Advances in

Geo-Energy Research

Original article

Vol. 7, No. 1, p. 49-65, 2023

A deep-learning approach for reservoir evaluation for shale
gas wells with complex fracture networks

Hongyang Chu'?3, Peng Dong?®*, W. John Lee?

ISchool of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

2State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P. R. China
3Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station 77843, USA

Keywords:
Deep-Learning
time series analysis
multivariate input
shale gas

reservoir evaluation

Cited as:

Chu, H., Dong, P, Lee, W. J. A
deep-learning approach for reservoir
evaluation for shale gas wells with
complex fracture networks. Advances in
Geo-Energy Research, 2023, 7(1): 49-65.
https://doi.org/10.46690/ager.2023.01.06

Abstract:

The complex fracture networks in shale gas reservoirs bring greater challenges and
uncertainties to the modeling in reservoir evaluation. As the emerging potential technology,
deep learning can be usefully applied to many aspects of reservoir evaluation. To further
conduct the reservoir evaluation in rate transient analysis, this work proposes a data-driven
proxy model for accurately evaluating the horizontal wells with complex fracture networks
in shales. The production time, variable bottom hole pressure, and the fracture networks
properties are used as input variables, while the output variable refers to the production
for the forecast time period. The data from boundary element method is used to generate
the proxy model for the learning process. The method of shuffled cross-validation is used
to increase the model’s accuracy and generalizability. The proxy model is coupled with
recently developed deep learning methods such as attention mechanism, skip connection,
and cross-validation to address the time series analysis problem for multivariate operating
and physical parameters. Results demonstrate that the attention mechanism is robust. The
operating parameters analysis shows that the attention mechanism has the ability to analyze
variable pressure drop/flowrate data. Sensitivity analysis also indicates that the model takes
into account the geometric characteristics of fracture network. The model reliability is
proved by a case study from Marcellus shale. The computation time of the trained attention
mechanism model is approximately 0.3 s, which equates to 3.8% of the physical model’s
running time.

1. Introduction

Due to advancements in horizontal well technology and

complexity caused by hydraulic fracturing treatment, which
involves complex hydraulic fracture networks (Curtis, 2002;

hydraulic fracturing treatment, shale gas has gained increased
attention as an unconventional gas resource (Denney, 2009;
Nobakht et al., 2013; Zhao et al., 2022). Forecasting pro-
duction is a critical task in shale gas studies, as it can
aid in estimating in-place resources and facilitate reservoir
evaluation (Neal and Mian, 1989; Lee and Sidle, 2010; Zhao
and Du, 2020). There are several challenges associated with
forecasting production from shale gas reservoirs, including
transportation issues caused by the complex storage and
transportation mechanisms for shale gas, which includes gas
diffusion and adsorption (Clarkson et al., 2013), and formation

Fink et al., 2017; Hamdi et al., 2020).

The complex mechanism of gas transport in shales compli-
cates the physical model. Carlson and Mercer (1991) demon-
strated that, in contrast to natural gas stored in open pores
in conventional gas reservoirs, the majority of gas in shale
reservoirs is absorbed. The gas flow in the shale matrix
is primarily controlled by molecular diffusion. Kucuk and
Sawyer (1980) developed analytical and numerical solutions
for shale reservoirs that take the Klinkenberg effect and gas
desorption in the shale matrix into account but ignore shale gas
diffusion and adsorption. Gao et al. (1994) proposed a model
that incorporates sorption effects and describes the desorption
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behaviors of shale gas using the Langmuir isotherm. Ozkan
et al. (2010) proposed the first dual-mechanism model for hy-
draulically fractured horizontal wells (HFHW) in shales, tak-
ing into account Knudsen diffusive flow in matrix nanopores
and stress-dependent effects in the natural fractures system.
The proposed model is suitable for analytical and numerical
modeling, but it ignores the gas adsorption effect. More
numerical methods have been developed to account for a
variety of physics in shales. Cipolla et al. (2011) proposed a
numerical model for shale gas that described gas desorption,
stress-dependent fractures, and complex fracture networks.
Their research examined the effect of gas adsorption on the
production profile and ultimate gas recovery in shales in detail.
Freeman et al. (2013) proposed a numerical model for gas
desorption, multi-porosity and permeability fields, and HFHW
using the finite difference method. Subsequently, the simulator
was used to clarify various flow regimes encountered during
production. Wang (2014) developed a multiple-mechanism
shale gas model using the boundary element method (BEM),
Laplace transform, and Gaussian elimination method to in-
corporate gas adsorption/diffusion effects and HFHW into the
derived model. The HFHW model incorporates diffuse/viscous
flow, adsorption, and stress-sensitive effects. Additionally, Sun
et al. (2015) discussed the development of a numerical model
that incorporates the shale gas mechanistics of desorption,
diffusion, convection, and multi-porosity/permeability fields.
The preceding significant works provide valuable tools for
forecasting shale gas well production performance.

