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Abstract:

Digital rock technology is becoming essential in reservoir engineering and petrophysics.
Three-dimensional digital rock reconstruction, image resolution enhancement, image
segmentation, and rock parameters prediction are all crucial steps in enabling the overall
analysis of digital rocks to overcome the shortcomings and limitations of traditional
methods. Artificial intelligence technology, which has started to play a significant role
in many different fields, may provide a new direction for the development of digital
rock technology. This work presents a systematic review of the deep learning methods
that are being applied to tasks within digital rock analysis, including the reconstruction
of digital rocks, high-resolution image acquisition, grayscale image segmentation, and
parameter prediction. The results of these applications prove that state-of-the-art deep
learning methods can help advance and provide a new approach to scientific knowledge
in the field of digital rocks. This work also discusses future research and developments
on the application of deep learning methods to digital rock technology.
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1. Introduction

In recent years, the demand for oil and for greater effi-
ciency and benefits in oil exploration has steadily increased.
However, conventional reservoir exploration has been unable
to meet the vast requirements of the market. Therefore,
unconventional reservoir exploration has received increasing
attention, and digital rock technology has become increasingly
important for its realization (Wang et al., 2021a; Yang, 2022).
Digital rock images can be used to describe pore and grain
morphology (Blunt et al., 2013; Xia et al., 2019). Moreover,
physical properties of rocks, such as permeability, resistivity
and elasticity, can be obtained through numerical simulations
based on three-dimensional (3D) digital rocks (Nie et al.,
2016a, 2016b; Zhu and Shan, 2016; Zhu et al., 2019; And-
humoudine et al., 2021). Establishing 3D digital rock models,

converting from low- to high-resolution rock images, segment-
ing grayscale rock images, and obtaining rock properties from
digital rocks are essential procedures in digital rock tech-
nology. However, these procedures are time-consuming and
expensive. For example, the widely used Lattice Boltzmann
method (LBM) is highly accurate in permeability calculation,
the size of the sample is limited due to the method’s high
computational cost (Okabe and Blunt, 2004; Wu et al., 2006;
Liu et al., 2022).

The rapid development of artificial intelligence over the last
decade has made the application of deep learning methods a
promising solution to these intractable problems in digital rock
technology (Cai et al., 2020; Wang et al., 2021c; Xiao, 2022).
This work presents some successful examples of the use of
deep learning methods in the reconstruction of digital rocks,
acquisition of high-resolution digital rock images, automatic
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Training image

Fig. 1. GANs structure (modified from Hu et al., 2022).

segmentation of grayscale digital rock images, and prediction
of rock parameters. The results and computational costs of
traditional methods are compared with these innovative exam-
ples to demonstrate the superior performance of deep learning
methods. Finally, some understanding and future research
directions are stated for the use of deep learning methods in
digital rock technology.

2. 3D digital rock reconstruction

Digital rocks are the images of rocks. There are three
traditional digital rock reconstruction methods: physical exper-
iments, numerical reconstruction, and hybrid modelling (Lin et
al., 2018; Zhao et al., 2020). Physical experiments mainly in-
clude scanning electron microscopy (SEM), focused ion beam
scanning (FIB-SEM), and X-ray computed tomography (CT).
All these physical procedures require expensive experimental
equipment, take a long time to complete even when scanning
a small-sized core, and cannot guarantee both large imaging
volume and high resolution (Yang et al., 2021). Numerical
reconstruction methods include process-based modeling and
stochastic methods including simulated annealing method,
Markov chain Monte Carlo method, truncated Gaussian ran-
dom field method, multiple-point statistics, and so on (Wang
et al., 2013; Yao et al., 2013; Yang et al., 2015; Yao et al.,
2018). Although the 3D digital rocks obtained from numer-
ical reconstruction methods have good pore structures, the
reconstruction results are controlled by different constraints.
The more the conditions, the better the reconstruction results
and the higher the calculation cost. The hybrid modelling
method combines the advantages of the first two methods,
obtaining two-dimensional (2D) slice data of rocks via SEM
and other physical methods, and then reconstructing the 3D
digital rocks through numerical reconstruction. However, this
reconstruction method is often aimed at highly homogeneous
rocks, making it unsuitable for unconventional reservoirs with
complex and heterogeneous pore structures, such as shale (Cao
et al., 2022).

