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Abstract:
The efficiency and accuracy of phase equilibrium calculations are essential in compositional
reservoir models. Usually, a significant part of the computational effort in compositional
reservoir simulations is spent on phase equilibrium calculations. The nonlinear nature
of phase equilibrium calculations requires an iterative solution procedure. Although the
successive substitution method (SSM) is robust and simple to implement, it suffers from
slow convergence, especially near the critical point of the mixture. The general dominant
eigenvalue method (GDEM) has been widely used to accelerate SSM, but its stability
and efficiency deteriorate as the temperature and pressure approach the critical point. This
paper proposes a modified form of GDEM to improve its performance in the near-critical
region. The modifications have two aspects. First, the liquid phase fraction in the mixture
is added as a variable when performing GDEM acceleration, improving both stability
and efficiency. The second modification is a post-calibration step imposed to replace the
conventional criterion, which is applied before triggering GDEM. With the help of the post-
calibration step, the stability of the modified GDEM is ensured, and more importantly, the
calculation efficiency can be improved. Numerical tests of three hydrocarbon mixtures,
including different numbers of components, show that the stability of the modified GDEM
is almost the same as SSM and that its calculation efficiency is much higher than SSM
and the conventional GDEM.

1. Introduction
CO2-enhanced oil recovery (CO2-EOR) is an effective

CO2 capture, utilization, and storage technique to reduce
greenhouse gases in the atmosphere and achieve carbon neu-
trality goals (Soeder, 2021; Xu et al., 2022). The numerical
simulations for CO2-EOR can provide accurate predictions of
multiphase flows and phase states in the reservoir, with signif-
icant scientific and practical value. Usually, a compositional
reservoir model is used for CO2-EOR numerical simulations
(Afanasyev et al., 2021). The formulations of CO2-EOR com-
positional models fall primarily into two groups. One group
includes the primary variables of saturation, individual phase

composition, and pressure. The other is based on the mole,
mass, or overall fractions and pressure. Both formulations are
strongly coupled systems, which contain a large number of
nonlinear partial differential equations. The fluid components
in the reservoir are complex and the solution scale is large.
Therefore, developing an efficient solution algorithm is a
principal focus of research. When solving primary variables,
fully implicit methods (Coats, 1980), adaptive implicit meth-
ods (Moortgat, 2017), sequential methods (Hu et al., 2020;
Moncorgé et al., 2020), and other methods (Coats, 2000;
Mostafavi et al., 2020) have all been studied and tested for
their convergence and efficiency. In addition to algorithm
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research, parallel processing techniques (Lian et al., 2019)
and graphics processing units can also be used to improve
the calculation speed for the compositional model of CO2
flooding.

Besides the calculations for primary variables, phase equi-
librium calculations are another crucial part of the composi-
tional reservoir simulations. As the basic procedure for solving
secondary variables in compositional reservoir models, phase
equilibrium calculations refer to solving nonlinear equations
to obtain phase compositions under a given temperature and
pressure. In simulations, phase equilibrium calculations solve
a coupled set of nonlinear equations in each grid block at every
time step (Haugen and Beckner, 2013). Finding a solution
may consume more than 75% of the total computational
effort (Nichita and Leibovici, 2013). Furthermore, failures in
phase equilibrium calculations can affect simulation results
significantly and cause non-convergence in the simulation
(Petitfrere and Nichita, 2015). Thus, fast and robust flash
algorithms are essential for simulating multi-compositional
flows in petroleum reservoirs.

Phase equilibrium calculations are composed of two steps
(Li, 2021). The first is the stability analysis derived from
Gibbs free energy and it is used to judge whether the feed
is stable in the single-phase state. The second is the phase-
split calculation, also called the flash calculation, which is
carried out if the feed is unstable. The nonlinear nature of
flash calculation requires iterative solution procedures. These
iterative procedures can be divided into three major groups: the
conventional successive substitution method (SSM) and its ac-
celeration algorithms, Newton-Raphson methods (Michelsen,
1982b; Zhu et al., 2018; Wang et al., 2021), and reduced-
variables methods (Michelsen, 1986; Pan and Firoozabadi,
2003; Li and Johns, 2006; Nichita and Graciaa, 2011; Zhao
et al., 2020).

