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Abstract:

It is a common view that the high temperature of the drilling fluid can lead to the
dissociation of gas hydrate during drilling through hydrate-bearing sediments. This study
indicates that the hydrate dissociation in wellbore can also be induced by gas diffusion
from pore water to drilling fluid even if the temperature (and the pressure if necessary)
of the drilling fluid is well controlled to keep the conditions of hydrate-bearing sediments
along the hydrate equilibrium boundary. The dissociation of gas hydrate was modelled
based on Fick’s first law. It was found that the dissociation rate mainly depended on the
temperature of the sediments. The locations of dissociation front of CH4 hydrate and CO,
hydrate in wellbore were calculated as a function of time. The impacts of the hydrate
dissociation on the wellbore stability and the resistivity well logging in sediments were
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1. Introduction

Gas hydrates is widely distributed all around the world
and has been accepted as a potential strategic energy form
(Song et al., 2014). The exploration and exploitation of marine
gas hydrates have become hot topics in current and future
energy research. Well drilling is a key step for gas hydrate
exploration and for most techniques (Liu et al., 2012; Liu et al.,
2017; Cui et al., 2018) to extract gas contained within natural
gas hydrate sediments (Wang et al., 2014). However, the high
temperature of the drilling fluid and heat generated from the
drilling tool friction can cause the dissociation of hydrates in
sediments in the drilling process (Kwon et al., 2010; Ning
et al., 2013). If gas hydrates dissociate, the mechanical and
physical properties of the sediments will change and the me-
chanical failure can cause the instability of wellbore (Winters
et al., 2007), especially for soft, fine-grained, mud-dominated
hydrate-bearing sediments with poor degree of consolidation,
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such as at some sites on the Indian continental margin and
in the South China Sea where the sediments are cemented
by hydrates. It is essential to pay attention to the prevention
of hydrate dissociation in borehole (Freij-Ayoub et al., 2007;
Kwon et al., 2010; Khabibullin et al., 2011).

Efforts have been made to improve the hydrate drilling
conditions. Freij-Ayoub et al. (2007) used numerical modelling
to quantify the risk of drilling a wellbore through hydrate-
bearing sediments, which showed that the control of pressure
and temperature in wellbore is a practical way to mitigate the
risks of drilling in hydrate bearing strata. Ning et al. (2013)
suggested a method to reduce this risk by maintaining the
wellbore pressure at a higher level than the pore pressure. Zhao
et al. (2010) proposed a mud cooling technology for drilling
operation in hydrate bearing strata. A mud cooling system was
tested both in laboratory and in gas hydrate drilling field. Then,
if the pressure and temperature in wellbore are controlled by
the technologies mentioned above, the conditions of hydrate-
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Fig. 1. Schematic diagram of hydrate dissociation induced by gas diffusion from pore water to drilling fluid.

bearing sediments near the wellbore can be kept above the
equilibrium. Therefore, no hydrate dissociation caused by
pressure drop, temperature rise or even high concentration of
salts in drilling fluid will happen. Nevertheless, while drilling,
hydrate dissociation that induced by gas diffusion from pore
water in hydrate-bearing sediments to drilling fluid in wellbore
cannot be stopped.

As can be seen from Fig. 1, the drilling fluid circulates
between wellbore and the mud pool on the ground while the
pore water keeps still in hydrate-bearing sediments. The fluid
and pore water are interconnected within the porous structure
of sediments in the wellbore. However, the concentration of
gas dissolved in the pore water is higher than that in the
drilling fluid based on the following facts. First, equilibrium

calculations show that the pore water in contact with solid gas
hydrates must contain higher concentration of gas depending
upon the specifics of temperature, pressure, and gas compo-
sition (Tishchenko et al., 2005; Zhang et al., 2011). Second,
the gas concentration in the drilling fluid is kept at a very low
level far from saturated as the drilling fluid flows upward to the
ground to desorb the gas continuously. Undoubtedly, there will
be a mass transfer of dissolved gas from pore water to the fluid
through the pore channels. Once the gas concentration in the
pore water is lower than the equilibrium solubility, hydrate will
dissociate and release gas to the pore water (Nimblett et al.,
2003). During such drilling, the hydrate in the wellbore keeps
dissociating due to the gas diffusion and transportation to the
ground by drilling fluid. Different from hydrate dissociation in
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depressurization (Liu et al., 2017), the dissociation is confined
in a very narrow region. The dissociation of hydrate is confined
in a very thin ring around the wellbore that the front starts to
move until no hydrate remains in the ring. Then there is no
hydrate exists in sediments between the wall to the dissociation
front that the mechanical strength of the sediments may drop
heavily.

