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Abstract:
To achieve net-zero carbon emission, securely and permanently sequestrating CO2 into
deep underground is internationally assured as a robust solution, although a few tech-
nical challenges on complex in-situ storage process are yet to be overcome. Despite
researchers are increasingly familiar with laboratory-scale CO2-brine displacement and
how to characterize and improve the process, field implementation is not that simple
and of great challenge. In this article, an opportunity on an approach that utilizes fluid-
fluid displacement fundamentals is discussed to predict CO2 sequestration using artificial
intelligence. A concept of machine learning is introduced, where computer programs can
learn and improve automatically via previous experiences. With machine learning model,
fluid displacement behaviors that are spontaneously monitored are emphasized to predict
the displacement result, which is readily adjusted if needed while training the model from
real-time CO2 injection response. Such an approach is a real-time autonomous adjusting
process, consisting of three main stages: Selection of first appraisal fluid for trial injection,
real-time machine learning from in-situ injection response, and fluid adjustment if needed
or continuation on the same injection until achieving a maximum CO2 storage. This
approach could play a vital role in the carbon capture and storage industry to develop
CO2 storage effectively with adequate resources, and yet has a potential to substitute a
conventional design or fluid screening approach for subsurface fluid injection, including
underground hydrogen storage and hydrocarbon recovery.

Carbon dioxide (CO2) geological sequestration (CGS) is a
crucial downstream part of CO2 capture and storage (CCS)
that was highlighted in the recent United Nations Climate
Change Conference to be implemented globally as a robust
solution to tackle climate change by this mid-century. CGS is
an inverse approach to hydrocarbon recovery, aiming to inject
fluid (CO2) into subsurface formation to be stored securely
and permanently (Thanasaksukthawee et al., 2022; Zhang
et al., 2022a). Storing CO2 into subsurface rock formation
is a complex and challenging process per se, requiring the
holistic knowledge of geophysics, petrophysics, and petroleum
engineering (Zhang et al., 2022a). One interesting question to
ask is not just which subsurface reservoirs are suitable for CGS
(Mohamed and Nasr-El-Din, 2012; Jin et al., 2016; Zhang et

al., 2022b, 2022c), but more importantly how can we store
CO2 at a maximum with no damage to storing formation?

Storing CO2 is performed by injecting compressed or
supercritical CO2 into deep structural formation (1∼3 km)
where its pore spaces are pre-saturated with formation brine.
With some additional energy, invading CO2 could displace
such saturated brine and reside “partially” in the pore spaces
(Ringrose, 2020). To overcome defending energy of pre-
saturated brine in porous rock, researchers have elucidated a
number of interfacial phenomena (e.g., change in fluid-fluid
interfacial tension, rock-fluid-fluid wettability alteration, and
manipulating capillary-gravitational driving forces) that affect
such fluid-fluid displacement, and hence been able to engineer
the process by either facilitating displacing energy increment
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Fig. 1. Schematic diagram illustrates a RAAP for fluid displacement in CO2 geological sequestration, separated into three main
stages: selection of first appraisal fluid (a)-(c), real-time training of a machine learning model from in-situ injection response
(d)-(e), and fluid adjustment if needed or continuation on the same injection until achieving the maximum CO2 storage (f)-(h).

or weakening defending energy (Celia et al., 2015). It is
noted that excess defending energy could fracture reservoir
rock and therefore risking CO2 leakage. During CO2 injecting,
chemicals are added or injection techniques are amended cau-
tiously to optimize such CO2-brine displacement. For example,
continuous gas injection, water alternating gas, or water curtain
injection (Núñez-López et al., 2019). In addition, owing to
variety (i.e., clastic and carbonate sediments) and heterogene-
ity (i.e., great distribution of different reservoir porosity and
permeability (Reynolds et al., 2018)) of storing formations,
selecting chemical additives or designing injection techniques
are not instantaneously simple and of great challenge.

As such, “full-chain” examination on a targeted storing
formation is usually conducted to ensure a maximum and
secured CGS. A full study on fluid displacement, which is
timely and costly, is inevitably performed with focuses on
both length-scale and time-scale (Bartels et al., 2019). A
complete study package consists of ex-situ, in-situ, and in-
silico studies, including microscopic interfacial phenomena,
two-dimensional micromodel displacement, three-dimensional
coreflooding, reservoir modeling and upscaling, reservoir sim-
ulation, and even a field trial (Bachu, 2015; Ajayi et al., 2019;
Rajabi and Chen, 2022). This circumstance brings us to an idea
on developing a more effective approach that bridges well-
established fundamentals to uncertain reservoir characteristics
of prospective formation for CGS. With the help of artificial
intelligence (AI), such a full-chain examination can be eased,
and a fluid displacement prediction model could be performed
spontaneously based on dataset from available research, and
hence readily adjusted if needed while training the model from
real-time CO2 injection response in-situ.

