 

 Eqn. A- 13 
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 Eqn. A- 14 

 

Where,  

𝐶11 =
𝐸𝐻 (1 −

𝐸𝐻
𝐸𝑉
𝜈𝑉
2)

𝐷
 

Eqn. A- 15 

 

𝐶33 =
𝐸𝑉(1 − 𝜈𝐻

2)

𝐷
 Eqn. A- 16 

 

𝐶12 =
𝐸𝐻 (

𝐸𝐻
𝐸𝑉
𝜈𝑉
2 + 𝜈𝐻)

𝐷
 

Eqn. A- 17 

 

𝐶13 =
𝐸𝐻𝜈𝑉(𝜈𝐻 + 1)

𝐷
  Eqn. A- 18 

 
𝐶55 = 𝐺𝑉 Eqn. A- 19 

 
𝐶66 = 𝐺𝐻 Eqn. A- 20 

 

𝐷 = (1 + 𝜈𝐻) (1 − 2
𝐸𝐻
𝐸𝑉
𝜈𝑉
2 − 𝜈𝐻) Eqn. A- 21 

 

Conversely, the elastic parameters (𝐸𝑉 , 𝐸𝐻 , 𝜈𝑉 , 𝜈𝐻) and anisotropy parameters (𝜀, 𝛿, 𝛾) can be expressed 

as a function of the elastic stiffness constants as follows: 

𝐸𝑉 = 𝐶33 − 2(
𝐶13
2

𝐶11 + 𝐶12
) Eqn. A- 22 

 

𝐸𝐻 =
(𝐶11 − 𝐶12)(𝐶11𝐶33 − 2𝐶13

2 + 𝐶12𝐶33)

𝐶33𝐶11 − 𝐶13
2  Eqn. A- 23 

 

𝜈𝑉 =
𝐶13

𝐶11 + 𝐶12
 Eqn. A- 24 



 

𝜈𝐻 =
𝐶33𝐶12 − 𝐶13

2

𝐶33𝐶11 − 𝐶13
2  Eqn. A- 25 

 

𝜀 =
𝐶11 − 𝐶33
2𝐶33

 Eqn. A- 26 

 

𝛿 =
(𝐶13 + 𝐶55)

2 − (𝐶33 − 𝐶55)
2

2𝐶33(𝐶33 − 𝐶55)
 Eqn. A- 27 

 

𝛾 =
𝐶66 − 𝐶55
2𝐶55

 Eqn. A- 28 

 

1.4.2 Rock-Physics Model 

𝐶33
𝑚𝑡𝑜𝑚 = [

𝜑𝑡𝑜𝑚
𝑀𝑡𝑜𝑚
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𝐶55
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 Eqn. A- 30 

 

𝐶66
𝑚𝑡𝑜𝑚 = 𝜃 [𝜑𝑡𝑜𝑚𝐺𝑡𝑜𝑚 +∑𝜑𝑚,𝑖𝐺𝑖

𝑖

] + (1 − 𝜃) [
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𝐺𝑡𝑜𝑚
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𝑖

]

−1

 Eqn. A- 31 

 

𝐶33 = 𝐶33
𝑚𝑡𝑜𝑚𝑔𝜙(𝜑𝑤) + ℎ𝑓𝑙(𝜑𝑤 , 𝑀𝑤) Eqn. A- 32 

                
𝐶55 = 𝐶55

𝑚𝑡𝑜𝑚𝑔𝜙(𝜑𝑤) Eqn. A- 33 

 

𝐶66 = 𝐶66
𝑚𝑡𝑜𝑚𝑔𝜙(𝜑𝑤) Eqn. A- 34 
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2

([𝜑𝑡𝑜𝑚𝐺𝑡𝑜𝑚 + ∑ 𝜑𝑚,𝑖𝐺𝑖𝑖 ] − [
𝜑𝑡𝑜𝑚
𝐺𝑡𝑜𝑚

+ ∑
𝜑𝑚,𝑖
𝐺𝑖𝑖 ]

−1

)

[
𝜑𝑡𝑜𝑚
𝐺𝑡𝑜𝑚

+∑
𝜑𝑚,𝑖
𝐺𝑖𝑖 ]

−1  Eqn. A- 35 

 

1.4.3 Dynamic Elasticity Model from Laboratory Measurements on Core Samples 
Ultrasonic P- and S-wave velocities measurement using 3 core plugs (1 cut parallel to, 1 perpendicular 

to, and 1 at 45° to the symmetry axis) to derive five independent dynamic elastic constants: 

𝜀𝑑𝑦𝑛 = 𝑎1𝛾
𝑑𝑦𝑛 Eqn. A- 36 

 

𝐶13
𝑑𝑦𝑛

𝐶12
𝑑𝑦𝑛 = 1 − 𝑎2𝜀

𝑑𝑦𝑛 Eqn. A- 37 

 



1.4.4 Estimation of Unknown Parameters for the Rock-Physics Model 

• Unknown parameters: 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶55, 𝐶66 

• Initially known parameters:  

o 𝜑𝑚,𝑖, 𝜑𝑤 , 𝜑𝑡𝑜𝑚: volumes known from well-logs (or drill cuttings with DRIFTS 

measurements). 

o 𝑀𝑖, 𝐺𝑖 , 𝑀𝑤: moduli values for mineral components (i), and water known from a chart. 