Deep learning algorithms that can be used to generate
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images are primarily composed of generative adversarial net-
works (GANs) and variational autoencoders (VAEs) (Cang et
al., 2018; Zhang et al., 2021a). Compared to VAEs, GANs
can generate more realistic images. Therefore, various variants
of GANs are primarily used to reconstruct digital cores. The
GANSs have powerful image-generation abilities (Goodfellow
et al., 2014), which are mainly composed of generator and
discriminator networks. The generator is used to learn the
distribution characteristics of real data samples and generate
fake samples that are similar to the real ones. The goal
of the discriminator is to accurately distinguish the input
samples from real or fake training samples. As the number
of training epochs increases, the capabilities of the generator
and discriminator continue to improve, as shown in Fig. 1.
Once the training process is completed, the generator can be
used directly to generate realistic images.

Although GANSs have achieved remarkable results in gener-
ating high-quality images, they have problems such as difficult
training, only generate a single image, and the lack of indi-
cators to monitor the training progress (Hu et al., 2022). In
response to these problems, many researchers have improved
GANs by developing different variants. Table 1 compares
the advantages and disadvantages of several common GANs
variants, including Deep Convolutional Generative Adversarial
Networks (DCGANSs), Least Square Generative Adversarial
Networks (LSGANSs), Wasserstein Generative Adversarial Net-
works (WGANSs), Wasserstein Generative Adversarial Net-
works with Gradient Penalty (WGANs-GP), Large-scale Gen-
erative Adversarial Networks (BigGANSs), Cycle-Consistent
Generative Adversarial Networks (CycleGANs). As can be
seen, the emphasis on reconstruction models varies between
different GANs variants. In practice, additional experimental
requirements are set to choose a suitable GANs that provides
adequate results according to our needs.

Many scholars have studied the use of GANs for digital
rock reconstruction. Mosser et al. (2017) creatively used
DCGANSs to achieve the rapid reconstruction of a bead pack,
Berea sandstone, and Ketton limestone. The synthetic rocks
were compared to the original ones using two-point statistics,
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Table 1. Comparison of common GANs variants.
Variant name Advantage Disadvantage Reference

Chessboard effect resulting in poor pic-

Not good enough for generating large-

Producing bad samples and complex

Unable to generate high-resolution im-

Complex network structure and high

Radford et al. (2015)

Mao et al. (2017)

Arjovsky et al. (2017)

Gulrajani et al. (2017)

Brock et al. (2018)

DCGANs Fast training and small memory
occupied ture quality
LSGANSs Less gradient disappearance and
high generative quality scale images
WGANs High training stability
convergence
WGANs-GP Short convergence time and sta-
ble training ages
BigGANs High resolution and good quality
computational cost
CycleGANs High realism and diversity of the

results

Complex network structure and train-
ing process

Zhu et al. (2017a)

(a)
Fig. 2. Original shale digital rock (Yang et al., 2021).
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Fig. 3. Schematic diagram of the generator structure (Yang et al., 2021).

morphological characteristics, and single permeability. The
results showed good consistency between the synthetic and
original cores. This work used 3D digital rocks composed of
pores and grains, whereas posterior studies focused on the
reconstruction of 3D grayscale rocks based on 2D grayscale
slices. Based on previous work, Mosser et al. (2018) re-
constructed Oolitic limestone in grayscale. Likewise, Zha et
al. (2020) used WGANSs to generate realistic 2D grayscale
images of shale, demonstrating that GANs can also achieve
good results in the reconstruction of highly heterogeneous.
Valsecchi et al. (2020), Feng et al. (2020) and You et al. (2021)
realized the reconstruction of 3D digital rocks from 2D slices.
In addition, the time consumption and average use of CPU,

GPU, and memory by GANs and traditional methods were
compared, proving that the reconstruction speed of GANs was
faster (Feng et al., 2020; Zhang et al., 2021b).