Recent studies about drilling safety focused on the hydrate
decompositions that were caused by invasion of the drilling
mud into sediments (Ning et al., 2013), pressure drop, tem-
perature rise (Kwon et al., 2010) and thermodynamic inhibitors
such as salts (Hao, 2011). However, there are no researches
concerning the hydrate dissociation induced by gas diffusion
from pore water in hydrate-bearing sediments to drilling fluid
in a cold wellbore. It was not sure whether the diffusion driven
dissociation of hydrates could also cause the instability of
wellbore and affect the reliability of geophysical resistivity
well logging (Hyndman et al., 1999). In fact, an experimental
study on this issue is quite difficult as a dynamic setting should
be established. In this work, the kind of hydrate dissociation
kinetics was studied by proposing a diffusion model. To
evaluate the impacts of hydrate dissociation, the location of
dissociation front was calculated as a function of time and the
key factors were analyzed based on the model.

2. Modelling

In this study, it is assumed that the drilling fluid is well
pressure-controlled and cooled during the drilling process.
The conditions of hydrate-bearing sediments are kept equal
to or higher than that of hydrate equilibrium. In addition, in
nature, vast quantities of hydrate in sediments are formed from
dissolved-phase gas of pore fluids upward flowing into the
hydrate stability field (Hyndman and Davis, 1992; Spangen-
berg et al., 2005; Waite and Spangenberg, 2013). Free gas
rarely existed in this kind of hydrate-bearing sediments. The
following are a summary of the assumptions made for the
diffusion model:

a. The temperature of the drilling fluid is the same as that
of the hydrate-bearing sediments, and hence there is no heat
transfer from the drilling fluid to the sediments.

b. The pressure of the drilling fluid is kept higher than that
of the hydrate-bearing sediments.

c. Two-phase equilibrium is supposed to be existing in the
sediments: Hydrate phase and pore water phase without free
gas.

In this way, the drilling fluid invades into the bore wall
with filter cake (Ning et al., 2013). The pore water with high
gas concentration connected with the drilling fluid. The mass
transfer of gas from gas hydrates to drilling fluid can be
divided into three steps:

1) The diffusion of dissolved gas from pore water to
drilling fluid under the driving force of concentration differ-
ence.

2) The drilling fluid flows to the pool on the ground to
desorb the gas obtained in the first step.

3) Due to the drop of gas concentration in the pore water in
the first step, hydrates dissociate to release gas to pore water
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for the loss of gas and the dissociation front moves forward
in sediments.

As the drilling fluid flows fast in the wellbore, the gas
in the fluid can be desorbed very soon. In addition, the gas
concentration in pore water can be immediately recovered
by a small amount of hydrate dissociation. In this case, the
hydrate dissociation process is induced and controlled by the
first step. In the first step, it is simplified that the dissolved
gas diffuses in a one-dimensional and horizontal pore channel;
And the gas hydrates in the channel are continuous based on
an average view (As shown in Fig. 1(a)). Then the diffusion of
gas dissolved in pore water into drilling fluid can be modelled
using the Fick’s first law of diffusion equation (Guo et al.,
2013):

AC

J=—-D—
Ar

)
where J is the molar flux of gas diffusing through unit area of
pore in the wellbore, D is the diffusion coefficients of gas in
the pore water phase, Ar is the distance between the wellbore
to the dissociation front (see Fig. 1, hydrate dissociation
takes place within a narrow cylindrical zone), and AC is the
concentration difference between the pore water (C,,) and the
drilling fluid (Cy) that is lower enough to be neglected. As
C,, is the equilibrium solubility of the guest in pore water in
equilibrium with the hydrate according to the pressure and
temperature of the sediments, AC is a constant that do not
change with the time.