• Trial parameter: 𝜃 

• Method of estimating unknown parameters:  

o 𝐶33, 𝐶55: Using the known parameters and trial values for 𝑀𝑡𝑜𝑚, 𝐺𝑡𝑜𝑚, 𝐶33 is computed 

using equations for Eqn. A- 29 and Eqn. A- 32, whereas 𝐶55 using Eqn. A- 30 and Eqn. A- 

33. The effective organic matter moduli values (𝑀𝑡𝑜𝑚, 𝐺𝑡𝑜𝑚) in these equations are 

iterated and the output values of 𝐶33, 𝐶55 are compared against the moduli values 

derived from sonic-log until a satisfactory match is achieved. At this stage, the moduli 

values for total organic matter (𝑀𝑡𝑜𝑚, 𝐺𝑡𝑜𝑚) are also known. 

o 𝐶66: Using the known parameters, organic matter moduli estimated in previous step 

(𝑀𝑡𝑜𝑚, 𝐺𝑡𝑜𝑚), and a trial parameter (𝜃), 𝐶66 is computed using equations for Eqn. A- 31 

and Eqn. A- 34. The trial parameter value is iterated and the output values of 𝐶66 is 

compared against the moduli value derived from sonic-log until a satisfactory match is 

achieved. 

o 𝐶11: Using 𝜀 (=
𝐶11−𝐶33

2𝐶33
), 𝐶33 (estimated in first step), 𝛾 (from Eqn. A- 35), and Eqn. A- 

36, 𝐶11 can be estimated from 𝐶11 = 𝐶33(1 + 2𝜀) = 𝐶33(1 + 2𝑎1𝛾). 

o 𝐶13: Using 𝐶11 (estimated in previous step), Eqn. A- 34 to Eqn. A- 36, parameters 𝑎1 and 

𝑎2, 𝐶13 can be estimated from 𝐶13 = 𝐶12(1 − 𝑎2𝜀) = (𝐶11 − 2𝐶66)(1 − 𝑎2𝑎1𝛾).  

1.4.5 Dynamic to Static Elasticity Model 
In order to estimate geomechanical properties of the rock, dynamic properties characterized through 

sonic log and the rock-physics model are transformed to their static equivalent values with the following 

relationships, where the parameters 𝑏1, 𝑏2, 𝑏3, 𝑏4 are determined through laboratory data.  

𝜀𝑠𝑡𝑎 = 𝑏1𝛾
𝑠𝑡𝑎 Eqn. A- 38 

Typically, Eqn. A- 36 is also valid for static data, in which case we get 𝑏1 = 𝑎1. 

𝐶13
𝑠𝑡𝑎

𝐶12
𝑠𝑡𝑎 = 1 − 𝑏2𝜀

𝑠𝑡𝑎 Eqn. A- 39 

 
𝐶11
𝑠𝑡𝑎

𝐶11
𝑑𝑦𝑛 =

𝐶66
𝑠𝑡𝑎

𝐶66
𝑑𝑦𝑛 = 𝑏3 Eqn. A- 40 

 

𝜀𝑠𝑡𝑎 = 𝑏4𝜀
𝑑𝑦𝑛 Eqn. A- 41 

Using a system of equations from Eqn. A- 38 to Eqn. A- 41, and 5 dynamic elastic parameters obtained 

through log- or DRIFTS-based data, all 5 independent static elastic parameters (𝐶11, 𝐶13, 𝐶33, 𝐶55, 𝐶66) 

can be estimated. 



1.4.6 Minimum Horizontal Stress (Geomechanical Model) 

𝜎ℎ =
𝐸𝐻
𝐸𝑉

𝜈𝑉
(1 − 𝜈𝐻)

(𝜎𝑉 − 𝛼𝑉𝑃𝑃) +
𝐸𝐻

(1 − 𝜈𝐻
2)
(𝜀ℎ + 𝜈𝐻𝜀𝐻) + 𝛼𝐻𝑃𝑃  Eqn. A- 42 

 