The application of GANs to digital rock reconstruction
were illustrated through the 3D digital rock reconstruction
of shale by Yang et al. (2021). They obtained large-size
training images based on three-dimensional FIB-SEM images
of real shale cores, grouped the four mineral components
of the skeleton phases of the original core images into one
phase, and recombined them with pore phases into a new
three-dimensional volume data (Fig. 2). Then, a six-layer deep
convolution neural network was used as the generator (Fig. 3)
and discriminator.
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Training images

Generated images

Fig. 4. 3D digital rocks and corresponding 2D slices produced by the generator (Yang et al., 2021).
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Fig. 5. Structure of SR-Resnet.

Partial displays of the 3D cores and 2D slices are shown
in Fig. 4. The digital rock synthesized by the generator can
not only restore the pores of the original core but also capture
their spatial distribution, which gives a good description of
the pore space of the original core. These results show that
the trained GANs model can generate digital shale cores that
satisfy the given pore structure information.

3. Image resolution enhancement

Microcomputed tomography (micro-CT) is widely used to
describe the microstructure of conventional rocks (Flannery et
al., 1987; Coenen et al., 2004; Shan et al., 2022). However,
owing to the inherent limitations of micro-CT, the field of view
of high-resolution (HR) images is small and the resolution of
images with a large field of view is low (Li et al., 2017).

To overcome the limitations of micro-CT, a super-high-
resolution (SR) algorithm was proposed in the 1960s. As
an effective method to overcome the tradeoff between the
field of view and image resolution, the SR algorithm can
reconstruct rock micro-CT images from low-resolution (LR)
to HR images. However, in most cases, existing SR methods
cannot satisfactorily produce HR images, lack flexibility in the
generation stage, and have problems such as a high compu-
tational cost (Yang et al., 2008). Some deep learning meth-
ods, such as super-resolution convolutional neural network
(SRCNN) (Wang et al., 2019a), super-high-resolution cycle-
consistent generative adversarial networks (SR-CycleGAN)
(Wang et al., 2019a), and hybrid spatiotemporal deep learning
(HSDL) (Kamrava et al., 2019), have been applied in contin-

SubPixel Convolution

uous exploration to effectively improve the image resolution.
Dong et al. (2015) proposed an SR with convolutional neural
network SRCNN. Through mapping and reconstruction, the
algorithm can convert LR images into SR images. Wang et
al. (2019a) applied the SRCNN technique to the trained HR
source and twice to the LR source to generate high-resolution
images of sandstone and carbonate rocks. Compared with
the bicubic interpolation, the experimental results show that
the image quality improved and the relative error reduced
by 50%-70%, indicating that the SRCNN can generate high-
quality, high-resolution images by processing sandstone and
carbonate images. Compared with the traditional method, the
recovery quality significantly improved, indicating that the
SRCNN method can be used as a feasible processing step
in the digital rock workflow. Three models were subsequently
developed from the SRCNN (Wang et al., 2019a): SR-Resnet,
enhanced deep SR (EDSR), and wide-activation deep SR
(WDSR), all of which had similar structures (Figs. 5-7. LR
Image: Bentheimer (50 x 50), 15.2 micron resolution, 0.76mm
x 0.76mm; SR Image: Bentheimer (200 x 200), 3.8 micron
resolution 0.76mm x 0.76mm).

The application of GANs to high resolution image gen-
eration can also achieve good results. Ledig et al. (2017)
proposed to apply the GANs to image super resolution, namely
SRGAN. Zhu and Zheng (2022) used SRGAN to carry out
research on super-resolution reconstruction of rock micro-CT
images, and achieved good results. Training SRGAN requires
a large number of paired data, which is usually difficult to
achieve. Therefore, the Cycle-GAN network is proposed to
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solve this problem (Zhu et al., 2017b). Chen et al. (2020a)
proposed a simple rock micro-CT image reconstruction based
on an SR-CycleGAN (Fig. 8). The SR-CycleGAN transcends
the limitations of imaging systems in terms of field of view
and resolution and can simultaneously obtain a large field of
view and HR rock micro-CT images. This method consists
of two stages: offline training and online testing (Fig. 9).
The offline training stage uses a set of unpaired rock micro-
CT images to train the network. In the online testing phase,
the mapping between micro-CT images is modeled and the
SR-CycleGAN improves the resolution of the LR input by
learning the mapping. Compared with the HR results generated
by LR rock images and bicubic interpolation (Fig. 10), the
experimental results show that the SR-CycleGAN algorithm
can significantly improve the quality of the simulated and real
rock micro-CT images.