The results from numerical methods are accurate. However,
numerical simulation tools based on physics are typically cum-
bersome, time-consuming, and occasionally costly, deviating
from the practical premise of reservoir evaluation (Aminian
and Ameri, 2009). Mesh refinement methods make numerical
simulation tools take hours or even days to complete the
reservoir evaluation for a well with complex fracture networks.
Additionally, the majority of research is limited to HFHW
in shale gas reservoirs. Microseismic events demonstrate the
formation of complex fracture networks during large-scale
hydraulic fracturing treatment (Warpinski et al., 2009; Cipolla
et al., 2011). Complex fracture networks lead to the difficulties
for the numerical and analytical modeling. For analytical
modeling, it can only be analyzed by the simplified method
of linear flow or elliptical flow. For numerical modeling, it
requires a more refined gridding technique, and the meshing-
size differences will deteriorate the numerical model con-
vergence when simulating fracture networks with millimeter-
scale widths. Due to the fact that these phenomena add to
the computational burden of the numerical model and the
modeling difficulty of the analytical model, the demand for
the proxy model is both urgent and attractive.

The state-of-the-art oil and gas production forecast meth-
ods can be divided into conventional statistical techniques (in-
cluding autoregressive moving average, autoregressive condi-
tional heteroskedasticity model, etc), machine learning models
(support vector machine, random forest), and deep learning-
based methods (recurrent neural network, long short-term
memory networks, gate recurrent unit, etc). Recent advances
in deep learning techniques have facilitated the generation of

data-driven proxy models based on physics (Jia and Zhang,
2016; Zhang et al., 2019; Yin et al., 2021; Zhong et al., 2021;
Liu et al., 2022; Luo et al., 2022). Neural network is frequently
used in conjunction with time series analysis (TSA) techniques
to solve time series regression tasks, such as production
forecasting. Choi et al. (2015) used seasonal autoregressive
integrated moving average model to predict future oil pro-
duction in North Dakota. Jia and Zhang (2016) demonstrated
how to use the TSA and artificial neural networks (ANN) to
analyze Barnett shale gas well production data. They also
admitted that when the input of the ANN is expanded to
include additional operational and physical parameters, it may
be more beneficial to forecast production. Suhag et al. (2017)
made a similar comparison between the data-driven method
composed of ANN and TSA and the empirical decline curve
analysis (DCA) method. Their model uses well logs, historical
production data, and completion data as inputs. One hypothesis
is that all wells produce at a constant bottom hole pressure
(BHP). Ghahfarokhi et al. (2018) used a multi-layer perceptron
neural network to predict gas production using multi-point
formation temperature monitoring in distributed temperature
sensing and flowing time data. Khan and Louis (2021) used
the bottom node and top node pressures of wells as ANN
inputs to forecast shale gas production as the targeted output.
To perform DCA with ANN and TSA, the input pressure data
were also assumed to be constant throughout the manufactur-
ing process. However, the ANN limit’s shallow architecture
and fully connected features act as impediments to scaling.
Alimohammadi et al. (2020) used a deep neural network
to develop a multivariate data-driven production forecasting
process. As inputs, the pressure in the tubing head and the
temperature in the bottom hole were chosen. Wu et al. (2020)
used the least squares support vector machine to predict the
development indicators in offshore oilfields. Ning et al. (2022)
compared the performance of autoregressive integrated moving
average model (ARIMA), long-short term memory (LSTM),
and Prophet for oil and gas production prediction. Results
show that the ARIMA is robust in predicting well production.

The primary objective of this work is to develop a data-
driven model that will significantly accelerate the simulation of
complex fracture networks in shale reservoirs. The multi-layer
gate recurrent unit (GRU) cell with an attention mechanism
and a skipconnection are used to solve the TSA problem
of complex fracture networks wells. To be more precise, the
mersenne twister (MT) generator is used to generate a stochas-
tic initialization that conforms to the normal distribution and
thus allows for the incorporation of physical model features.
The training and testing data for the attention mechanism (Att-
GRU) model are generated using the BEM. To avoid model
overfitting, The cross-validation method is used to regularize
sample data. The gating mechanism, attention mechanism, and
skip connection could all be utilized to improve prediction
accuracy and computational efficiency when using time series
production data with the Att-GRU model. The results demon-
strate that the Att-GRU model can faithfully recapitulate the
variable BHP condition in all of its complexities when physical
input is multivariate. The rate normalized pressure (RNP)
analysis of the case study demonstrates that the proposed
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Fig. 1. The schematic diagram of the architecture of multi-layer Att-GRU model.

Att-GRU is a viable proxy for forecasting production and
evaluating reservoirs.

The novelty in this work is carry out the evaluation by
considering complex fracture network and variable bottomhole
pressure/production data. Since the complex fracture networks
and variable bottomhole pressure/production data are not con-
sidered in decline curve analysis, the above mentioned studies
can only be used for production forecasting and can not be
used for reservoir evaluation in rate transient analysis.

