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Abstract: Formation pore structure and reservoir parameters change continually during waterflooding due to sand production, clay
erosion, and pressure/temperature variation, which causes great challenge in geological modeling and simulation. In this work, the
XA Oilfield, a block with more than 20 years’ waterflooding history, is used as an example to better understand the fundamental
evolution mechanisms of reservoir pore network characteristics over long time waterflooding. We performed a large number of
core analyses and experiments to obtain formation parameters (e.g., permeability, porosity, relative permeability, and etc.) at
different development stages. The comparison illustrates that reservoir permeability can not only decrease with clay plugging, but
also increase by the detachment of fine particles and even the destruction of microscopic structure. We also observed that the
point/line contacts among grains decreases, the pore network connectivity increases, the clay content reduces and the rock trends
to be more hydrophilic with increasing water injection. Moreover, we developed a pore network model to simulate the variation of
formation parameter. The model parameters are also compared and analyzed to get a qualitative understanding of the evolvement
laws, which will provide a useful guidance for reservoir accurate modeling.
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1. Introduction
Among these improved oil recovery (IOR) techniques, the

water flooding is the most popular due to its high efficiency
and low expense. During the oilfield development, water is
injected into reservoirs to maintain the formation pressure,
to sweep oil from the rock surface, and to push it towards
production wells (Liu et al., 2012). Although it is commonly
believed that the long-term fluid-solid interaction between oil,
water and rock, has a tremendous impact on the pore structure
(Colón et al., 2004; Crandell et al., 2010), the evolution
principles of pore network topology and transport properties
are still ambiguous.

Previous literatures mainly concentrate on formation dam-
age caused by the release, migration and deposition of clay
particles as well as the inorganic or organic precipitates.

This process results in a drastic decrease of permeability
and further inhibits oil production (Chang and Civan, 1997).
Before exploitation, various types of minerals attach at the
pore surface and keep equilibrium in the formation. However,
when some chemical substances, such as drilling fluids, brine
solution, fracturing liquids, and etc., are injected into forma-
tion, the in situ equilibrium condition is disturbed, leading
to colloidally induced fines release, migration, and blockage.
Even no other fluids is injected, the variations of pressure and
temperature also bring about the formation damage through
the interaction between various minerals and fluids, such as
paraffin and asphaltene deposition (Wang and Civan, 2005). A
few phenomenological models have been proposed to describe
formation damage caused by water sensitivity, fine particles,
and etc (Civan, 1998). Another interesting topic is involved
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Fig. 1. Production history of the target reservoir.

in the wormhole formation (Fredd and Fogler, 1998, 1999;
Szymczak and Ladd, 2009). Mineral dissolution and precipi-
tation reaction in porous media result in pore growth and throat
evolution, causing the spontaneous formation of pronounced
channels, commonly termed wormholes. They are playing
increasingly important roles in engineering, e.g., chemical
weathering, diagenesis, and risk assessment of contaminant
migration in groundwater (Szymczak and Ladd, 2009). The
evolution of wormholes in oil reservoirs are mainly attributed
to sand production in loosely consolidated reservoirs or well
stimulation like acidification in carbonate formations.

To the best of our knowledge, present studies on the
variations of petrophysical properties primarily focused on the
characterization of formation damage and optimal condition of
wormhole evolution. However, our practical experience from
several China oil fields, e.g., Daqing, Shengli, Huabei, and
etc., shows a common phenomenon that although wormhole
doesn’t form in the reservoir, the fluid flow capacity of the
formation has improved dramatically in some regions, which
is frequently known as thief zone or preferential flow path
(Peng et al., 2007; Liu et al., 2010; Wang et al., 2010; Feng
et al., 2010, 2011; Wang and Jiang, 2011). For example, in
comparison to the perpendicular orientation, injected water
tends to flow along the main streamline direction of fluvial
facies owing to its good transport capability. Consequently, for
a long time, fluid flow interacts with the porous media through
a series of comprehensive processes (e.g., detachment, disso-
lution, migration, and precipitation), resulting in the increment
of porosity, permeability in the main streamline direction, and