The problem of lacking training image, which limit the
usage of deep learning algorithms for image super resolu-
tion. To address this issue, Kamrava et al. (2019) proposed
using an HSDL algorithm for generating a large number of
plausible shale. This method uses very few input images to
train a deep learning stochastic convolutional network at a
meager cost while improving image resolution (Kamrava et

x4

al., 2019; Wang et al., 2019a; Chen et al., 2020a). In addition,
Kamrava et al. (2019) used the HSDL algorithm to analyze
and model complex shale formations with irregular pores. The
results showed that the accuracy of the HSDL algorithm is
higher than that of the conventional deep learning algorithm
without reinforcement training. The frequency distribution of
the images generated by the HSDL algorithm was close to that
of the reference images, and the enhanced images generated
by the HSDL algorithm were consistent with the original HR
images (Fig. 11).

4. Image segmentation

In the field of digital rock, image segmentation usually
only needs to divide the pore space and solid particle space.
However, the binary images containing pore and solid grain are
not applicable in the case of P- and S- wave speed simulation
(Andri et al., 2013), hybrid moisturizing flow simulation (Akai
et al., 2019), and non-response transport simulation (Liu et
al., 2018). It is necessary to segment the grayscale image of
rock into the image containing multiple mineral components.
However, traditional image segmentation methods (Seo et al.,
2020), such as multi threshold segmentation, edge detection,
clustering segmentation, are difficult to accurately segment
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Fig. 11. Comparison of image resolution enhancement methods: (a) reference image, (b) low-resolution input image, (c) regular
deep learning image, (d) bicubic interpolation image and (e) HSDL-generated image (Kamrava et al., 2019).
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Fig. 12. U-Net structure (Ronneberger et al., 2015).

rock images. To address the lack of traditional image segmen-
tation, some scholars have used convolution neural network
(CNN) for image semantic segmentation (Ning et al., 2005;
Ciresan et al., 2012; Farabet et al., 2012; Ganin and Lempitsky,
2014; Gupta et al., 2014; Pinheiro and Collobert, 2014).
Deep learning methods such as fully convolutional networks
(FCN) (Long et al., 2015), U-Net (Ronneberger et al., 2015),
DeepLab (Chen et al., 2014), and SegNet (Badrinarayanan et
al., 2017) have been applied in semantic segmentation. Since
the U-Net network was proposed, the U-shaped network struc-
ture of encoders and decoders connected by skip connection
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has been widely used in the field of image segmentation and
the improvement structures were proposed, such as SegNet, U-
Net++ (Badrinarayanan et al., 2017; Zhou et al., 2018). The
U-Net structure is illustrated in Fig. 12, the left side of the
network is the encoder, the right side is the decoder, and the
two sides are connected using the skip connection layer.
SegNet uses the pooling index obtained by the maximum
pooling step of the encoder corresponding to the decoder for
nonlinear samples (Fig. 13), which not only improves the
image resolution but also reduces the need for the learning
about up-sampling. For different aspects and the outlook re-
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Fig. 14. The basic internal structure of SegNet (Karimpouli and Tahmasebi, 2019a).

sults (Kendall et al., 2015; Garcia-Garcia et al., 2017; Nanfack

Table 2. Prediction of performance of different learning
models (Li et al., 2021).

Modsls Fl-score

Micro  Weighted Macro
Logistic regression 0.8705 0.8691 0.8691
Linear SVM 0.7980 0.7778 0.7778
K-Nearest neighbors  0.9150  0.9139 0.9139
Random forest 0.9238 0.9215 0.9215
ANN 0.8869 0.8873 0.8873
U-Net 0.8832 0.8784 0.7301

et al., 2017), the internal structure of the SegNet is shown in
Fig. 14. Karimpouli and Tahmasebi (2019a) used the SegNet
to realize the automatic segmentation of rock image of Berea
sandstone, which can achieve more accurate results compared
with the multi-threshold segmentation method.

