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Abstract: Proper orthogonal decomposition (POD) reduced-order model can save computing time by reducing the dimension of
physical problems and reconstructing physical fields. It is especially suitable for large-scale complex problems in engineering,
such as ground heat utilization, sea energy development, mineral exploitation, multiphase flow and flow and heat transfer with
complex structure. In this paper, the POD reduced-order model was used to calculate the heat transfer in a flat tube bank fin
heat exchanger. The calculating results of the finite volume method (FVM) were adopted as the snapshot samples. Singular value
decomposition method was used to decompose the samples to obtain a series of bases and corresponding coefficients on sampling
conditions. With these coefficients, interpolation method was used to calculate the coefficients on predicting conditions. And the
physical field has been reconstructed using the bases and the interpolated coefficients directly.

In the calculation of heat transfer unit of flat tube fin heat exchanger, air-side Reynolds number, transverse tube spacing and
the fin spacing were chosen as the variables. The results obtained by the POD method are in good agreement with the results
calculated by the FVM. Moreover, the POD reduced-order model presented in this paper is more advantageous in comparison
with the FVM in terms of accuracy, suitability, and computational speed.
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1. Introduction
Tube-fin heat exchangers are employed in a wide variety

of engineering applications as a universal device in heat
transfer process, such as vehicles (Bellocchi et al., 2018),
cooling systems (Sivasakthivel et al., 2017), air conditioning
(Miseviciute et al., 2018), chemical engineering, aerospace,
electronic chip cooling and power systems (Song et al., 2017).
The air side heat resistance of the heat exchanger dominates
the thermal resistance of the whole system and plays a decisive
role in the heat transfer efficiency (Jacobi and Shah, 1998). For
the requirements the consistency of “heat transfer capacity,
volume, energy consumption” of the heat exchanger in the
industrial application, the tube spacing (Wang et al., 2010;

Song et al., 2011; Wang et al., 2018), fin spacing (Hu et al.,
2013, 2015), fin material (Lizardi et al., 2004; Gai et al., 2010),
fin structure (Han et al., 2013; Lin et al., 2014, 2015; Arora et
al., 2015; Wei et al., 2016; Capata and Beyene, 2017; Guo et
al., 2017; Agbossou et al., 2018), fluid flow parameters (Wang
et al., 2012a; Lin et al., 2014) and other aspects of the heat
exchanger heat transfer performance were studied. The heat
transfer performance of the fin with vortex generators (VGs)
punched on the fin surface also be studied (Wang et al., 2010;
Aliabdi et al., 2016; Dezan et al., 2016; Salviano et al., 2016;
Väalikangas et al., 2018). When the area goodness factor was
used as the criteria on the condition of one tube unit of heat
exchanger for commonly used fin materials and fin thickness,
the transversal tube pitch has considerable effect on the heat
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transfer enhancement of VGs.
To study the heat transfer performance of heat exchanger

with complex structure by experimental test will inevitably
consume a lot of money and time, but also, the detail char-
acteristics of the flow field and the temperature field cannot
be captured. However, fast numerical simulation method can
greatly reduce the design costs. The finite volume method is
often used to solve the inherent characteristics of the iterative
process. In order to obtain the detailed information of the
flow field and the temperature field, millions of grids must
be discreted, which means advanced computer and a lot of
computing time.

Proper orthogonal decomposition (POD) is an efficient
method which can extract characteristic samples from a large
set of data and can combine with interpolation method to
reconstruct complex problems by establishing the reduced-
order model (ROM). The reduced-order model of POD method
can reduce the degrees of freedom of a problem and reduce the
calculation time substantially (Wang et al., 2012b). Therefore,
POD method has become one of the hotspots in the field of
numerical calculation of flow and heat transfer and it has been
widely used to analyze practical problems.