hence thief zone has formed.
In reservoirs with widespread evolution of thief zones,

injected water circulates inefficiently and sweeps out of the
reservoir rapidly, which will cause unstable displacement with
outside oil bypassed. Moreover, thief zone also triggers the
premature breakthrough of polymer and some other chemical
agents, which prevent the recovery efficiency from being
further enhanced. Therefore, thief zone characterization is
critical in the development of oil reservoirs, especially those in
the high water cut stage. The objective of this work is to study
the evolution principles of reservoir pore network character-
istics to provide insights into the variation of petrophysical
properties during long-term water flooding and shed light on
the description of preferential flow path.

2. Background
The target area located in the southern part of XA oilfield

is a complex fault block reservoir controlled by geologi-
cal structure and formation lithology. This reservoir is fan
delta deposits, of which the dominant production layers are
Dongying Formation and Shahejie Formation. There are many
oil-bearing layers on the vertical direction. This reservoir is
of serious heterogeneity and the petrophysical properties of
each layer are quite different from the others. The initial
porosity is 7%∼33% with an average of 21.63% and the initial
permeability is 0.04∼ 3680× 10−3 µm2 with an average of
310× 10−3 µm2. The oil viscosity on the surface is 4∼17
mPa·s.
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Table 1. Parameters of these core samples from different development stages.

Time Porosity (%) Permeability (10−3µm2) Average Pore Size (µm) Threshold Pressure (MPa)

1981 8.7∼24.1 1.2∼56.5 0.3∼7 0.133∼1.724

1990 22.1∼26.3 8.4∼1128 2∼13 0.07∼0.31

2004 24.2∼29.2 222∼1280 6∼17 0.06∼0.14

Fig. 2. Locations of coring wells in XA Oilfield.

In Fig. 1, the production history of this block is presented.
After twenty years of development, the water cut has reached
87.2%. Production performance and inter-well surveillance
reveal that the fluid flow during long-term water flooding has
brought tremendous influence on the pore and throat structure,
which leads to the variation of the porosity and permeability.
To explore the evolvement laws of pore and throat structure,
the cores from different development stage are analyzed. These
cores from the same segment were obtained from well C61,
C39-124, and C39-303 in 1981, 1990 and 2004, respectively.
Locations of these coring wells are shown in Fig. 2.

3. Evolution of pore network characteristics

3.1 Pore size distribution

The pore size distribution of these core samples obtained
by mercury intrusion method is firstly analyzed. Fig. 3 shows
the capillary pressure curves and PSD histograms at different
development stages. The corresponding parameters are sum-
marized in Table 1. It is evident that the pore size distribution

is experiencing tremendous variation with the development. In
1981, the average pore radius of this layer is only 0.3 ∼ 7 µm,
whereas it increases to 2 ∼ 13 µm in 1990 and 6 ∼ 17 µm
in 2004, which is more than 3 times as large as the initial
value. Moreover, the threshold pressure in 2004 is 10 times
less than that in 1981. All these evidences demonstrate that
during the long-term water flooding, pore size increases and
leads to the improvement of pore network connectivity. This
conclusion is in agreement with previous studies (Wang et
al., 2013), which reported that with the increase of water cut,
pore sizes of all layers increase dramatically in Shengli oil
field. When the water cut is 10%, the pore radius of layer 4 is
only 9.68 µm; however, when the water cut reaches 90%, the
pore radius of this layer increases to 13.02 µm, which is 1.35
times as large as the initial (Fig. 4.). The same conclusion can
be obtained from the other layers.

3.2 Porosity and permeability

The variation of pore size distribution eventually leads
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Fig. 3. Capillary pressure curves and pore size distribution histograms from different development stages (a, b) cores obtained from well C61 in 1981; (c,
d) cores obtained from well C39-124 in 1990; (e, f) cores obtained from well C39-303 in 2004.