𝜎ℎ =
𝐶13

𝐶33
(𝜎𝑉 − 𝛼𝑉𝑃𝑃) + (𝐶11 −

𝐶13
2

𝐶33
) 𝜀ℎ + (𝐶12 −

𝐶13
2

𝐶33
) 𝜀𝐻 + 𝛼𝐻𝑃𝑃   Eqn. A- 43 

Where, 

𝛼𝐻 = 1 − (
𝐶11 + 𝐶12 + 𝐶13

3𝐾𝑠
) Eqn. A- 44 

 

𝛼𝑉 = 1 − (
2𝐶13 + 𝐶33
3𝐾𝑠

) Eqn. A- 45 

 

Therefore, in-situ stress in an unconventional formation can be estimated using cutting-based 

measurements and Eqn. A- 42 (or Eqn. A- 43), where the input parameters in Eqn. A- 42 (or Eqn. A- 43) 

can be estimated as discussed in the above workflow. 

Table A- 2: Description of parameters used in geomechanics model, and the corresponding method of estimation for each 
parameter. 

Variable Description Method of estimation 

𝑊𝑚𝑜,𝑖 
Weight fractions of the mineral 
component i on a with-organic matter 
basis 

Measured through DRIFTS. 

𝑊𝑡𝑜𝑚
𝑑𝑟𝑖𝑓𝑡𝑠

 
Weight fraction of the organic matter 
on a with-organic matter basis 

Measured through DRIFTS. 

𝑊𝑘𝑒𝑟 
Weight fraction of the kerogen on a 
with-organic matter basis 

Measured through DRIFTS. For drill cuttings, 

this is equal to 𝑊𝑡𝑜𝑚
𝑑𝑟𝑖𝑓𝑡𝑠

. 

𝜌𝑚𝑜
𝑑𝑟𝑖𝑓𝑡𝑠

 
Density of the combined inorganic 
and organic phases 

Measured through DRIFTS. 

𝜎ℎ Minimum horizontal stress Using Eqn. A- 42 or Eqn. A- 43. 

𝜎𝐻 Maximum horizontal stress  

𝜎𝑉 Vertical stress By depth-integration of the bulk density. 

𝛼𝐻  Horizontal Biot’s coefficient Using Eqn. A- 44 

𝛼𝑉 Vertical Biot’s coefficient Using Eqn. A- 45 

𝑃𝑃 Pore pressure Using drilling data or direct measurements. 

𝜀ℎ 
Strain in the direction of minimum 
horizontal stress 

Using Eqn. A- 42 or Eqn. A- 43 with input of 
the elastic constants and point-wise 𝜎ℎ test 
measurements. 

𝜀𝐻 
Strain in the direction of maximum 
horizontal stress 

Using Eqn. A- 42 or Eqn. A- 43 with input of 
the elastic constants and point-wise 𝜎ℎ test 
measurements. 

𝐾𝑠 Solid modulus of the grains Standard value. 

𝐶11, 𝐶66 Bedding-parallel elastic moduli As described under section 1.4.4. 

𝐶33, 𝐶55 Bedding-normal elastic moduli As described under section 1.4.4. 



𝑀𝑖 
Isotropic compressional elastic moduli 
for mineral component i 

Using Table A- 1. 

𝐺𝑖  
Isotropic shear elastic moduli for 
mineral component i 

Using Table A- 1. 

𝑀𝑡𝑜𝑚 
Trial value of the isotropic 
compressional elastic moduli for 
organic matter 

Through trial and iteration. 

𝐺𝑡𝑜𝑚 
Trial value of the isotropic shear 
elastic moduli for organic matter 

Through trial and iteration. 

𝜃 Constant parameter between 0 and 1 As described under section 1.4.4. 

𝑔𝜙(𝜑𝑤) Water porosity multiplier 
Using data and fitting it to (1 − 𝐴𝜑𝑤) for low-
porosity (<5%) rocks. 

ℎ𝑓𝑙(𝜑𝑤 ,𝑀𝑤) Pore space modulus 

Using Gassmann fluid substitution expression: 
𝛼2𝑀𝑤

𝜑𝑤
. Here, 𝛼 is the Biot’s coefficient and is 

calculated from the porosity law. 

𝑀𝑤 Water’s compressional modulus Standard value. 

𝛾 Shear anisotropic parameter Using Eqn. A- 35. 

 

 
Figure A- 9: Flowchart summarizing the procedure to estimate geomechanical model using the DRIFTS measurements on drill 
cuttings. From (Prioul et al., 2018). 



 
Figure A- 10: Validation of the geomechanical properties estimated using the DRIFTS measurements on drill cuttings with their 
corresponding well-log measurements. From (Prioul et al., 2018). 

 
Figure A- 11: Petrophysical volumes, static elastic properties, static anisotropy, and the minimum stress stress gradient 
estimated using the DRIFTS measurements on drill cuttings from a horizontal lateral in Vaca Muerta formation. From (Prioul et 
al., 2018). 