POD was firstly proposed by Pearson in 1901 (Pearson,
1901). It is based on the numerical solution to construct a lin-
ear system rather than directly linearize the control equations
with a good processing power for both linear and nonlinear
problems, so it is continuously studied and applied in many
fields, such as singular value analysis and sample identification
(Fukunaga, 1990), statistics (Jolliffe, 2002; Aquino, 2007),
image processing (Rosenfeld, 1982), meteorological science
(Kylikof, 1988; Majda et al., 2003), ocean numerical simu-
lation (Crommelinand and Majda, 2004; Luo et al., 2007),
turbulent drag-reducing flow (Lumley, 1967; Cazemier et al.,
1998; Wang et al., 2011; Wang et al., 2012d), mobile heat
transfer (Jolliffe, 2002). “Snapshot” method was proposed
by Sirovich (Sirovich, 1987) in 1987. The time-dependent
matrix is calculated instead of the spatial covariance matrix to
solve the basis functions, which saves the storage space and
computing time greatly. Li et al. (2011) deduced a simplified
finite element scheme for the parabolic problem with the POD
basis function, analyzed the error between the usual finite
element scheme and finite element format simplified with POD
basis function and proposed a POD-Galerkin model based on
finite element method to analyze the mass transfer problem in
soil.

The POD technique has been widely used in the study
of heat and mass transfer (Wang et al., 2012c). Mahapatra
et al. (2016) used the POD to assess the energy content of
buoyancy-driven flow in an air-filled enclosure under differ-
ent Ra numbers and switching frequencies. POD was also
adopted to understand the flow dynamics information about
the coherent structures of different energy modes. Polansky
and Wang (2017) utilized the POD to identify flow struc-
ture and revealed the air-water flow regimes in a horizontal
pipeline with slag, plug and wavy stratified phenomena. Zhang
and Xiang (2015) proposed an efficient method based on
POD to resolve the transient heat conduction problems with
enough computational accuracy. Brenner et al. (2012) used

the reduced-order model based on POD to study the non-
isothermal flow using numerical results from a full-order com-
putational fluid dynamics model. The results show that both
the reduced-order and full-order models can solve the problem
with high accuracy. Puragliesi and Leriche (2012) obtained
the fundamental velocity and temperature coherent structures
in the fully confined cubical three-dimensional differentially
heated cavity flow by using POD. Singer and Green (2009)
proposed an adaptive POD method to reduce the computational
cost of reacting flow simulations. The method was applied to a
one-dimensional, laminar premixed CH4-air flame with errors
less than 0.25% and a speed-up factor of 3.5. Yang et al.
(2014) investigated the mechanism of convective heat transfer
enhancement in a turbulent flow of nanofluid by POD analysis.
The results indicate that turbulent energy contributions from
the first few eigenmodes are reduced by adding nanoparticles
and the overall energy distribution becomes more uniform
among coherent structures in the fluctuating temperature field.

POD have been used in the field of earth energy in recently
years. Mudunuru et al. (2017) assesed the utility of regression-
based reduced-order models (ROMs) developed from high-
fidelity numerical simulations for predicting transient thermal
power output for an enhanced geothermal reservoir while
explicitly accounting for uncertainties in the subsurface system
and site-specific details. The proposed regression-based ROMs
is attractive for real-time EGS applications because they are
fast and provide reasonably good predictions for thermal
power output. Cao et al. (2006) made an initial effort to
investigate problems related to POD reduced modeling of
a large-scale upper ocean circulation in the tropic pacific
domain, which showed that POD is an efficient model of
reduction technique for simulating physical process governed
by partial differential equations. Atam and Helsen (2016)
proposed a compact overview of the state-of-the-art in mod-
eling of ground-coupled heat pump (GCHP) systems and an
in-depth review of their optimal control with the associated
research challenges. The main focus is on optimal control
but since design of an optimal controller may require a
model, POD reduced-order model is expected to be applied to
study such problems. Chen et al. (2015) proposed a singular
value decomposition program on a MATLAB platform to
extract deeply buried geological information reflecting deep-
seated geological structures and the concealed granites by
decomposing gravity signals within the Gejiu tin polymetallic
ore field. Li et al. (2013) developed a numerical optimization
methodology of ventilation system operation to improve in-
door environment quality and energy costs for space heating
and cooling simultaneously by POD reduced-order model,
which indicates that the present optimization approach is able
to improve indoor comfort and energy costs of ventilation
system in a balanced way. Han et al. (2015) proposed a POD
Galerkin reduced-order model for unsteady-state heat conduc-
tion problems based on body-fitted coordinate. The conclusion
shows that the reduced-order model has great engineering
application value and would be a very helpful tool to solve
the time-consuming and energy saving problem involved in the
optimal design and risk assessment of oil pipeline. In addition,
the POD is promising to facilitate analysis data and predict the
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Fig. 1. Physical model of flat tube bank fin heat exchanger.

variation of the water level and topographic position (Nair,
2017).