2. Methodology

This section first clarifies the physical background and
corresponding governing equations. Primary and secondary
fractures, reactivated natural fractures, and matrix with stress
sensitivity all occur in shales (Gale et al., 2014). Physical mod-
els from BEM are used to generate pressure and production
data for horizontal wells with complex fracture networks in
shales. The detailed derivation can be shown in Appendix. The
Att-GRU principle is explained for the problem of complex
fracture networks wells in shale reservoirs. Additionally, the
initialization and preprocessing of data, the model structure,
and the methodology workflow are discussed.

2.1 Multi-layer GRU with attention mechanism

Well production, along with various associated variables, is
highly dependent on time series data over the long term. The
impact of these variables on the production rate must consider
their relative importance and the time period during which
they affect the production rate. Due to the non-linear nature
of the historical data, A new multi-layer Att-GRU is proposed
for reservoir evaluation.

2.1.1 Multilayer Att-GRU model
The proposed reservoir evaluation model aims to learn the

non-linear mapping from the input matrix to the output vector:

y=F(X:¥) (1)

where F(-) refers to the non-linear mapping function,
X0HDxT i the input matrix with the dimension of
(n+1)xT, ¥ is the weight tensor determined by model
learning process, and ¥ is the forecasted production rate vector.
The input matrix in Eq. (2) is composed of the pressure time
series vector p and the variable series data matrix ©:

X =[p:@] € RUT @)
where p = (p1,p2,...,pr) € R is the pressure vector in
time series, ® = (0y,6,,...,07) € R™T is the matrix of
n variables involved in 7 data points generated by BEM.
0=(6',62,...,6")" € R" is the transposed vector of variables
at time ¢t with the dimension of n x 1 and it is assumed to be
independent of time (6 = 6,...,= Or).

As illustrated in Fig. 1, the Att-GRU model consists of
two components: feature encoding and production prediction.
According to Cho et al. (2014), the GRU cell is an extension
type of the LSTM cell. The GRU has been used to address a
variety of TSA issues, including classification and prediction
tasks in time series, due to its simple model structure and
superior performance. Its objective is to discover the long-
term dependencies between time series data and to increase
computational efficiency. The first GRU cell in the feature
encoding section encodes the input variables at various points
in time to create a new feature vector. In comparison to
the conventional feature vector for the first GRU cell, the
attention mechanism is used to generate a new input vector
that incorporates historical and global information, allowing
the model to adaptively select related vectors. In the reservoir
evaluation section, the encoded new feature vectors and initial
feature vectors are fed into the second GRU cell via a skip
connection to perform cyclic reservoir evaluation. The skip
connection contributes to the performance of the Att-GRU
model by resolving the gradient vanishing issue (Mao et al.,
2016).

Fig. 2 demonstrates that the hidden state vectors in the first
GRU cell are used to encode the input time series vector x;
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Fig. 2. The schematic diagram of the GRU cell (modified from
Cho et al. (2014)). (The x is the product sign, the + refers to
the plus sign, the o is the sigmoid function and the tan 4 is
the hyperbolic tangent function.)

at various time to form a new feature vector h,. A GRU cell
includes the reset gate r; and update gate z;. The sigmoid
function o is used as the activation function to produce
probability estimates between O and 1. The reset gate 7
determines the combination degree of the new input vector x;
and hidden state output vector h,_; at time ¢ — 1, as depicted
in Egs. (4) and (5). The z, determines the vector h,_; at time
t — 1 are saved to the output vector h, at time step 7:

z =0 (We- by, 2]) 3)
=0 (W, [hiy,2]) €y
n, = tanh(W,, - [r, © he_1, 1)) (5)
hy=(1-z)0h 1 +20mn 6)

where x; is the input vectors at time ¢, A, is the hidden state
output vectors, 2z; and 7; are the output vectors of two sigmoid
gates, W,,, W,, and W are the weight vectors determined by
model learning process, n, is the hidden state intermediate
vector, ® is the element-wise multiplication, tank refers to the
hyperbolic tangent function, and the subscript ¢ represents the
t —th time step.

To enable the hidden state output vectors to adaptively
select various variables in the input matrix X, the attention
mechanism is introduced before the input data enters the
first GRU cell. The attention mechanism makes the model
automatically learn and calculate the contribution of input data
to output data by weighting each scalar in the X (Hiibner et
al., 2010; Qin et al., 2017). The specified weight vector e;
can be determined in the learning process and it is designed
as a combination of the X and the normalized vectors h;_;, as
given in Eq. (7). To measure the importance of input variables,
the definition of the normalized weight vector is:

e = ’UZ tanh(Weﬁl,l +U.X) (7

o = &) (®)

n+1 .
¥ explel)

where h,_; € R™"! is the matrix after copying n+ 1 times
hi—1, m is the feature number in the hidden state output
vector, n refers to the number of input variables, i, € R™
is the m-dimensional hidden state output vectors at time 7 — 1,
ve e RT, W, e RT*" andU, € RT*T arethe T, T xm, T X T-
dimensional weight matrixes determined by model learning.
With the definition of ¢, the adaptive extraction process of
input variables can be expressed as:

T =00 9

The new feature vector @, can be used as the input vector

of the first GRU cell. h, will be used as a new feature vector

for reservoir evaluation:

he = fi(hy, &) (10)

where f; refers to the non-linear mapping function in the first

GRU cell. In the reservoir evaluation part, the second GRU

cell is used to predict the production rate at all-time steps.

