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In geothermal reservoir management, combined simulation-optimization is a practical
approach to achieve the optimal well placement and operation that maximizes energy
recovery and reservoir longevity. The use of machine learning models is often essential
to make simulation-optimization computational feasible. Tools from machine learning can
be used to construct data-driven and often physics-free approximations of the numerical
model response, with computational times often several orders of magnitude smaller
than those required by reservoir numerical models. In this short perspective, we explain
the background and current status of machine learning based combined simulation-
optimization in geothermal reservoir management, and discuss several key issues that will
likely form future directions.

Maximum yet sustainable energy recovery from geother-
mal reservoirs depends on the optimal placement, depth and
operation of injection and production wells (Akin et al., 2010;
Ijeje et al., 2019). Scenario-analysis using numerical models
of coupled fluid flow, heat and mass transport can be used to
predict the performance of a geothermal reservoir over time
under various injection-production scenarios, and the results
can be employed to choose the best scenario among them. In
this context, previous studies have employed numerical models
such as TOUGH2 (Transport of Unsaturated Groundwater and
Heat), COMSOL® Multiphysics, Schlumberger Eclipse, and
NUFT (Non-isothermal Unsaturated-saturated Flow and Trans-
port), for modeling geothermal reservoirs with either water
or CO, as the working fluid (Chen et al., 2022). However,
scenario-analysis does not guarantee optimal solutions. To
overcome this limitation, combined simulation-optimization
(CSO) can be used to derive explicitly the optimal resource
exploitation strategies (Biagi et al., 2015). In CSO, a model
of the geothermal reservoir is employed to assess the effect of

various well placement and operation alternatives on energy
recovery and reservoir longevity, and an optimization algo-
rithm performs a systematic search for improved alternatives
using one or multiple objective functions based on model
outputs. Common objective functions include maximizing the
net present value (Rajabi et al., 2021), maximizing power/heat
production (Song et al., 2021), minimizing thermal drawdown
(Samin et al., 2019), and maximizing the coefficient of per-
formance (Babaei et al., 2022). Examples of previously used
optimization algorithms in geothermal CSO include genetic
algorithm (Samin et al., 2019; Song et al., 2021), simulated
annealing (Akin et al., 2010) and particle swarm optimization
(Schulte et al., 2020). CSO has been applied to a variety of
reservoir types, spanning from carbonate reservoirs (Akin et
al., 2010) to hot sedimentary aquifers (Blank et al., 2021).
Most previous geothermal CSO studies (Biagi et al.,
2015) adopt a deterministic approach to reservoir simulation.
However, factors such as geological uncertainty, reservoir
heterogeneity, inevitably result in model predictive uncertainty,
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Fig. 1. Flowchart of ML-based CSO for optimal geothermal reservoir energy recovery.

which if ignored, may cause different real-world outcomes
compared to what is expected from simulating a specific
reservoir exploitation strategy (Schulte et al., 2020). Hence,
deterministic CSO carries the risk of solution non-optimality,
and stochastic CSO offers a naturally better choice. But then
there is the problem of computational time, because numerical
geothermal reservoir models are computationally expensive
(Chen et al., 2020), and stochastic CSO often involves the use
of uncertainty propagation techniques such as Monte Carlo
simulation, which require large numbers of model simulations
to achieve the desired accuracy (Rajabi et al., 2021). Therefore,
it is crucial to find techniques that can drastically reduce the
computational time of stochastic CSO. This is where machine
learning (ML) comes to the rescue!

Tools from ML can be used to construct data-driven (often
physics-free) approximations of the numerical model response,
with computational times often several orders of magnitude
smaller than those required by the reservoir numerical model.
Note that, due to the high costs and physical limitations
of reservoir exploration and field-scale injection/production
experiments, it is generally unfeasible to satisfactorily train a
ML model using solely field data from a geothermal reservoir.
In practice, large ensembles of numerical model input-output
pairs (performed over the range of operating conditions) are
often employed to train ML models for geothermal reservoir
simulation. Hence the use of ML models does not replace
the requirement for developing a numerical model in the
first place. The benefit of ML models lies in permitting the
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use of uncertainty propagation and stochastic/meta-heuristic
optimization techniques that require a large number of system
response evaluations. ML models of particular interest in
previous geothermal CSO studies include neural networks as
multilayer perceptron (Akin et al., 2010; Rajabi et al., 2021),
and hybrid convolution-recurrent neural networks (Wang et
al., 2022a), random forests (Wang et al., 2022b), multiple
regression (Song et al., 2021) and multivariate adaptive re-
gression splines (Chen et al., 2015). These ML models have
been employed to relate control variables (e.g., injection flow
rate and fluid temperature) and uncertain reservoir parameters
(e.g., reservoir permeability), to state variables such as the flow
rates, temperatures, and pressures at particular observation
points (most commonly the production wells), as time series
or at steady-state/specific time points.

The landscape of ML-based geothermal CSO is continu-
ously evolving. A flowchart of Ml-based CSO is presented in
Fig. 1. Here several key issues that will likely form future
directions are discussed:

1) In geothermal reservoir simulation, the input and output
spaces are both high dimensional and nonlinearly related
to each other. Dimensions of the input/output vectors are
usually lowered to pave the way for construction of ML
models, as common ML models often struggle at scaling
to high dimensional problems. However, this often comes
at the cost of reduced accuracy and generalization ability,
and losing important insight about the true behavior of
the system. Hence one of the most important avenues for
future research is to work toward developing geothermal
CSO algorithms based on state-of-the-art ML models
that are capable of handling high dimensional problems.
Deep neural networks offer considerable potential in this
regard.

2) Integration of power plant and geothermal reservoir pro-
duction economics in ML-based CSO has been less
explored in past research. But it can highly benefit the
development of more efficient geothermal energy extrac-
tion systems, and hence will likely be better addressed in
future work.

3) It is well known that the formulation of the objective
function(s) and constraint(s) highly affects the choice of
optimal values for the control variables in geothermal
CSO. However, there is no unique choice or criterion for
selecting the best formulation, and hence there is much
need for systematic analysis of differ formulations, as
well as innovative approaches for incorporating issues
such as market and reservoir structural uncertainty in
CSO formulation.
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