POD are also used in the study of heat exchanger. Ding
and Tao (2011) applied a reduced-order model of POD inter-
polation to a simple tube fin heat exchanger. The POD model
was established by linear interpolation in 21 groups of velocity
field and temperature field at Reynolds number in the range
of 100∼2,000. The results were in good agreement with that
of the SIMPLE algorithm, but the calculation time was only
1/1200 of the SIMPLE algorithm. Their research showed the
potential of POD methods in complex geometric regions.

However, most of the studies related to POD model are
only for simple geometric regions. Using both POD interpo-
lation method and POD projection method in flow and heat
transfer calculations of the flat tube heat exchanger has not
been reported. In this paper, a high-efficiency POD reduced-

order model is proposed and applied to the flow and heat
transfer in a flat tube bank fin heat exchanger. Different
reduced-order models are established by interpolation methods
based on the general control Eq. of flow and heat transfer.
The POD interpolation method under unstructured grid and
three-dimensional body coordinates are studied. The accuracy,
speed and robustness of different POD interpolation reduced-
order models are studied and a high-efficiency POD reduced-
order model in good agreement with that of FVM for complex
geometric region is established.

2. Physical model and numerical method

2.1 Physical model and assumptions

Physical description and parameters of flat tube bank fin
heat exchanger are depicted schematically in Fig. 1. It consists
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of a large number of parallel tubes and numerous plain fins
typically. Tubes are located in staggered manner. In the study,
water flows through the tubes and gas flows through the
channel formed by the tubes and the fins. And the hot water
can be cooled by air through conjugate heat transfer. As
shown in Fig. 1(b), the computational domain of the three-rows
staggered flat tube bank fin heat exchanger is composed of four
parts, they are air channel, fins, tubes and water channel.

The flat tube bank fin heat exchanger in three-dimensional
is shown in Fig. 1(a), a heat transfer unit is selected to study, as
shown in Fig. 1(b). Since the size of the air flow unit is closely
related to the geometrical dimensions of the fins, according to
the operable geometric dimension changing structure of the
similar flat tube bank fin heat exchanger (Liu et al., 2008), the
effect of the geometric size on the heat transfer process was
observed by changing the transverse tube spacing (S1) and the
fin spacing (Tp). The related parameters are shown in Table
1, S1 = 16 mm, Tp = 2.0 mm, a = 2.5 mm, S2 = 22 mm and
b = 18.0 mm are originated from the real dimension of the
locomotive radiator. The remaining values are given by the
authors for research purpose. In Fig. 1(b), Tp is the vertical
distance between the upper surface of the lower fin and the
lower surface of the upper fin.

Table 1. Heat dissipation unit geometry.

Parameters Parameter value (mm)

1 2 3

S1 12.8 16 21.2

Tp 1.6 2.0 2.4

a 2.5

S2 22

b 8.5

The specific geometric parameters of heat exchanger unit
are shown in Fig. 2.

2.2 Boundary conditions

For the studied heat transfer unit in this paper, the walls of
tubes and fin thickness are ignored. In practical problems, the
pipe walls and fin surfaces are non-isothermal wall temperature
conditions. However, in this paper, we focus on the comparison
of POD reduced-order model with traditional FVM in terms
of computational efficiency and accuracy. Therefore, in order
to simplify the calculation, the tube walls and fin surfaces
are set to isothermal wall temperature boundary condition.
The air inlet velocity varies with the operating conditions and
the outlet flow is assumed to be no backflow (Wang et al.,
2012a). The mathematical descriptions of the air side boundary
conditions are given as follows. Previous studies have already
ensured the reliability of the boundary conditions in this study.

(1) entrance boundary

Fig. 2. Heat exchanger unit size parameter.