Fig. 4. Variations of porosity (a) and permeability (b) as a function of injected pore volume for cores from C39-124 in water flooding.
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Fig. 5. Porosity and permeability versus depth for well (a) C39-124 and (b) C39-303.

to the variation of the porosity and permeability. Then the
variation of permeability and porosity is obtained by the core
analysis and experiments. Four core samples from well C39-
124 are used to implement the experiments. The porosity and
permeability values measured at different pore volumes (PV)
of injected water are recorded and presented in Fig. 4.

A general trend is that with the increase of injected
pore volume, the porosity of each sample becomes larger.
This phenomenon can be attributed to the dissolution and
detachment of fine particles which initially attached to the
pore surface. Caused by the interaction of injected water,
clay particles dissolve or release from the pore surface and
flow out of the formation with water. Therefore, the pore
space increases and the reservoir porosity becomes larger.
Because of the dissolution and detachment of these particles,
together with the consequent enlargement of pore size and
porosity, the permeability of each sample also increases with
water flooding (Fig. 4(b)). This point is verified by the core
analysis results shown in Table 1. Moreover, the experiments
also demonstrate that the increment degree of the core with
higher initial permeability is much larger than that with lower
permeability.

Field core analysis is also carried out to study the evolve-

ment laws of permeability in well C39-124 and C39-303.
These cores are sampled from the same segment of the two
neighbor wells. To some extent, they have similar pore network
characteristics. Cores from well C39-124 were acquired during
drilling while cores from well C39-303 were obtained after
15 years water flooding. Hence the variation of porosity and
permeability can be analyzed by comparing the core analysis
results of the two wells at different vertical locations (Fig. 5).
This segment is a typical positive rhythm formation, i.e., the
permeability is higher at the bottom than that at the top. Fig. 5
indicates that the permeability variations of the top and bottom
are different. Permeability at the bottom of this layer, which is
of a relatively higher initial value, becomes larger with water
flooding, and the permeability increases from 1,200×10−3 to
1,600× 10−3 µm2. On the contrary, permeability at the top
section with lower initial value decreases with time and the
average value changes from 109× 10−3 to 34× 10−3 µm2.
This result is consistent with the experimental conclusion.
During long-term water flooding, formation with higher initial
permeability will increase more than that of the lower ones,
due to the dissolution, detachment, and migration of particles.
Moreover, the fluid flow capacity for a layer with lower initial
permeability, which is of smaller pore size, may even decrease
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Table 2. Content variation of clay minerals after water flooding.

Parameter Injected Pore Volume Relative Content of Clay Minerals, % Total Content of Clay Minerals, %
Kaolinite Chlorite Illite Montmorillonite

Initial Condition 0 29 34.3 15 21.7 15.7
After Water flooding 15 21.8 27.7 9.2 41.3 11.9

Fig. 6. Thin section image of cores from well C39-124 before (a) and after (b) water flooding. The gray spots represent sand particles while the blue areas
correspond to pore space.

for the precipitation of particles and blockage.

3.3 Contact pattern and clay minerals

To gain insight into the microscale resolution of porosity
and permeability variation, the evolution of contact pattern
among rock particles is analyzed, which has a great impact on
the topology and connectivity of pore network. Thin section
images of two core samples obtained from well C39-124 at
different water cuts are present in Fig. 6. Initially the pore
space is very small and the particles make contact with each
other mainly in the form of line contact (Fig. 6(a)). However,
after long time water flooding, the pore space becomes greater
and the proportion of line/point contact decreases. We also
noticed that the surface of these particles become cleaner
and more particles are surrounded by fluid, which looks like
they are floating in the liquid (Fig. 6(b)). The reason can be
explained as follows. Because rock consists of clay particles
and inorganic or organic precipitates with various sizes and
they are connected with each other by the cements, long-term
interaction with water leads to the dissolution and erosion of
a large proportion of cements and then they are carried out
of the formation. Therefore, the microscale connectivity of
the formation gets better, which confirms the improvement of
formation transport capacity after water flooding. In addition,
due to the migration of cements, clay minerals, and some other
fine particles, the void space between particles becomes larger
and most of the particles keep in the unbound state, thus more

pore space is occupied by the injected fluid.
The content variation of clay minerals after water flooding

is shown in Table 2. Core analysis manifests that the total
content of clay minerals decreases from 15.7% to 11.9%
after water flooding. However, the proportions of different
clay minerals show distinct variation tendencies. Kaolinite,
chlorite, and illite tend to migrate with fluid and consequently,
their content in clay minerals decrease with water flooding.
Montmorillonite is more likely to have the activity of lattice
expansion, and hence its relative content increases from 21.7%
to 41.3%.