The input vector x; and the hidden state output vectors h; of

the first GRU cell are connected via skip connection, which

is used as the input vector of the second GRU cell (Eq. (11)).

The skip connection provides the short path from the bottom
to the top layers (Tong et al., 2017):

d; = fo(ds—1,[hi;24]) (11)
where f> is the non-linear mapping function in the second
GRU cell, d;,_; € R™ and d; € R™ are the m-dimensional
hidden state output vectors of the second GRU cell at time
t —1 and 7. Further, the weight matrix W, with the dimension
of T x m and the weight vector b,, with the dimension of 7' x 1
are used to non-linearly transform the d; with the dimension
of M x 1 into a vector with the dimension 7 x 1. The weight
vector 'v; with the dimension of 7 x 1 and the weight b,
are used to linearly transform the 7 x 1-dimensional vector to
finally obtain the predicted y; at time z:

V= 'uyTrelu(det +b,)+b, (12)
where v, € R, W; e RT*" b, ¢ RT, and b, € R! are
weight vectors determined by Att-GRU training, d, € R"
refers to the hidden state output vectors of the second GRU
cell at time 7, relu is the activation function, and y, is the
normalized predicted rate at time 7.

2.1.2 Neural network training

The mean squared error (MSE) between the predicted
output value and the actual value is optimized as the loss
function:

1NT

ZZ )’t _)’z

l li=
where N is the sample number, T refers to the number of input

data points, 3, and y are the i-th sample’s predicted and actual
production rates at time 7, ¢ and y are the predicted and actual
production rate vectors for N samples. For the weight tensor,

13)
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the Adam optimizer in Eq. (14) is used to update the model
weight value:

n u
Vvte
o But(d-Pig)

W—w—

1-B (14)
Bov+ (1-Big?)
1-B?

where 1 is the learning rate, w and g are the weight tensor
and tensor gradient determined by model training, u# and v
are the intermediate variables. In this work, the parameter
combination recommended by Kingma and Ba (2015) is used
where B, B, and € are models parameters, and ; = 0.9, B, =
0.999, and € = 1078, Additionally, the technique of minibatch
gradient descent is used to reduce the memory requirement
for Att-GRU training. The minibatch size and initial learning
rate are both set to 64 and 0.02. At 1,000, 1,500, 2,000, and
2,500 epochs, the learning rate is reduced to half. To evaluate
the performance of the Att-GRU model, the mean absolute
error (MAE) and mean absolute percentage error (MAPE) are
used. The MAE directly measures the difference between the
predicted and actual production rates:

1y
MAE=—Y |y —7| (15)
. ' N =
where y' and y' are the predicted output vector and actual
output vector for the i-th sample. The MAPE is a measure of
the method prediction accuracy in statistics. It shows a relative
value:
3
MAPE = —
N =

_ g
yi
2.2 Pressure and rate calculation with time
series analysis

i

Y

(16)

The BEM demonstrates that the relationship between pro-
duction performance and operating and physical parameters is
complex and non-linear. The variable BHP condition contains
extensive field data. As a result, the pressure and rate data
include cases of variable pressure drop/variable flowrate in
addition to the constant BHP condition.

2.2.1 Physical input parameters initialization

Given the offshore environment, unconsolidated sandstone
and heavy oil, optimizing horizontal well designs has become
an increasingly difficult task. The horizontal well length is
dependent on the rate of production, cumulative production,
and economic factors (i.e., net present value (NPV) and net
present value ratio (NPVR)). According to the analysis of
production performance, NPV, and NPVR, the well length for
horizontal wells is between 0 and 7,000 feet (Cho, 2001). The
optimal length of a horizontal well varies between 1,000 and
2,000 feet (Vicente et al., 2003). With a shale gas price of
USD 5/Mcf, the fracture number and half-length ranges are 5-
33 and 50-250 m, respectively (Yao et al., 2021). The factors
affecting hydraulic fracture conductivity are more complex,

and include effective closure stress, proppant type and size,
non-Darcy, and multiphase flow effects (Fredd et al., 2000).
According to previous research (Fredd et al., 2000; Yao
et al., 2021), the fracture conductivity distribution range is
typically 0.1-6,000 mD.ft. The normal distribution assumption
is one of the most commonly used probability distribution
assumptions. According to the Central Limit Theorem (Kwak
and Kim, 2017), when experiments are repeated many times
on a large number of random variables, their distributions will
be very close to the normal distribution. The MT generator
(Matsumoto and Nishimura, 1998) generates random numbers
in the distribution ranges depicted in Fig. 3 which shows
a normal probability plot. It also establishes that the initial
distribution of input parameters is normal.