1.5 Micro/Nano Indentation Method 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure A- 12: (a) Experimental and modeled indentation curves for the Caney shale samples. (b) 2-D visualization of the modeled 
indentation pit for two Caney shale samples after unloading. (c)-(d) 2-D visualizations of the modeled proppant embedment (due 



to elastic and plastic shale deformations) for two Caney shale samples with varied distance between the proppants. From 
(Katende et al., 2021). 

1.6 Inclined Direct Shear Testing Device (IDSTD) 
 

 
Figure A- 13: Variation in degree of anisotropy (anisotropy ratios of P-wave and S-wave during hydrostatic confinement and 
deviatoric loading) during confinement (13.79 MPa) and during deviatoric loading (13.79 MPa confining pressure). From 
(Abousleiman et al., 2010). 

1.7 Comprehensive Brittleness Model Based on Mechanical and Mineral Properties 

 
(a) 

 
(b) 



 
(c) 

Figure A- 14: (a) SEM and EDS mapping of the minerals from drill cuttings of shale. (b) Indentation load vs. displacement curves 
without (left) and with (right) surface heterogeneity of pores/micro-fractures. (c) Deconvolution results for Young’s modulus 
based on indentation measurements. The results for deconvolution analysis should be obtained using identical samples that 
exclude the samples with heterogeneity (“pop in” displacement). From (Shi et al., 2020). 

 
Figure A- 15: Depth vs. comprehensive brittleness (last track) for a shale gas well in Lower Silurian Longmaxi Formation. From 
(Shi et al., 2020). 



 
Figure A- 16: HF pressure data for one stage of horizontal shale gas well along interval 1 shown in Figure A- 15. 

1.8 Using Drilling Data 

1.8.1 Estimating Formation Strength Parameters 
Table A- 3: Operating conditions for the drilling tests (Khoshouei and Bagherpour, 2021). 

 



 
Figure A- 17: The correlation between the measured and predicted mechanical properties of the rock samples. From (Khoshouei 
and Bagherpour, 2021). 

1.8.2 Estimating Dynamic Young’s Modulus 
Table A- 4: The weights and biases of the optimized ANN model. From (Mahmoud et al., 2021). 



. 

 



 

Figure A- 18: Training of the ANN model using 2054 data sample from Well-A. (a) ANN-estimated 𝐸𝑑𝑦𝑛 and its comparison with 

the known values of 𝐸𝑑𝑦𝑛 in Well-A. (b) Cross-plot of the comparison between the ANN-estimated and known values of 𝐸𝑑𝑦𝑛 in 

Well-A. From (Mahmoud et al., 2021). 



 

Figure A- 19: Testing of the ANN model using 871 data sample from Well-A. (a) ANN-estimated 𝐸𝑑𝑦𝑛 and its comparison with 

the known values of 𝐸𝑑𝑦𝑛 in Well-B. (b) Cross-plot of the comparison between the ANN-estimated and known values of 𝐸𝑑𝑦𝑛 in 

Well-B. From (Mahmoud et al., 2021). 



 

Figure A- 20: Validation of the optimized ANN model using 2912 data samples from Well-C. (a) ANN-estimated 𝐸𝑑𝑦𝑛 and its 

comparison with the known values of 𝐸𝑑𝑦𝑛 in Well-C. (b) Cross-plot of the comparison between the ANN-estimated and known 

values of 𝐸𝑑𝑦𝑛 in Well-C. From (Mahmoud et al., 2021). 

1.8.3 Estimating Sonic Log 
Table A- 5: The weights and biases of the optimized ANN model. From (Hadi and Nygaard, 2021). 



 

 

Figure A- 21: Training (R2 of 0.91 and RMSE of 3.27) and validation (R2 of 0.90 and RMSE of 3.2738)  of the ANN model for DT 
and its comparison with the known values of DT. From (Hadi and Nygaard, 2021). 

 

Figure A- 22: Validation of the trained ANN model for DT in another carbonate formation of interest and its comparison with the 
known values of DT. From (Hadi and Nygaard, 2021). 



1.8.4 Identification and Characterization of Fracture Patterns 

 

(a) 

 

(b) 



 

(c) 



 

(d) 

Figure A- 23: (a) Natural open fractures identified using Delta Flow measurements (top right) and confirmed via core inspection 
(left), and image log interpretation (bottom right). (b) Natural open fractures identified using Delta Flow measurements (top 
right) and confirmed via core inspection (left), and image log interpretation (bottom right). (c) Matrix permeability identified 
using Delta Flow measurements (top) and confirmed via core inspection (top right), but image log interpretation (bottom) 
cannot detect this type of events. (d) Induced and open open fractures identified using Delta Flow measurements (top) and 
confirmed via image log interpretation (bottom). From (Dashti et al., 2021). 