The average flow rate and average temperature of the inlet
part AA’ J’ J are given as Eq. (1).

u(0,y,z) = uin,v(0,y,z) = 0,w(0,y,z) = 0,T (0,y,z) = Tin (1)

where uin depends on the inlet flow rate condition, Tin = 40 ◦C.
(2) outlet cross section boundary
The velocity boundary of the outlet section DEE’D’ of the

airflow channel is defined as Eq. (2).

∂u(Lx,y,z)
∂x

= 0,
∂v(Lx,y,z)

∂x
= 0,

∂w(Lx,y,z)
∂x

= 0 (2)

The remaining sub-velocities and the temperature boundary
conditions of the outlet section are defined as Eq. (3).

∂v(Lx,y,z)
∂x

= 0,
∂w(Lx,y,z)

∂x
= 0,

∂T (Lx,y,z)
∂x

= 0 (3)

(3) side wall region 1
In Fig. 3, the symmetry planes JII’J’, GG’H’, FEE’F’,

ABB’A’ and CDD’C’, v(0,y,z) = 0, the other two sub-speeds
and the temperature are defined in Eqs. (4) and (5).

∂u(x,0,z)
∂y

= 0,
∂w(x,0,z)

∂y
= 0,

∂T (x,0,z)
∂y

= 0 (4)

∂u(x,S1/2,z)
∂y

= 0,
∂w(x,S1/2,z)

∂y
= 0,

∂T (x,S1/2,z)
∂y

= 0

(5)

(4) side wall region 2
The boundary conditions of interface between the air and

the pipe walls of the air side, I’IHH’ and G’GFF’ as shown
in Fig. 3 are given in Eq. (6).

T (x,y,z)|a = Tf in (6)

Tf in = 88 ◦C
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Fig. 3. Air flow channel and boundary definition.

Fig. 4. Grid independence verification.

(5) top and bottom surface
The boundary conditions of the interface between air and

fin, ABCDEFGHIJA and A’B’C’D’E’F’G’H’I’J’A’ are defined
in Eq. (7).

T (x,y,z)|Lz = Tf in,T (x,y,z)|0 = Tf in (7)

In addition, face 2 has the same boundary condition as face
1.

2.3 Grid independence verification

Three sets of grids are constructed in the model region of
Fig. 3, 152∗22∗22, 200∗24∗24 and 272∗32∗32. Considering

the high gradient variation of parameters in the boundary
layer, in order to reduce the difference during the information
transfer resulting from the skewed grids in the transitional
regions of the boundaries, the Poisson differential equation
method is employed to modify the grid system generated by
algebraic method. But also, the grid density is locally refined in
the region close to the interface between the fluid and the solid.
The convective heat transfer of the fin unit is calculated under
the condition of Tp = 3.2 mm, S1 = 16 mm and Rea = 1,100.
The span-wise average Nusselt (Nu) number along main flow
direction is shown in Fig. 4. It can be seen that the influence
of the grid size on the results is small. The grid of 272∗32∗32
is adopted as the grid number in this paper.

2.4 Numerical method verification

In order to verify the reliability of the numerical method,
the model with the experimental geometric parameters is
generated. And the numerical results and the experimental
results of the Nu number (Nua) and the friction factor ( fa) are
compared. In this paper, the numerical method is checked by
the experimental empirical Eq. in reference (Kylikof, 1988).

Nua = 0.072Re0.695
a

0.33
Pr
(

a
Tp

)−0.54(S1−a
2Tp

)−0.14

(Rea = 400∼ 20000)
(8)

fa = 8.35Re−0.627
a

(
a
de

)0.3

ελ , ελ = 1.65(lgRea)
−2.53

(Rea = 400∼ 20000)
(9)

Rea =
ρumaxde

µ
(10)
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(a) Comparison of average Nu with the experimental results (b) Comparison of ( fa) with the experimental results

Fig. 5. Numerical method verification.

Ra = Pr×Gr =
gβL3∆T

vα
(11)

Fig. 5(a) shows the comparison of the average Nu number
on the air side under the same condition as in reference.
It can be seen that the average Nu number increases with
the increasing Reynolds number. The relative error of the
numerical results and the experiments results decreases with
the increasing Reynolds number. The average error is about
19.6%. Fig. 5(b) shows the comparison of the friction factor. It
can be seen that the numerical results have the similar tendency
with the experimental results. The average relative error is
about 20.9%. In summary, the numerical results can basically
describe the heat transfer characteristics of the heat exchanger.