2.2.2 Bottom hole pressure initialization

The variation range of BHP is chosen to be 1-16 MPa. The
cases of constant BHP are selected as the original templets in
the training samples. The constant BHP cases are extended to
the variable BHP cases, which can be roughly classified into
four types: (a) constant BHP, (b) variable BHP in stepwise
variation, (c) variable BHP in exponential decline and (d)
variable BHP in a combination of stepwise and exponential
decline, as illustrated in Fig. 4. The BHP curve can be divided
into ten stages using stepwise variation. Each stage’s duration
is consistent with the dirichlet distribution, and the total time
required is 10,000 h. Stepwise variation of the BHP value
results in a random deviation from the original value plus
or minus 1 MPa, which also fits the normal distribution. In
particular, for the exponential decline type, the BHP curve
meets the mathematical formula of y = ae —bx+c+d.

To avoid the gradient explosion/vanishing issues in the
training process, it is necessary to normalize the input and
output data. The input data includes BHP, production time,
well length, fracture half-length, fracture conductivity, and
fracture number as the input data can be normalized as:

Z _ t — Imin
I'max — Imin
where t is the original time vector, t is the normalized time
vector, fmax and f;, are the maximum and minimum values for
the production time. A min-max scaler is selected to normalize
the BHP data:

a7)

15 _ PP min

_ R max B min
where P is the normalized pressure vector, P refers to the
original pressure vector, Pnax and Ppi, are the maximum and
minimum pressures values. The remaining physical input pa-
rameters, including fracture half-length, fracture conductivity,
fracture number, and well length, also need to be normalized
before being imported into the Att-GRU model:

5[ _ 9,' - 6i,min

(18)

Gi,max - ei,min (19)
where 5, is the i-th normalized parameter vector, 6; is the i-th
original parameter vector, 6; min and 6; nax are the maximum
and minimum parameter values.



54 Chu, H., et al. Advances in Geo-Energy Research, 2023, 7(1): 49-65

T T T T T T T T

9954 @ o Percentiles ] 9954 (0) o Percentiles o
g ’ —— Referenceline 8 ’ —— Referenceline
& g
§ o}

o
©

g E
5 (=]
S z

0.01 . . . 0.01 . . . . .

0 500 1000 1500 2000 5 10 15 20 25 30
Horizontal well length (m) Fracture number
© o Percentiles () o Percentiles
99.5 . 99.5 )
—— Referenceline —— Referenceline

8 3
2 g
o
T g
5 £
S 5
S zZ
z

0.01+— — — - — — 0.01 - - -

60 80 100 120 140 160 180 200 220 240 0 500 1000 1500
Fracture half length (m) Fracture conductivity (mD-m)

Fig. 3. The normal probability plot of input parameters. (a) Horizontal well length, (b) fracture number, (c) fracture half-length
and (d) fracture conductivity.

@ ‘ ‘ ‘ ‘ ‘ 15 o ‘ ‘ ‘ ‘ ‘
a)
@16" S T T T T T T T T 1eMPa | ®
=3 S _ P ]
o 14 g ) [ _
5 14MPa = ST e e =\
% % _ . Sl
PR \
B 12 e . 5 13- | e
o 12MPa o) — L
2 0 2 Period 1 |
g 10MPa g 124 — ~ Period2 = =r—o7 '_‘___ il
S = -+ Period3 [
3 g | R | — — Peiod4 -
8MPa I Period 5
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Production time (hours) Production time (hours)
; ; ; 16 ; ; ;
6] © ] L (d)
§ y=ax e»b><+c +d @14_ \_. 4
214 1 2 \
g p129°
% ——— Declining rate 1 g
4] 121 - — Decliningrate?2 | & 10
Q N, -+ - Declining rate 3 Q
% 104 ~ R Declining rate 4 1 % 8
< N Declining rate 5 <
S S, 3
@ g — | @,
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Production time (hours) Production time (hours)

Fig. 4. Input BHP plots of shale gas wells. (a) Constant BHP, (b) variable BHP in stepwise variation, (c) variable BHP in
exponential decline and (d) variable BHP in the combination of stepwise and exponential decline.



Chu, H., et al. Advances in Geo-Energy Research, 2023, 7(1): 49-65

55

4

a - .
= R( ) Level 1 ﬁ 164
= | —— Level 2 =
S 3 - - Level 3 S
o e
;| &u Leve 4 é 121
X & =
[0 ~
® 2L )
c I\ g
% § = 0.8
214 B 1 el L, e
(=] 1 e}
x S 044

0+ : : : : : . . .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Production time (hours) Production time (hours)

Fig. 5. Representative production rate plots of shale gas wells with complex fracture networks. (a) Before normalization and

(b) after normalization.

(@

Testing set

Retrained
model

Final determination

=3

~
~

Cross validation iteration

I Training sct [ Testing set

120 180 240 300

Sample number

60

Fig. 6. Schematic diagram of the shuffled cross-validation method. (a) Cross-validation method flowchart and (b) training and

testing sets distribution in the cross-validation method.