To the best of our knowledge, existing algorithms have
several disadvantages and still need to be improved to meet
the requirements for use in engineering. For example, using
Newton-Raphson methods can be challenging since their Ja-
cobian matrices tend to be singular and lead to divergence in
the near-critical region. The acceleration effects of reduced-
variables methods are questioned. There is some controversy
exists, so no definite conclusion has been made about whether
reduced-variables methods are more efficient than conven-
tional ones (Michelsen et al., 2013; Gorucu and Johns, 2015;
Petitfrere and Nichita, 2015). The test results of Michelsen et
al. (2013) indicate that reduced-variables methods are faster
only for a large number of components and the speedup is
modest (less than 20%). Notably, when the temperature and
pressure are close to the critical point of the components, the
nonlinearity of the equations solved by the flash calculation
is enhanced. Flash calculations in this region are not only
slow but also prone to divergence. Both Newton-Raphson and
reduced-variables methods have high failure rates (Gorucu and
Johns, 2015).

SSM is more robust and simpler to implement than the
Newton-Raphson and reduced-variables methods. However,
SSM suffers from a slow convergence speed when pressure
and temperature are close to the phase boundary near the

critical point (Li and Firoozabadi, 2012). Some numerical
algorithms can be approached to linearly accelerate the con-
vergence process of SSM, including dominant eigenvalue
method (DEM) (Orbach and Crowe, 1971), general dominant
eigenvalue method (GDEM) (Crowe and Nishio, 1975), and
accelerated successive substitution (Mehra et al., 1983) et
al. Among various linear-acceleration methods, GDEM ac-
celeration provides a linear approximation to iteration results
obtained after a large number of iterations using SSM and has
been widely used. In 1958, Wegstein (1958) proposed a linear
relation, accelerating the convergence of the single variable
problem using the iterative values to approximate a predicted
value. Orbach and Crowe (1971) pointed out that this type
of linear relationship proposed by Wegstein could be approxi-
mated by a geometric sequence while the convergence process
is determined by the dominant eigenvalue of the matrix,
which is composed of the common ratios among variables.
They proposed DEM to accelerate the convergence process
using dominant eigenvalue and previous iteration values for
prediction. Belkadi et al. (2013) employed DEM as a part of
an efficient implementation of phase equilibrium calculations.
Crowe and Nishio (1975) proposed GDEM, which allows for
selecting multiple eigenvalues when predicting the iteration
values, meaning that iteration values in previous multiple steps
can be used. Soliman (1981, 1985) presented an alternative
derivation for GDEM and improved its convergence. Ordi-
narily, the iteration variables in GDEM for flash calculations
are phase equilibrium ratios. Gupta et al. (1988) studied the
application of DEM and GDEM using the mole fraction of gas
and liquid components as iteration variables. Zhao et al. (2020)
recently applied the GDEM acceleration to the reduced-SSM,
which also showed the efficiency of GDEM.

Current versions of the GDEM algorithm still face chal-
lenges. When the temperature and pressure approach the
critical point, there is a certain gap between GDEM and
SSM in success rate (Zhao et al., 2020). Michelsen (1993)
stated that GDEM frequently “over-extrapolates” in the near-
critical region, which causes the flash calculations to fail. Li
and Firoozabadi (2012) pointed out that GDEM may cause
calculations to converge more slowly and even diverge when
temperature and pressure near the critical point of the mixture.
In the near-critical region, slight changes in the component
equilibrium ratio seriously impact the solution of the gas-liquid
fraction. If the predicted value of the equilibrium ratio calcu-
lated from GDEM is not accurate enough, the convergence
of the flash calculation will be damaged. In the compositional
numerical simulation of CO2 flooding, flash calculations in the
near-critical region often occur. Therefore, it is necessary to
improve the robustness and efficiency of GDEM, especially in
the near-critical region.