The volumetric rate of hydrates dissociation in the hydrate-
bearing strata field is formulated as:

avy J-2m(ro+r)L-@s- (Mg +NM,) )
dr P

where Vj, is the cumulative volume of hydrate that has dis-
sociated at time ¢, 27w (ro+r) L is the cylindrical area of the
dissociation front in sediments, L is the thickness of hydrate-
bearing sediments, ¢; is the surface porosity of the dissociation
front, M,, and M, are the molar masses of the water and guest
substance, N is the hydration number of 6.0 (when sl hydrate
cavities are fully occupied by gas molecules, hydration number
is 5.75), the ratio of the number of water molecules to that of
guest molecules in the hydrate, and p is the mass density of
the hydrate (0.912 g/cm? for sI hydrates) (Gabitto and Tsouris,
2010).

The volume of hydrate-bearing sediments (V) that holding
the hydrates dissociated is:

Snop

where S, is the hydrate saturation in the sediments, and ¢y, is
the bulk porosity of the sediments.

By combining Eqgs (1), (2), and (3), we can obtain the
following equation:

3)

D-AC- (M, +NM,)- ¢,
PrShp

rdr = dt 4
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For simplicity, the following relationship is applied:

@5 =P 4)

Integrating Eq. (4), we obtain:

r=ki'l? (6)

2DC,, (NM,+-My) ) 12

where k = ( onS,

As the dissolved gas diffuses from pore water to the
drilling fluid, hydrates in pore water keep dissociating and
the dissociation front moves to the hydrate-bearing sediments
around the wellbore. Eq. (6) can be used to describe the
relationship between the location of hydrate dissociation front
and the time.

3. Results and discussion

The model shows that the moving rate of the hydrate
dissociation front is affected by several parameters, including
the guest substance, the diffusion coefficients, the solubility of
the guest molecules in pore water and the hydrate saturation in
the sediments. As reviewed by Kvenvolden (1995), methane
in subaquatic settings from around the world is mainly derived
by the microbial reduction of CO, from sedimentary organic
matter. Natural CO, hydrate deposits have been observed at a
number of locations, including Minami-Ensei Knoll (695-705
m), Theya North Knoll (970 m), Yonaguni Knoll IV (1,370-
1,385 m), the JADE hydrothermal field (1,300-1,450 m), and
Hatoma Knoll (~1,500 m) in the Okinawa Trough, and have
been inferred to exist in the subsurface at the Champagne Vent
site (1,604 m) on the Mariana Arc (Hou et al., 1999; Inagaki et
al., 2006; Lupton et al., 2013). When drilling through hydrate-
bearing sediments, the dissociation of both CO, hydrate and
CHy hydrate in wellbore should be considered. In this work,
by applying the diffusion model obtained in Eq. (6) to the
drilling process of the two hydrate-bearing sediments, the
expanding rates of the hydrate dissociation front in sediments
were studied.

With respect to the hydrate equilibrium conditions con-
trolled in ocean drilling, the pressure and the temperature were
selected from the hydrate equilibrium line calculated by Chen-
Guo model (Chen and Guo, 1996; Chen and Guo, 1998) and
shown in Table 1. Different hydrate equilibrium conditions
correspond to different depth of hydrate-bearing sediments.

3.1 CHy hydrate

It was found that the diffusion coefficients of methane in
water depended on the temperature (Guo et al., 2013). At a
constant temperature, pressure has very small effect on the
diffusion coefficients. The relationship between diffusion coef-
ficient of methane in water [D(CH4) in m?/s] and temperature
(T in K) can be described by Speedy-Angell power-law, (Guo

et al., 2013) i.e.,
T m
) (N

T, —1

D(CH,) = Do (
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Table 1. The diffusion coefficients and solubility of dissolved CHy
calculated under different methane hydrate equilibrium conditions
(Tishchenko et al., 2005; Guo et al., 2013).

T (K) P (MPa) D (1079 m?/s) C,, (mol/kg)
274.0 276 0.72 0.060
281.0 5.76 0.95 0.093
288.0 12.63 121 0.138

where Dy = 5.95x10° m?/s, T, = 229.8 K, m = 1.8769.