This work herein emphasizes an importance of a systematic

process to design a CO2-brine displacement scheme with
any necessary adjustments followed autonomously, aiming
to obtain the best fluid displacement, i.e., maximizing CO2
storage safely and securely. Such a process applies an AI
technique with instantaneous machine learning (ML) while
injecting CO2 in-situ in a targeted reservoir, without any
physical pre-examinations needed as mentioned above. As a
branch of an AI, ML enables us to train a model by learning
from datasets, such as previous data logs or experiences.
Machines with ML models can predict or make a decision
by itself without pre-programmed explicitly. This approach is
a real-time autonomous adjusting process (henceforth referred
to as real-time autonomous adjusting process (RAAP)) and its
workflow is illustrated in Fig. 1. RAAP can be separated into
three main stages: selection of first appraisal fluid, real-time
ML from in-situ injection response, and fluid adjustment if
needed or continuation on the same injection until achieving
a maximum CO2 storage.

In the first stage, reservoir characteristics of a targeted
storage formation is provided to the model, which then au-
tonomously selects the appraisal injecting fluid that is most
suitable for CO2-brine displacement for this storing reservoir
(Figs. 1(a)-1(c)). Such a selection is based on the available
research or guidelines taken from published research, such
as effects of water chemistry and interfacial phenomena on
CO2 geochemical reactions and mineralization (Jun et al.,
2017; Liang et al., 2017; Noiriel and Daval, 2017). Prior
to incorporating ML techniques, the significant characteristics
(i.e., features) have to be extracted from a targeted reservoir.
Some examples of ML algorithms include, but not limited to,
artificial neural network, support vector machine, and extreme
gradient boosting, etc.
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Selected appraisal injecting fluid is then physically injected
into the storing formation in the second stage of the real-time
ML process (Figs. 1(d) and 1(e)). While the appraisal fluid is
being injected into the reservoir, with the extracted features
from the first stage as input data, the ML model constantly
analyzes and predicts the behaviors of fluid displacement by
concurrently identifying microscopic interfacial phenomena
and monitoring the displacement result. With such a process,
the model is thereafter able to predict an ultimate result that
would be likely yielded from such appraisal fluid in the current
injection. The predicted ultimate displacement is then assessed
against a constraint of acceptable displacement performance,
which is pre-defined by developer (e.g., reservoir engineer or
production engineer).

In the third stage (Figs. 1(f)-1(h)), if the predicted ultimate
displacement result satisfies the constraint, the ML model
continues to inject the current fluid until an actual ultimate
displacement is achieved, and hence the displacement result
will be reported once the injection is ceased, otherwise an
alternative appraisal fluid is re-selected and another consequent
trial (i.e., the second stage) is performed consecutively until
the constraint is satisfied.

Although a full-chain RAAP is to be implemented, some
subsurface fields have recently begun to use some of ML
algorithms as part of RAAP in developing stage. For example,
the hydrocarbon development in Southwestern Pennsylvania
have begun to implement an ML approach using a historical
data (e.g., reservoir characteristics and production history) to
model hydrocarbon production which results in an acceptable
accuracy (Esmaili and Mohaghegh, 2016), and this approach
could be potentially used in CGS. Similar to the subsurface
reservoir in the Middle East (Anifowose et al., 2019), AI
integrated with big data was used to improve a decision
making process for reservoir characterization, although the
work did not further predict or adjust the production process
on the fly which our current perspective presents.

Toward a real-world implementation, the RAAP has a
potential to outperform and even substitute a conventional
design or a fluid screening approach for subsurface fluid
injection, including underground hydrogen storage and hy-
drocarbon recovery. With the promising real-time learning
process and autonomous response, this custom-made fluid dis-
placement model is suitable for any formations that anticipate
a better ultimate storage result. However, technologies for
monitoring and identifying fluid displacement behaviors in-situ
can be challenging and have yet to be achieved with classical
backgrounds from petroleum engineering, e.g., X-ray imaging
and computed tomography scanning (Alqahtani et al., 2020).
More endeavors should be exerted to scale up the specific
microscopic phenomena to be effectively linked or forecast a
thorough field-scale storage.
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