2.2.3 Calculation and preprocessing of production rate

The production rate in constant and variable BHP condition
calculated by BEM is used as the output data. For the output
production data, the logarithmic normalization in Eq. (20) is
used to process the output data (Fig. 5):

_ log O —10og Omin

10g Qmax - 10g Qmin
where y is the normalized production rate vector as the Att-
GRU target vector, @ is the original production rate vector,
Omin and Qnax are the maximum and minimum values for the
production rate. For the Att-GRU predicted production rate
vector, the normalized production rate vector is scaled back to
the original range as:

(20)

Q = eXp [g X (log Omax — 10g Qmin) + 10g Qmin] (21)

3. Results and discussion

In this part, the physical data in BEM are used to train
and test the Att-GRU model. The training procedure, testing
results, and parameters analysis are also clarified. The compu-
tational burden of the data-driven Att-GRU is compared with
the physical model.

3.1 Training procedure
3.1.1 Model optimization

As illustrated in Fig. 6(a), shuffled cross-validation is
used to assess model robustness, avoid model overfitting, and
optimize hyperparameters. The learning rate, the number of
hidden units, the number of GRU cells, and the sample number
are all set to 0.01, 20, 2, and 300 in the initialized model.
The shuffled cross-validation technique is used to randomly
shuffle and divide the data into equal-sized k folds (see Fig.
6). Additionally, as illustrated in Fig. 6(b), the sample sizes
for the training and testing sets account for approximately
80% and 20% of the total sample size, respectively. Four
hyperparameters are optimized separately and the model’s
stability is evaluated using 5-fold cross-validations. The final
Att-GRU model is trained over 4,000 epochs.

The log loss function and error bars on the training and
testing sets are selected as the benchmark for model optimiza-
tion. Fig. 7 and Table 1 show that the log loss functions of the
5-fold cross-validation events on the training and testing sets
are similar and eliminated the overfitting issue. The log loss
function and error bars analysis demonstrates that the Att-GRU
has the smallest log loss function and the highest robustness
when the learning rate, the number of hidden layer units, the
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Table 1. The optimized parameters and values in model optimization.

Optimized parameters Interval Value
: 1074, 3% 1074, 1073, 3x 1073 2
L ] £ ] 1
eaming rate 102 3% 102, 110!, 3x 10~ 1°
Number of hidden layer units 5, 20, 35, 50, 65 50
Layer number 1,2,3,4,5 3
Samples number 30, 90, 150, 210, 270 270

number of layers, and the number of samples are set to 0.01,
50, 3, and 270, respectively.

3.1.2 Model comparison

At various points in time, the ANN makes use of indepen-
dent data vectors, and there is no concept of memory to handle
memory tasks. The neurons in a recurrent neural network
(RNN) employ a simple feedback-type method in which the
previous time’s state variables and input data combine to form
the current time’s input data. One of the reasons for RNN’s
limited use is the inherent gradient vanishing problem. The
GRU can retain memory in the gating mechanism, thereby
resolving the issue of long-term dependencies without causing
the gradient to vanish. The attention mechanism is used to
extract features from the input data based on the multi-layer
GRU, allowing the model to adaptively judge the importance

of various variables at different time points. Since the input
data is time-dependent, the model requires a large amount of
input data. However, at a certain moment, only a small part to
improve model performance by preventing gradient vanishing.
The Att-GRU model achieves the smallest log loss function
MSE and error bar value on the training and testing sets,
as illustrated in Fig. 8. In comparison to the LSTM model,
the addition of an attention mechanism and a skip connection
reduces the MSE and MAPE on the testing set by 47% and
28%, respectively, as shown in Table 2.

The MAPE and error are calculated on the testing data
set. Fig. 9 shows that the MAPE of ANN and RNN fluctuates
significantly in the entire of training process. As the training
progresses, the errors of ANN and RNN are not stable.
Compared with ANN and RNN, the MAPE and error of LSTM
and GRU can maintain a relatively constant value during the
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Table 2. Comparison results of MSE and MAPE on various model testing sets.

Methods metric ~ Att-GRU GRU LSTM RNN ANN
MSE 1.75x107%  571x107* 333x107* 1.79x1072 4.01 x 1072
MAPE 6.9x1073  1.7x1072  9.6x1072  453x1072 8.75x 1072
-1
10 401x10° the data predicted by the Att-GRU model. The data in BEM
P MSE on train set >S40 . R
B i on tost st 13002t 70 and the predicted results in Fig. 11 agree reasonably well
1024 over the entire production history, indicating that the proposed
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Fig. 8. Models comparison results of log loss function MSE
and error bar during training process.

training process. Overall, the MAPE and error stability are
better in the Att-GRU training, and their values are close to
0.