In the presence of hydrate in pore water, the solubility of
methane was calculated according to the equations established
by Tishchenko et al. (2005). The equation shows that the
solubility of methane is also dependent on the temperature
when hydrate is stable. The hydrostatic pressure and salinity of
water had relatively small effects on the solubility of methane
(See Fig. 2). Then the gas concentrations in pore water at
different depth have little difference. Gas diffusion in upward
direction can be neglected. This is why only radial diffusion
is considered in the model.

Both the diffusion coefficients and solubility of dissolved
methane in pore water under the three hydrate equilibrium
conditions were calculated (Tishchenko et al., 2005; Guo et
al., 2013) and shown in Table 1. The distance between CHy
hydrate dissociation front and wellbore, r, were calculated
according to Eq. (6) at the three specified temperatures.
The results are shown in Fig. 3. Figs. 3(a)-3(c) show that,
in sediments with a certain hydrate saturation, the hydrate
dissociation front evolves with time. The moving rate is
faster at higher temperatures when the diffusion coefficient
and the solubility of CHy4 in the pore water are bigger. It
should be noted that the concentration of gas in water in
equilibrium with gas hydrate increases with the increasing
temperature (Fig. 2) (Tishchenko et al., 2005). There is a
contrary trend in the water without gas hydrate. At the same
time points and specified temperature, the distance between
the hydrate dissociation front and the wellbore, r, decreases
with the increase of hydrate saturation. As the consumption
of gas is diffusion-controlled, higher hydrate saturation means
larger amount of gas for consumption, indicating that the
dissociation front moves slower in sediments with higher
hydrate saturations. Fig. 3(d) shows the variations of the
location with the hydrate saturation at different temperatures
after 240 h (Results of longer time scale may also have
reference value for long horizontal wells). The distances range
from 0.5 cm to 2 cm at different hydrate saturation and
temperature. It is concluded that hydrate dissociation front
moves faster in hydrate-bearing sediments with lower hydrate
saturations and higher temperatures. Since the dissociation of
hydrate is induced by gas diffusion, the movement of hydrate
dissociation front in hydrate-bearing sediments is controlled
by gas diffusion rate. At higher temperatures, there are higher
driving force of concentration gradient and higher diffusion
coefficients, which lead to higher gas diffusion rate. Then
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Fig. 2. Solubility of methane in water equilibrium with hydrate in a pressure range of 5.0 to 15.0 MPa (Tishchenko et al., 2005; Guo et al., 2013).
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Fig. 3. (a)-(c) Variations of the location of CHy hydrate dissociation front, r, with the time. (d) After 240 h, the location of CH4 hydrate dissociation front
in sediments with different hydrate saturations and temperatures.



Sun, Y.,

1]
o
O 1 1 1 1
0 50 100 150 200 250
t/h
(a)
8
7t _ 274K
5,=05 — 278K
6r —— 282K
5 -
£ 41
o
2

200

250

©

et al. Advances in Geo-Energy Research 2018, 2(4): 410-417

415

7+ —274K
Sh:O.3 —278K
6k —282K
5 -
£ 4t
o
g
x 3l
2+
l -
0 1 1 1 1
0 50 100 150 200 250
t/h
(b)
8
£
o
=
x

(d

Fig. 4. (a)-(c) Variations of the location of CO, hydrate dissociation front, r, with the time. (d) After 240 h, the location of CO, hydrate dissociation front

in sediments with different hydrate saturations and temperatures.

hydrate dissociation front moves faster at higher temperatures.
Therefore, the temperature in the mud cooling system applied
should be set to a low value to maintain a low temperature
condition of hydrate-bearing sediments near the wellbore.

3.2 CO, hydrate

For CO,+H,0 system, the pressure also showed little
influence on CO, diffusion coefficient (Frank et al., 1996;
Azin et al., 2013). The diffusion coefficients of CO, in water
can be correlated using Arrhenius-type equations (Frank et al.,
1996):

®)

D=1.81x10"%xp <_16900>

RT

The solubility of CO; in pore water contacting with CO;
hydrate was calculated by the method proposed by Duan
(Duan and Sun, 2003; Duan et al., 2006; Li and Duan, 2007).
The dependence of the solubility of CO;, on the temperature
was also confirmed and the effects of the pressure were small.