Previous research shows that the U-Net network can
achieve good results in segmenting digital rock images. Wang
et al. (2021b) realized automatic segmentation of 2D and 3D

sandstone CT images using 2D and 3D U-Net network models.
Experiments have proved that with revised weight function
the U-Net architecture can effectively distinguish clay sets
of mixed matrix mineral particles and organic matter. Chen
et al. (2020b) used the U-Net architecture with modified the
weight function to segment the scanning electron microscope
images of Duvernay shale samples. The experimental results
(Fig. 15) show that there is an obvious separation between the
clay collection and matrix mineral particles, and the boundary
is acceptable. This method proves that extracting deep-learning
features based on texture is feasible, economical, and timely.

In addition, Li et al. (2021) used a variety of image
segmentation methods, including support vector machine, k-
nearest neighbor, random forest, artificial neural network and
U-Net network model to perform multi-component segmenta-
tion of shale SEM images. The image segmentation effects of
different methods can be seen in Table 2, and the U-Net model
can achieve better results. Meanwhile, compared with the
machine learning method used in this paper, the U-Net model
uses the whole image as the input to achieve end-to-end image
segmentation, without manually extracting image features, but
also considering the neighborhood information of pixels. As
for multi-component segmentation of shale CT images, Li et
al. (2022) used U-Net network model to obtain a 3D shale



Li, X., et al. Advances in Geo-Energy Research, 2023, 8(1): 5-18 13

\\
‘3‘7‘ MG =

Fig. 15. (a) Comparison of the original image and (b) segmented clay minerals (Chen et al., 2020b). MG: matrix mineral

grain, OM: organic matter.

Fig. 16. The structure of U-Net++ model containing four regular U-Net models (Wang et al.,

core model with multiple mineral components by combining
shale CT images and QEMSCAN images containing mineral
information. It is challenging to segment the small targets
and the pixels near the boundary accurately in the rock
image. To solve this problem, Wang et al. (2022) used the U-
Net++ structure to carry out image segmentation experiments,
compared the segmentation results of U-Net++ with those
of the commonly used U-Net and wide U-Net model, and
found that U-Net++ can achieve satisfactory results in terms of
pixel-wise and physics-based evaluation metrics. The network
structure of U-Net++ (Fig. 16) contains four conventional U-
Net networks, the blocks and skip connections shown in the
black are for the fourth U-Net. Comparison of segmentation
results of different segmentation methods is shown in Fig. 17.

5. Digital rock parameter prediction

Rock parameters prediction is essential for formation eval-
uation (Wang et al., 2020). For example, permeability and
porosity, which are inherent properties of the rocks whose

v 4mm | Loss

Back-propagation

\ Max-pooling

Trans-convolution

Skip connection
Conv2d(4,1x1x64)
+Soft-max

Contracting path

Expansive path

2022).

values depend only on the pore structure, are important pa-
rameters used to characterize the heterogeneity and anisotropy
of reservoirs (Haagsma et al., 2021; Ishola and Vilcdez,
2022). Numerical simulation has been used to calculate rock’s
parameters. Zhu et al. (2008) used the LBM to study the
seepage characteristics of porous rocks. Song et al. (2015)
used a structured pore network model of the rock samples to
predict their permeability. Since the calculations involved are
very time-consuming, the application of numerical simulation
methods tends to be limited to small domains depending on
the computational resources available. Therefore, the rapid
prediction of core parameters has attracted great research
interest.