3.2 Testing results

The sample data that are not included in the training set
are used to verify and test the proposed Att-GRU model’s gen-
eralization ability and accuracy. During the Att-GRU model
training process, the log loss functions on the training and
testing sets are compared. As illustrated in Fig. 10, the log
loss function’s initial value is set to 100. The log loss functions
exhibit an exponentially decreasing trend as the training epoch
length increases. As the log loss function value decreases, the
minute fluctuations in the function become more significant.
There are a total of 4,000 training epochs. Additionally, Fig.
10 demonstrates that as training epochs increase to 1,000, the
log loss functions on the training and testing sets tend to 10-4.
The five random initializations of the weight tensor in the Att-
GRU model demonstrate that the initialization of the weight
tensor does not affect the model’s robustness.

3.2.1 Experimental design

The experimental design excludes data on shale gas well
production history from the training and testing data sets.
The experimental design case consists of 22 primary fractures
and 132 secondary fractures, all of which have finite fracture
conductivity, and a horizontal well length of 1,462 m. Table
3 contains the remaining parameters. As illustrated in Fig. 11,
the shale gas well produces at a stepwise decreasing BHP
rate, and the production history can be roughly divided into
nine stages. The normalized BHP and production rate upper
and lower limits are 1.0-1.3 and 0.8-1.7, respectively. The
production data from shale gas wells in BEM are compared to

Att-GRU model has learned the physical model’s underlying
physics. The greatest discrepancy between actual and predicted
production data occurs in the variable BHP stage.

3.2.2 Error analysis

As illustrated in Fig. 12, the MAPE and error curves used
in the experimental design during the training process are all
distributed within the distribution interval of the testing set
and have values close to 0. Increases in MAPE and error
curves correspond to changes in the BHP of production wells.
The Att-GRU model has a harder time learning the physical
superposition effect introduced by the variable BHP condition.

3.3 Operating and physical parameters analysis
3.3.1 Variable pressure drop/flowrate analysis

The majority of shales production wells operate under
constant and variable BHP conditions. The constant BHP cases
are used as the base cases for the variable pressure drop/flow
rate analysis. Due to the ultra-low permeability of shale, the
depletion strategy is the most likely to be used in the recovery
of shale reservoirs. As illustrated in Fig. 13, pressure depletion
during recovery has resulted in the decline in the production of
shale gas wells with complex fracture networks. To maintain
a constant rate of production and to account for field well
management strategies, the base cases of constant BHP have
been expanded to include various declining BHP forms. The
Att-GRU model is used to determine production performance
under constant and variable BHP conditions, as illustrated in
Fig. 13. For shale gas wells, the remaining parameters are kept
constant.

3.3.2 Physical parameters sensitivity analysis

To demonstrate that the proposed Att-GRU successfully
captured and learned the physical model’s features, a sensitiv-
ity analysis of fracture network parameters is performed. The
variation ranges for the half-length and number of primary
fractures are chosen to be 80-145 m and 10-22 m, respectively.
The shale gas well’s horizontal length is increased from 750
to 1,450 m. The BHP is assumed to be the variable BHP
in the combination of stepwise and exponential decline in
the parameters sensitivity analysis section, see Fig. 14(a). As
shown in Fig. 14(b), the half-length of fractures is positively
correlated with the rate and cumulative production of wells. As
expected, the rate of production and cumulative output increase
as the number of fractures increases (see Fig. 14(c)). Increases
in horizontal well length result in an increase in drainage area,
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Table 3. The physical parameters of shale gas well with
complex fracture networks in experimental design.

Parameter Experimental case
Well length (m) 1.462x 103
Well radius (m) 9x1072
Skin factor 8x1073
Fracture number 22
Fracture half-length (m) 1.423x 102
Fracture conductivity (mD-m) 3.383x 102
Fracture number 1.32x10?
Fracture half-length (m) 21.1
Fracture conductivity (mD-m) 2x10%
Fracture width (m) 1x10~4
Natural fracture permeability (mD)  3.5x1073
Initial pressure (MPa) 23.35
Thickness (m) 3243
Porosity (%) 6.9

Rock compressibility (MPa~!) 8.27x1074
Reservoir temperature (°C) 48.89
Matrix unit radius (m) 1.8x107°
Gas viscosity (cP) 2.3%x1072
Gas density (kg/m>) 1.906 x 102
Gas compressibility (MPa™!) 2.8x1072
Z-factor 0.94
Langmuir volume (m?>/ton) 24
Langmuir pressure (MPa) 3.23
Diffusion coefficient (m2/s) 1x10~7

which results in an increase in production rate and cumulative
production, as illustrated in Fig. 14(d). Sensitivity analysis
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Fig. 11. The variable BHP data and production rate data of
shale gas well with complex fracture networks in experiment
design.

demonstrates that the proposed Att-GRU model has acquired
knowledge of the underlying physical properties of complex
fracture networks as well as the variable pressure drop/flowrate
characteristics observed in field conditions.