4. Pore network modeling
For making comparisons with the field data and explaining

the inner variation mechanisms of the pore network charac-
teristics, a newly developed pore network modeling method
is introduced to simulate the formation parameter variation
during water flooding, which takes various particle change
into account, such as particle detachment, deposition and
movement.

Pore network modeling was firstly proposed by Fatt in
1950s to study microscale multiphase flow behavior. In recent
years, there are increasing interests in pore-scale modeling
and great progress has been made. Pore network modeling
is no longer limited to two-phase flow and the computation
of relative permeability curves (Knudsen et al., 2002; Gielen
et al., 2004; Joekar-Niasar and Hassanizadeh, 2010, 2011;
Jerome and Yannick, 2012; Blunt et al., 2013; Feng et al.,
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Fig. 7. Computation algorithm of the pore network model.

2015). Effects of wettability, wetting hysteresis, and mass
transfer between phases have also been probed by using pore
network model. Besides, some more applications have been
developed, e.g., modeling of three-phase flow, non-Newtonian
fluid, and formation impairment (Feng et al., 2014; Li et
al., 2017; Watson et al., 2017). In this section, mechanisms
of particles variation and its mathematic description in the
proposed pore-network model in introduced in detailed. And
some simulation is also conducted for the comparison and
validation of the field data.

4.1 Numerical method

4.1.1 Particle detachment
Because injected water exerts drag force on the particles

attached on the pore surface, if the velocity gets higher, these
particles may detach from the surface and flow out of the
reservoir with injected fluid. Then the pore size becomes
greater, which will be beneficial for fluid flowing through the
reservoir. The mathematical model proposed by Khilar and
Fogler (1983) is employed to calculate the detachment rate of
particles from the pore surface, rri,

rri = αi (ui −uc)Cbi (1)

where, rri is the detachment rate of particles per unit area,

1/(m2 · s); ui is the fluid flow rate in the pore, m/s; uc is
the critical fluid flow rate, above which the particles begin to
detach, m/s; αi is the release coefficient and when ui≤ uc, it
equals to zero; Cbi is the volumetric concentration of particles
on the pore/throat surface, dimensionless.

4.1.2 Particle deposition
Particles flowing with injected water may also precip-

itate and attach on the pore surface again or remain at
the pore/throat entrance which will result in blockage. The
main entrapment mechanisms include surface deposition, di-
rect blockage, and bridging. Surface deposition means that
detached particles with smaller size may reattach to the
pore/throat surface under the action of gravity and/or electric
forces, causing the decrease of pore/throat radius. We use the
following equation to characterize particle deposition in the
pore network (Jalel and Jean-Francois, 1999):

rci = 6πr2
i ui

(
dp

Li

)
C f i (2)

where, rci is the deposition rate of particles per unit pore
surface area, 1/(m2 · s); ri is the radius of pore/throat, m;
dp is the particle radius, m; Li is the throat length, m; C f i
is the volumetric particle concentration of the fluid in pore
space, dimensionless. When particles flow through a pore or
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throat whose radius is smaller than theirs, the particle will be
entrapped at the entrance and make the pore/throat blocked.
This process is termed direct blockage. Particle bridging means
that several particles whose radii smaller than that of their
passing throat could plug the throat by bridging at its entrance.
Generally, if the particle size is larger than 1/3 of its passing
throat, bridging takes place and results in the blockage.