3. Establishment of reduced-order model

3.1 POD sample selection

In the selection process of the sample, in order to capture
the essential information of the physical problem as much
as possible, the sampling condition can be determined by
the method of “superposition of sample parameters”. Three
parameters are selected in this study, they are transverse tube
spacing, fin spacing and airflow velocity. Three samples are
set up by changing single parameter, double parameters and
three parameters. It should be noted that in the simulation of
the heat transfer of the flat tube heat exchanger, the steady-
state temperature field for different parameters is used as the
sampling matrix. The specific parameters are shown in Table
2.



T (ξ1,η1,ζ1,ci)
...

T (ξI ,η1,ζ1,ci)
T (ξ1,η2,ζ1,ci)

...
T (ξI ,ηJ ,ζ1,ci)
T (ξ1,η1,ζ2,ci)

...
T (ξ1,ηJ ,ζ3,ci)

...
T (ξI ,ηJ ,ζK ,ci)



⇒



T (ξ1,η1,ζ1,c1) T (ξ1,η1,ζ1,c2) · · · T (ξ1,η1,ζ1,cN−1) T (ξ1,η1,ζ1,cN)
...

... · · ·
...

...
T (ξI ,η1,ζ1,c1) T (ξI ,η1,ζ1,c2) · · · T (ξI ,η1,ζ1,cN−1) T (ξI ,η1,ζ1,cN)
T (ξ1,η2,ζ1,c1) T (ξ1,η2,ζ1,c2) · · · T (ξ1,η2,ζ1,cN−1) T (ξ1,η2,ζ2,cN)

...
... · · ·

...
...

T (ξI ,ηJ ,ζ1,c1) T (ξI ,ηJ ,ζ1,c2) · · · T (ξI ,ηJ ,ζ1,cN−1) T (ξI ,ηJ ,ζ1,cN)
T (ξ1,η1,ζ2,c1) T (ξ1,η1,ζ2,c2) · · · T (ξ1,η1,ζ2,cN−1) T (ξ1,η1,ζ2,cN)

...
... · · ·

...
...

T (ξI ,ηJ ,ζ2,c1) T (ξI ,ηJ ,ζ2,c2) · · · T (ξI ,ηJ ,ζ2,cN−1) T (ξI ,ηJ ,ζ2,cN)
T (ξI ,ηJ ,ζ3,c1) T (ξI ,ηJ ,ζ3,c2) · · · T (ξI ,ηJ ,ζ3,cN−1) T (ξI ,ηJ ,ζ3,cN)

...
... · · ·

...
...

T (ξI ,ηJ ,ζK ,c1) T (ξI ,ηJ ,ζK ,c2) · · · T (ξI ,ηJ ,ζK ,cN−1) T (ξI ,ηJ ,ζK ,cN)



(12)
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Table 2. Sample parameters.

Sample data parameter name single parameter double parameters three parameters

Variety parameter Re A A A

Tp 2 B B

S1 16 16 16

Number of samples 10 30 90

A = {200,400,600,800,1000,1200,1400,1600,1800,2000} B = {1.6,2.0,2.4}mm C = {12.8,16.0,21.2}mm

The relationship of sample and sample data can be illus-
trated in Eq. (12). Firstly, the temperature field of the unsteady
heat transfer is calculated by FVM, then the proper samples
are selected and the calculated temperature field is stored in
the sample matrix. In Eq. (12), the single sample is listed on
the left side, the right side represents the sample matrix and
N is the total number of samples, the single sample on the
left side can be expanded in the form of matrix as shown in
the right side of Eq. (12). Where ξ ,η ,ζ are the body-fitted
coordinates corresponding to the cartesian coordinate system.

All data of the temperature fields under all sample condi-
tions can be written in the order as shown in Eq. (12). The
sampling matrix is obtained by arranging all the vectors in
order.