3.4 Computation burden

The programs are written by pytorch and it is an open
source Python machine learning library. The total computa-
tional time of the data-driven Att-GRU model and the physical
model are compared using an NVIDIA Quadro P4000 graphics
processing unit. The physical model in BEM is a sophisticated
numerical model that requires discretization of only the points
or segments defining the inner and outer boundaries, rather
than the entire area. The performance of BEM calculations
is highly dependent on the coefficient matrix and numerical
integration. According to Fig. 15, it takes an average of
13 minutes for the physical model to complete a reservoir
evaluation task for a type of shale gas well with complex
fracture networks. The total time cost increases linearly as the
number of running physical models increases. According to
the sample size in Fig. 7(d), the Att-GRU model requires at
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Fig. 15. The computation burden comparison of data-driven
Att-GRU model and the physical model in BEM.

least 300 runs of the physical model, which takes 65 h in total.
The Att-GRU model is trained using 5-fold cross-validations,
with each cross-validation taking 20 minutes. The total cal-
culation time is 38 h, which corresponds to 176 physical
model runs. Once the model training process is complete,
the Att-GRU model prediction process is approximately 0.3
s, which equates to 3.8% of the physical model’s running
time. Meanwhile, if the physical model is run more than 476
times in a project (including type curve matching in reservoir
evaluation), the Att-GRU model’s calculation cost will be
lower than that of the physical model (see Fig. 15 and Table
2).

Table 4. The well, fracture, reservoir, and shale gas
properties in the case study.

Parameter Case 1 Case 2
Well length (m) 1.191x10°  1.272x103
Skin factor 8x1073 1x1072
Fracture number 12 7

Fracture half-length (m) 80 91
Fracture conductivity (mD-m) 1.023%x103  4.572x102
Fracture number 72 42
Fracture half-length (m) 24.384 22
Fracture conductivity (mD-m) 2x 102 1.8x102
Natural fracture permeability (mD) ~ 3.51x107%  3.38x1073

4. Case study

To further demonstrate the proposed methodology’s appli-
cability and generalizability, two shale gas wells’ recorded
history data from published literature are used as a case
study (Thompson et al., 2011). Two shale gas wells are
targeting the Marcellus shale and are all horizontal wells
with hydraulic fractures. Thompson et al. (2011) matched the
history data using the multi-fractured horizontal wells model.
The fundamental properties of the reservoir and shale gas are
summarized in Table 4. Throughout the long history of pro-
duction, Fig. 16 indicates that two wells have been classified
as variable BHP. The variable BHP data and initial physical
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parameters are used as the Att-GRU model’s input parameters.
The production data calculated by the Att-GRU model and
the reported field data are plotted in Fig. 16 for comparison
using type curve matching. The good agreement between the
calculated and field data demonstrates the applicability of the
proposed methodology, which can be used to forecast the
production of shale gas wells under realistic variable pressure
drop/flow rate conditions.

The proposed methodology is capable of performing reser-
voir evaluations and forecasting the performance of complex
fracture network shale gas wells. The predicted output value is
used to match the field data by adjusting the Att-GRU model’s
input parameters. Rate transient analysis can be performed by
comparing the RNP data generated by the Att-GRU to the RNP
data recorded in historical data using RNP type curve analysis.
Fig. 17 demonstrates that an acceptable RNP curve match
between predicted and field data can be obtained. Meanwhile,
some errors remain in the RNP derivative curve, particularly
in the case of rapidly changing BHP values.

5. Conclusions

A practical proxy model for shale gas wellswith complex
fracture networks is developed using the data-driven Att-GRU
model and the physical model in BEM. The Att-GRU model
can extract features from input data via the attention mecha-
nism, allowing the model to adaptively judge the importance
of various variables at various points in time. The Att-GRU
model can memorize significant historical data selectively
using the gating mechanism. Additionally, the attention mech-
anism and skip connection enhance the model’s prediction
performance while preserving its computational efficiency. The
Att-GRU model is trained to forecast well performance under
both constant and variable BHP conditions. Regularization of
the input and output data facilitates model convergence during
training. To evaluate the performance of the Att-GRU model,
20% of the sample data is used as the testing set, and the
shuffled cross-validation method is used to avoid overfitting.
The results indicate that the proposed model is capable of
forecasting the production of shale gas wells at various time
points, BHP values, and physical parameters. Field cases
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further verify the Att-GRU model’s practicability in reservoir
evaluation. The detailed conclusions are as follows:

1) With the gating mechanism in GRU cell, attention
mechanism, and skip connection, the Att-GRU model has the
strong ability to deal with TSA issues of multivariate inputs
including time, BHP, and physical parameters.

2) The results of the shuffled cross-validation and blind
test indicate that the Att-GRU model performed well on both
the training and testing sets.

3) Case analysis shows that the Att-GRU can meet the
requirements of reservoir evaluation.

4) For early data and variable BHP conditions, sample data
constrain the Att-GRU model’s capability and place greater
demands on sample data, particularly for the early period.

5) This deep learning method adds a new dimension to
proxy models, accelerating the simulation of complex fracture
networks.

Although the model prediction time is only 0.3 s. The
model training time is 38 h. The decrease of model training
time will be one of our next research focus.
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