4.1.3 Particle movement
According to the experimental results conducted by Rege

and Fogler (1987), the moving velocity difference between
particles and the fluids in the pore-throat could be neglected
which indicates we can take these two velocity as equal. So,
the particles are assumed to be distributed evenly and have the
same moving velocity as the fluid that it flows in.

Computation algorithm for our pore network model is
shown in Fig. 7. Details of the simulation can be found in
Feng’s work (2013). Based on the pore network modeling,
a series of simulation is carried out for analyzing the pore
size distribution and porosity and permeability change after
waterflooding. Detailed results are shown as follows.

4.2 Pore size distribution

Fig. 8 and Table 3 show the pore-throat radius variation
value before and after waterflooding. We can see from the
simulation results that the pore-throat distribution has minor
change after waterflooding and the radius has the trend of
increase. And the results are consisted with the field data
shown in Section 3.1. The pore-throat radius variation trend
could be explained by considering different kinds of particle
variation mechanisms. In the process of waterflooding, the
clay particles attached on the pore-throat surface would be
detached with the influence of drag force, which will result in
the increase of the pore-throat radius. Meanwhile, the detached
particles may deposit in part of the pore-throat surface and
result in the consequent decrease of relevant pore-throat radius.
That is why the pore-throat radius distribution would have
minor change after waterflooding for a long time.

Fig. 8 . Comparison of simulated pore-throat radius value before and after
waterflooding.

4.3 Porosity and permeability

Based on the simulation results about pore-throat radius
variation, the porosity and permeability variation after water-
flooding is also studied here for making comparison with the
analyzed field data. In this part, we perform simulations to
study formation variations under different pressure gradients.
As shown in Fig. 9(a), for a constant pressure gradient, the
network permeability increases gradually and the variation
curve asymptotically converges to a constant value after
long-term waterflooding. For simulations at different pressure
gradients, the permeability increase more quickly at higher
pressure gradient. Fig. 9(b) reveals that the variation principle
of porosity is similar to that of permeability. Our simulation
results are consistent with the conclusions obtained from core
analyses and waterflooding experiments. The results are also
consistent with the field data in Section 3.2.

5. Conclusions
Core analyses and displacement experiments of XA oil

field show that during long-term water flooding, caused by the
dissolution and detachment of fine particles and clay minerals,
the pore/throat size becomes larger and the proportion of
line/point contact decreases, which lead to the improvement
of pore network connectivity and the enlargement of porosity
and permeability. The transport capacity of the formation with
higher initial permeability will increase more than that of the
lower. But the fluid flow capacity of porous media with lower
original permeability may even decrease for the precipitation
of particles and blockage.

Moreover, after long-time interaction with injected water,
the total content of clay minerals decreases dramatically. The
relative contents of kaolinite, chlorite, and illite reduce while
the proportion of montmorillonite increases. The variation of
pore network topology also brings about the change of multi-
phase flow capability. Consequently, the hydrophilicity of the
rock is enhanced and the relative permeability curves move
rightward.

A pore network model, which takes into account the
detachment and entrapment of fine particles, is employed to
predict the formation parameters variation. Our simulation
results are in accordance with the conclusions obtained from
core analyses and experiments.

Nomenclature
rri = the detachment rate of particles per unit area,

1/(m2/s)
ui = the fluid flow rate in the pore, m/s
uc = the critical fluid flow rate, m/s
Cbi = the volumetric concentration of particles on the

pore/throat surface, dimensionless
rci = the deposition rate of particles per unit pore surface

area, 1/(m2/s)
ri = the radius of pore/throat, m
dp = the particle radius, m
Li = the throat length, m
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Table 3. Variation of pore-throat radius before and after water displacement.

Parameter Before waterflooding After waterflooding
Pore radius (µm) Throat radius (µm) Pore radius (µm) Throat radius (µm)

Maximum 42.18 19.95 44.74 25.65
Minimum 15.91 2.33 17.09 2.31
Average 26.07 11.39 28.23 12.88

Fig. 9 . Variation of permeability (a) and porosity (b) under various pressure gradients obtained by using pore network model.

C f i = the volumetric concentration of the fluid in pore
space, dimensionless
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