The diffusion coefficient and solubility of CO, in pore
water under specified hydrate equilibrium conditions were
calculated and shown in Table 2. The locations of CO; hydrate

Table 2. The diffusion coefficients (Frank et al., 1996) and solubility of
dissolved CO; (Duan and Sun, 2003; Duan et al., 2006; Li and Duan, 2007)
calculated under different CO, hydrate equilibrium conditions.

T (K) P (MPa) D (1072 m?/s) C,, (mol/kg)
274.0 1.38 1.09 0.903
278.0 2.20 1.21 1.168
282.0 3.65 1.34 1.499

dissociation front, r, were calculated by using Eq. (6) and
shown in Fig. 4. It was found that the variations of r over
time at different temperatures have similar trend as that for
CHy hydrate. The temperature and hydrate saturation had the
same influences on the moving rate of hydrate dissociation
front. However, the difference is that the moving rates of
CO; hydrate dissociation front were much higher than that
of CHy4 hydrate. As can be seen from Fig. 4(d), after 240 h,
the distances range from 2.5 to 7.6 cm at different hydrate
saturations and temperatures. This is mainly due to the higher
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solubility of CO; than that of CHy in the pore water at the
same temperature.

It is known that hydrate dissociation can result in a
remarkable reduction in the mechanical strength of sediments
and affect resistivity well logging in the gas hydrate-bearing
sediments (Hyndman et al., 1999; Waite et al., 2008). In this
study, hydrate dissociated zone caused by gas diffusion is now
found much smaller than that of partial hydrate dissociation
caused by the invasion of mud and temperature disturbance
(Kwon et al., 2010; Ning et al., 2013). Although dissocia-
tion of hydrate in dissociated region is complete, the region
dissociated is very thin. Even if CHy4 hydrate dissociation
results in borehole wall failure, a hole enlargement of 1-2 cm
will not cause possible instability of the wellbore and distort
in resistivity well logging during drilling. However, when
drilling through CO, hydrate-bearing sediments (Hashimoto
et al., 1995; Hou et al., 1999; Inagaki et al., 2006; Lupton
et al., 2006), the impacts of diffusion induced dissociation
will be larger due to the higher solubility that closer attention
may be paid to the stability of the borehole even in a cold
wellbore. In summary, hydrate dissociation induced by gas
diffusion does not pose a significant wellbore stability risk in a
cold drilling through hydrate-bearing sediments. Temperature-
controlled technologies like mud cooling system can work well
in keeping wellbore stable during drilling through hydrate-
bearing sediments.

4. Conclusions

It was proposed that hydrate dissociation could be in-
duced by gas diffusion from the pore water to the drilling
fluid in a cold wellbore. A kinetic model was developed to
study the diffusion driven dissociation. The location of the
hydrate dissociation front was calculated for CHy and CO»
hydrate-bearing sediments as a function of time. As the gas
diffusion coefficient and solubility in pore water equilibrium
with hydrate increased with the increase of temperature, the
moving rate of gas hydrate dissociation front was mainly
increased with the increase of the temperature in sediments.
It demonstrated the impacts of hydrates dissociation on the
wellbore stability in a cold drilling and on the resistivity well
logging were not significant.

Nomenclature

J = molar flux of gas diffusing through unit area of pore
in the wellbore

D = diffusion coefficients of gas in the pore water phase

Ar = distance between the wellbore to the dissociation front

AC = concentration difference between the pore water and
the drilling fluid

C,, = concentration of gas in the pore water

Cy = concentration of gas the drilling fluid

V}, = cumulative volume of pure hydrate that has dissoci-
ated at time ¢

t = dissociated time

L = thickness of hydrate-bearing sediments

@, = surface porosity of the dissociation front
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M,, = molar masses of the water

M, = molar masses of the guest substance
N = hydration number

pn = mass density of the hydrate

Sn = hydrate saturation in the sediments
¢ = bulk porosity of the sediments

k = dissociation constant

Subscripts
h = hydrate
w = water
8§ = gas

f = drilling fluid
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