Achievements have also been made in the parameter pre-
diction of digital rock using deep learning algorithm. Alqahtani
et al. (2020) used CNNs to predict the porosity, specific sur-
face, and average pore size of binary and grayscale 2D X-ray
images of sandstone. The results showed that the parameters
predicted were consistent with ground truth, with a relative
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Fig. 17. Comparison of segmentation results of different segmentation methods (Wang et al., 2022).
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Fig. 18. Schematic of the CNN network for the prediction of parameters.

error of less than 7% for both binary and grayscale CT images.
Misbahuddin (2020) utilized CNNs to predict properties from
grayscale SEM images of shale. The relative errors in the
predicted porosity and average pore radius were 0.4% and
1%, which are considered negligible. For 3D digital rocks,
methods based on CNNs can also achieve excellent results
(Srisutthiyakorn, 2016; Alqahtani et al., 2018; Yang et al.,
2018; Karimpouli and Tahmasebi, 2019b). The schematic of
the CNN network for the prediction of rock’s parameters in
shown in Fig. 18. Karimpouli and Tahmasebi (2019b) used
CNNs to estimate P- and S- wave velocities from digital
rock images, the estimated properties were compared with the
numerical simulation results, indicating thar CNNs perform
outstanding in predicting the physical parameters. Tembely

et al. (2021) used CNNs to predict the porosity, formation
factor, and permeability of 3D CT images with high accuracy.
Rabbani et al. (2020) proposed a workflow based on CNNs
to estimate a wide range of morphological, hydraulic, and
electrical properties for binarized 3D CT images. Compared
with traditional methods, the workflow proposed by Rabbani
is compatible with any physical size. Zhang et al. (2022)
proposed to predict the permeability of porous media from
low-resolution images and achieved outstanding results.

A specific example was illustrated regarding the use of
CNNs to predict the parameters of digital rocks. Wang et
al. (2019b) established a 3D pore network model based on
the OpenFOAM framework and calculated the porosity and
permeability of pore network model. Then the 3D CT images
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Fig. 19. Test data porosity-permeability distribution (Wang et
al., 2019b).

and corresponding porosity and permeability are as training
dataset for the CNNs model training. The actual data exhibits
a strong matching relationship between pores and permeability
(Fig. 19). This experiment shows that the fast prediction
digital rock model established based on the 3D CNN has
excellent potential and generalization ability for digital rock
feature extraction. The prediction time of a good deep learning
model was only 0.03 s. In contrast, the average time of the
OpenFOAM numerical simulation method was 1.58 h, thus
demonstrating a significant improvement in the calculation
speed and providing an effective solution for the rapid predic-
tion of digital rock permeability. In summary, deep learning
methods can predict parameters of digital rocks accurately and
improve prediction speed in one order of magnitude compared
with traditional numerical simulation methods, effectively re-
ducing computational costs, and significantly improving work
efficiency.

6. Conclusions

This work provides an overview of the application of deep
learning methods to 3D digital rock reconstruction, image
resolution enhancement, image segmentation, and digital rock
parameter prediction. Although digital rock technology has
been developed for decades, many research challenges are
yet to be addressed. The methods mentioned in this study
have partially overcome the challenges posed by reconstruc-
tion, resolution enhancement, segmentation, and parameter
prediction tasks. However, these methods are still unable to
simultaneously consider the training speed, image size, and
modeling accuracy. Therefore, the application of artificial
intelligence methods in the field of digital rocks should be
more comprehensively developed. The reconstruction of the
digital rocks should be constrained by physical properties to
make sure the reality and diversity of the generated samples.
The component segmentation procedures by now are mostly
based on 2D slices, which cannot assure the continuity of the
components in all directions. Therefore, the ortho-slice seg-
mentation should be considered. Parameter prediction should
not only based on the image itself, but also the physical
properties such as porosity and pore space distribution. In
addition, the accuracy of segmentation can be further improved

and attempts to predict more rock parameters are needed.

Moreover, as the future development of intelligent digital
oilfields becomes a general trend, researchers are suggested
to make full use of the powerful capabilities of deep learning
and other artificial intelligence methods to continuously learn
and update the collected core data and properties. Unlike
other common tasks for machine learning such as number
or animal identification, its application in digital rock area is
relatively new and lack of solid data. Therefore, it is necessary
to build an open source and renewable database containing
rocks’ digital images and their physical properties. This should
enable the combination of geological and geophysical data
to allow a comprehensive and systematic development of
reliable strategies for integrating microscopic and local digital
rock technology into macroscopic and overall exploration and
development processes.
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