This study modified the conventional GDEM to improve its
performance near the critical region in two respects. First, the
liquid fraction is added as a variable when performing GDEM,
improving its stability and speed. Second, the conventional
criterion before triggering GDEM is abandoned. Instead, a
post-calibration step is imposed after each GDEM acceleration
to ensure stability. Abandoning the conventional criterion can
significantly improve the calculation efficiency of the modified
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GDEM.

2. Theoretical models

2.1 Flash calculation
Classic phase equilibrium calculations have two steps: a

stability test to judge whether the mixture is stable at the
given temperature and pressure, and a flash calculation to
calculate the phase fractions and phase compositions if the
mixture is unstable. Details of the stability analysis can be
found in Michelsen (1982a). In this section, the procedure of
the flash calculation is briefly introduced.

Flash calculations need to solve equations derived from
component fugacity equilibrium and mass conservation. The
equilibrium criterion can be written as:

ln f L
i − ln f V

i = lnyiϕ
V
i − lnxiϕ

L
i = 0 (1)

where fi is the fugacity of component i; the superscripts
L and V represent the liquid and gas phase respectively,
while the variables xi and yi represent the liquid and gas
phase mole fractions of component i, respectively. ϕi is the
fugacity coefficient of component i, which can be calculated
by implementing equations of state (EOS) such as SRK-EOS
(Soave, 1972), PR-EOS (Peng and Robinson, 1976), etc. In
this study, PR-EOS is employed in both the stability test and
flash calculation.

When introducing the vector of equilibrium ratios
K={Ki, ...,KNc} with:

Ki =
yi

xi
(2)

and from the mass conservation relation xiFL + yiFv = zi with
zi always given, one can obtain:

xi =
zi

FL +(1−FL)Ki
, yi = xiKi (3)

where FL represents the liquid phase fraction, Fv represents the
vapor phase fraction, and zi represents the toltal mole fraction
of component i. Mass conservation can also be represented
as the nonlinear Rachford–Rice (Rachford and Rice, 1952)
equation:

N

∑
i=1

(xi− yi) =
N

∑
i=1

zi(1−Ki)

FL +(1−FL)Ki
= 0 (4)

The fugacity coefficients for evaluating K-values are ob-
tained from the PR-EOS (Peng and Robinson, 1976), which
is expressed as:

P =
RT

V −bm
− am

V (V +bm)+bm(V −bm)
(5)

where P represents the pressure, T represents the temperature,
and V represents the mole volume of the mixture. The van der
Waals mixing rule is used for parameters am and bm:

am =
Nc

∑
i=1

Nc

∑
j=1

xix jai j, bm =
Nc

∑
i=1

xibi (6)

with:

ai j = (1− ki j)(aia j)
0.5,

ai = 0.45724
R2T 2

ci
Pci

[
1+mi

(
1− T 0.5

T 0.5
ci

)]2

,

mi = 0.37464+1.54226ωi−0.26992ω
2
i ,

bi = 0.07780
RTci

Pci
.

In the above equations, Nc is the number of components;
R is the gas constant; Tci and Pci are the critical temperature
and pressure of component i; ωi is the acentric factor of com-
ponent i; and ki j is the binary interaction parameter between
components i and j; ai j, ai, bi, and mi are all parameters of
PR-EOS.

Introducing the compressibility factor, Z = PV/RT , Eq.
(5) can be rewritten as:

Z3− (1−B)Z2 +(A−2B−3B2)Z− (AB−B2−B3) = 0 (7)
where the parameter A and B are represented as:

A =
amP
R2T 2 , B =

bmP
RT

(8)

The fugacity coefficient of component i can be calculated
from the following equation:

lnϕi =
bi

bm
(Z−1)− ln(Z−B)

− A
2
√

2B

(
2

am

Nc

∑
j=1

x jai j−
bi

bm

)
ln

Z +2.414B
Z−0.414B

(9)

Notice that the PR-EOS Eq. (5) is suitable for both the
vapor and liquid phases. For the liquid phase, the minimum
real root of the cubic equation Eq. (7) is selected. For the
vapor phase, where the liquid mole fractions xi in the above
relations should be replaced by the vapor mole fractions yi, the
maximum real root of the cubic equation Eq. (7) is selected.