3.2 Basis function calculation

Although more basis functions are selected, the accuracy
of the POD reduced-order model is not necessarily high, the
corresponding calculation costs will increase. This situation is
very significant in multi-sample, multi-parameter engineering
practical problems. In this paper, the energy standard is used
to select the basis function.

The obtained basis functions are arranged in order according
to the energy of the samples. According to the number of
samples of different sample matrices in Table 2, 10, 30 and
90 basis functions are obtained from the three sample matrices
of single, double and three parameters. The basic trend of the
temperature field distribution is described in the first basis
function, the temperature field correction is emphasized in
the second and third basis function. More and more detailed
information was described with the increasing base function.
Under normal circumstances, a high accuracy can be obtained
by selecting about 10 basis functions in fixed shape region.
Therefore, the first ten basis functions are chosen as the basis
of the POD reduced-order model.

3.3 Proper interpolation method selection

The spectral coefficients of the unknown physical field can
be obtained by interpolating the spectral coefficients of several
known physical fields. Different interpolation methods were
used to reconstruct the temperature field for different samples.
In the case of single parameter variation samples, the Newton
interpolation was chosen to calculate the interpolation spectral
coefficients. In the two-parameter variation sample calculation,

cubic B-spline interpolation was selected to calculate and in
the three-parameter variation sample calculation the linear
interpolation was selected to calculate, respectively. The basic
theory as to the interpolation method can be found in (Cao,
2012).

The specific interpolation equations are as follows.
(1) Linear interpolation
Univariate linear interpolation of univariate Problems.

Pa = Pa1 +[Pa2 −Pa1 ]
a−a1

a2−a1
(13)

Binary linear interpolation of two variable problems,

Pab =
a−a1

a2−a1
[

b−b1

b2−b1
(Pa1b1 +Pa2b2 −Pa2b1 −Pa1b2)+

Pa2b1 −Pa1b1 ]+
b−b1

b2−b1
(Pa1b2 −Pa1b1)+Pa1b1

(14)

Three variables are the same as above.
(2) Newton interpolation

f (x) = f (x0)+ f [x0,x1](x0− x1)+ f [x0,x1,x3, ...,xn]·
(x− x0)(x− x1)+ ...+ f [x0,x1,x3, ...,xn]·
(x− x0)(x− x1)...(x− xn−1)+ f [x0,x1,x3, ...,xn]·
(x− x0)(x− x1)...(x− xn−1)(x− xn)

(15)

Eq. (15) is the Newton interpolation at point x. In this
study, the Newton interpolation is used to obtain the spectral
coefficients under univariate conditions.

(3) Lagrangian interpolation
The Lagrangian interpolation is more flexible than the

Newton interpolation but it is easier to increase or decrease
the node. In this study, the Lagrangian interpolation method
is used to obtain the spectral coefficients under univariate
conditions. The Lagrangian equations are defined as follows.

f (x j) = y j, j = 0,1, ...n (16)

Ln(x) =
n

∑
i=1

yili(x) (17)

li(x) =
(x− x0)...(x− xi−1)(x− xi+1)...(x− xn)

(xi− x0)...(xi− xi−1)(xi− xi+1)...(xi− xn)
,

i = 0,1, ...,n
(18)

li(x j) =

{
1, i = j
0, i 6= j i, j = 0,1, ...,n (19)
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Fig. 6. Contrast plane in the calculate model.

Ln(x j) = y j, j = 0,1, ...,n (20)

Eq. (18) is Lagrangian polynomial and the calculated inter-
polation is the Lagrangian polynomial interpolation.

(4) Cubic B-spline interpolation
Cubic B-spline interpolation is a universal segmentation

interpolation method which can avoid the oscillation problem
of high order polynomials and guarantee the smoothness of
the interpolation curve. The corresponding spectral coefficients
are calculated by using cubic B-spline interpolation under
univariate and bivariate conditions here (Ren, 2008).

4. Results and discussion

4.1 Reliability of the POD interpolation method

FVM, as a classical numerical heat transfer calculation
method, has been widely recognized in scientific study. In or-
der to test the calculation accuracy and calculation speed of the
POD reduced-order model, the temperature field distribution
of the two methods were compared on z = Tp/2 section as the
Fig. 6.

Based on the spectral coefficients obtained by the above
interpolation methods, the temperature field was calculated
by the established POD reduced-order model. Three different
parameters of the sample reconstruction results were analyzed
and the appropriate difference methods with least error were
selected. The Newton interpolation method was used to calcu-
late the unknown physical field under the univariate condition,
the B-spline interpolation method was used to calculate the
unknown physical field under two-parameter variation condi-
tion and the linear interpolation method was used to calculate
the unknown physical field under the three-parameter variation
condition. The comparison of FVM results and POD results
in three conditions are shown as follow. The black solid line
presents FVM results and the red dotted line presents POD
interpolation results.

The comparison of temperature field under the univariate
condition (only Rea) on z = Tp/2 section when Tp = 2 mm,
S1 = 16 mm and Rea = 1,100 is obtained as Fig. 7(a).

The comparison of temperature field under two-parameter
variation condition (Rea and TP) when TP = 2.2 mm, S1 = 16
mm and Rea = 1,500 on z = Tp/2 section is obtained as Fig.
7(b).

The comparison of temperature field under the three-
parameter variation condition (Rea, TP and S1) on z = Tp/2
section is obtained as Figs. 7(c)-7(e).

It can be seen from Fig. 7 that the three cases have different
relative errors. The maximum error between the POD results
and FVM results are shown in Table 3. The relative maximum

Table 3. The maximum error of FVM and POD results.

Cases a b c d e

Maximum error 0.019% 1.18% 5.27% 4.96% 3.83%

error is between 0.019% and 5.27%. The error range is
acceptable in engineering calculation.

4.2 Reconstruction temperature field by POD inter-
polation method

Based on the spectral coefficients obtained by the above
interpolation methods, the fitted temperature field under dif-
ferent conditions was calculated by using the established POD
reduced-order model. Three different parameters of the sample
reconstruction results are analyzed as follow.

(1) Single parameter variation (only Rea)
The Newton interpolation method was used to calculate

the unknown physical field under the univariate condition on
the z = T p/2 section when Tp = 2 mm, S1 = 16 mm and
Rea = 1,100. The temperature field is obtained as Fig. 8.

(2) Two-parameter variation (Rea and Tp)



166 Wang, Y., et al. Adv. Geo-Energy Res. 2017, 1(3): 158-170

(a) Comparison of the temperature contour by FVM and POD newton interpolation method under single parameter variation

(b) Comparison of the temperature contour by FVM and POD B-spline interpolation method under two-parameter variatio

(c) TP = 1.8mm,S1 = 14mm,Rea = 900

(d) TP = 2.2mm,S1 = 14mm,Rea = 300

(e) TP = 1.8mm,S1 = 18mm,Rea = 1900

Fig. 7. Comparison of the temperature contour by FVM and POD.

Table 4. Sample parameter table.

Calculation method SIMPLE algorithm Linear interpolation Newton interpolation B-spline interpolation

Time consumings 10,003.98 4.92 6.24 60.71
Multiple - 2,033.3 1,603.20 164.78

The B-spline interpolation method was used to calculate
the unknown physical field under two-parameter variation
condition when Tp = 2 mm, S1 = 16 mm and Rea = 1,100
on z = Tp/2 section. The temperature field is obtained as Fig.
9.

(3) Three-parameter variation (Rea, Tp and S1)
The linear interpolation method was used to calculate the

unknown physical field when Tp = 2.2 mm, S1 = 16 mm,
Rea = 1,500 on z = Tp/2 section under the three-parameter
variation condition. The temperature reconstruction field is

obtained as Fig. 10.

4.3 Comparison of interpolation method and FVM

Table 4 shows the comparison of average time-consuming
of the FVM of SIMPLE algorithm and three types of POD
interpolation methods. They are linear interpolation, newton
interpolation and B-spline interpolation. It is easy to see that
the POD method reduces the computational time greatly than
that of the traditional numerical calculating method. Thus, the
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Fig. 8. Reconstruction temperature field by newton interpolation method of univariate (z = T p/2).

Fig. 9. Reconstruction temperature field by B-spline interpolation method of bivariate (z = T p/2).

physical fields reconstructed by POD interpolation method can
be considered when the accuracy of the results is satisfied with
the engineering requirements.

It is very important to choose a suitable numerical method
that can accurately predict the heat transfer characteristics of
the heat exchanger from viewpoint of design. The FVM of
SIMPLE algorithm is usually used to calculate the approxi-
mation simulation field but the calculation program is always
complex and spend a long time. The POD method used in this
paper is superior in computational accuracy and speed. Con-
sidering the practical application, POD interpolation method
proposed in this study is better than the FVM in terms of
accuracy, suitability and computational speed, which provides
favorable conditions for the preheating, real-time monitoring
and automatic control of the heat exchanger.

5. Conclusions
In this paper, the heat transfer of the flat tube bank fin

heat exchanger was simulated. Firstly, the FVM was used to
analyze the temperature field of the air side of the flat tube
bank fin heat exchanger at different Reynolds numbers, fin
spacing and different transverse tube spacing. The sampling
matrix was obtained by the calculating results. Secondly, the
basis function was obtained by decomposing the sampling ma-
trix with singular value decomposition. Finally, different POD
interpolation methods were used to reconstruct the temperature
field and the reconstruction temperature fields were compared

with the FVM results. The main conclusions are as follows.

1) In the study of the flat tube bank fin heat exchanger
unit, the reconstructed temperature field conforming to
the variation of the original temperature field can be
calculated by POD interpolation method. It can be seen
that the POD interpolation method can be applied to
solve the multivariable steady-state problem of complex
boundary conditions as the heat exchanger. The POD
interpolation method is used to interpolate the spectral
coefficients of the given samples to obtain the new
spectral coefficients, which greatly simplifies the solution
process. Though the accuracy of the calculation results is
highly dependent on the interpolation method itself and
the sample data, it is more advantageous in the calcula-
tion efficiency. Compared with the traditional numerical
heat transfer SIMPLE algorithm, the POD reduced-order
model proposed in this paper greatly improves the calcu-
lating speed, which can guarantee calculation precision
and reduce the storage space of the computer.

2) In the process of physical field reconstructed by POD in-
terpolation method, different interpolation methods have
different effects on the computational accuracy. Com-
pared with the temperature field by FVM, the fitting
curves of higher order linear interpolation and segmented
interpolation have higher accuracy than that of linear
interpolation. In general, the reconstructed temperature
fields obtained by POD interpolation method are different
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Fig. 10. Reconstruction temperature field by linear interpolation method under three-parameter variation conditions (z = T p/2).

from the original physical field.
3) The POD is applied to heat transfer calculation of com-

plex structure such as flat tube bank fin heat exchanger
greatly expanded its engineering applications. However,
this method should be explored continually. For example,
it should be used to reconstruct the temperature and ve-
locity field under the condition of conjugate heat transfer
boundary conditions. In addition, the problem about flow
and heat transfer in flat tube bank fin heat exchanger
with vortex generators under more complex boundary
condition may show the superiority of the POD reduced-
order model.

Nomenclature
a = water pipe width [m]
ρ = fluid density [kg/m3]
b = water pipe length [m]
u,v,w = velocity component [m/s]
de = characteristic dimension [m]
µ = dynamic viscosity [Pa·s]
f = friction factor
v = kinetic viscosity [m2/s]
L = characteristic length [m]
a = thermal conductivity
Ly = span-wise length of the fin [m]
ε = discrepancy between the Nusselt numbers obtained by

different numerical methods [-]
Nu = Nusselt number
λ = thermal conductivity [Pa/(m·k)]
Gr = Glashov number
ξ ,η ,ζ = body fitted coordinator axes coordinator axes
Pr = Prandtl number
Re = Reynolds number [-]
Ra = Rayleigh number [-]
S1 = transverse tube spacing [m]
S2 = longitudinal tube spacing [m]
Tp = fin spacing [m]
Tw = tube wall temperature [K]
T = fluid temperature of the computational domain

Subscripts
a = air

out = outlet
a, b = non-sample parameters
in = inlet
a1, b1 = minimum sample interval
w = wall or fin surface
max = the maximum value
f in = the fin of heat exchanger
min = the minimum value
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