In solving the complete set of nonlinear equations, Eqs. (1)-
(9), mole fractions xi, yi, the liquid phase fraction FL and the
phase equilibrium ratios K={K1, ...,KNc} can be calculated.
Iterative methods, such as SSM, Newton-Raphson methods,
or others must be employed to solve this set of equations due
to its nonlinear nature.

2.2 SSM
Using SSM to solve the flash calculation problem has the

advantage of easy implementation and high stability. The SSM
procedure, which is the basis of GDEM, is briefly summarized
as follows:

Step 1: Start with phase stability test results to obtain the
initial guess of the phase equilibrium ratio K(0).

Step 2: Denote the current iteration value of phase equilib-
rium ratio as K(n) with denoting the iteration step. Calculate
the liquid phase fraction FL by solving Eq. (4) with the
Newton-Raphson method or others.

Step 3: Substitute the fluid phase fraction FL into Eq. (3) to
calculate mole fractions xi and yi.

Step 4: Use the EOS (PR-EOS is employed here) to
calculate fugacity coefficients ϕL

i and ϕV
i for the liquid and

the vapor phases, respectively.
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Step 5: Check whether the fugacity equilibrium relation
Eq. (1) is satisfied. If not, the phase equilibrium ratios are
updated as K(n+1)

i = ϕL
i /ϕV

i , and Steps 2-5 are repeated until
fugacity equilibrium Eq. (1) is achieved. Then the current
iteration values of xi, yi, FL, and Ki are the results of the
flash calculation.

2.3 GDEM
When the flash calculation is performed in the near-critical

region or around the phase envelope, SSM is quite time-
consuming. Michelsen (1982b) suggested using GDEM to
accelerate SSM. Conventionally, the phase equilibrium ratios
have been used as iteration variables, and their variations
between two iterations can be approximated by a linear
difference equation after enough iterations:

∆K(n+1) = A ·∆K(n) (10)
where ∆K(n) = K(n+1) −K(n) and A is a Nc × Nc matrix.
According to the Cayley-Hamilton theorem, the characteristic
equation of matrix A can be transformed as:

|λ I−A|=
m

∑
j=0

µ jλ
m− j (11)

where m represents the rank of matrix A, I is a identity
matrix. Denote the root of the characteristic equation Eq.
(11) as λ j ( j = 1, ...,m), which are eigenvalues of matrix A.
The corresponding eigencoefficients µ j are defined as:

µ0 = 1, µ j = (−1) j
∑λi1λi2λi3 ...λi j

(1 6 j 6 m;1 6 i1 6 i2...6 i j 6 m)
(12)

From the Cayley-Hamilton theorem, matrix A satisfies the
following relation:

m

∑
j=0

µ jAm− j
∆K(n−m) = 0, n≥ m (13)

Thus, applying Eq. (10) repeatedly, one can obtain:

m

∑
j=0

µ j∆K(n− j) = 0, n≥ m (14)

Suppose all eigenvalues λ j are distinct and denote the
eigenvector belonging to the eigenvalue λ j as v j. From Eq.
(10), one can obtain:

∆K(n) = An ·∆K(0) =
m

∑
j=1

v jλ
n
j (15)

with ∆K(0) =
m
∑
j=1

v j.

Eq. (15) indicates that the eigenvalues λ j determine the
convergence of SSM. Label λ j in descending order of absolute
magnitude and suppose that only the first k of them {λ j| j =
1, ...,k < m} are large enough to dominate the iteration. In this
sense, the iteration behaves as if λ j = 0 ( j > k). According to
the definition Eq. (11) of the eigencoefficients, each eigen-
coefficient u j ( j > k) contains at least one λl (l > k). Thus,
each eigencoefficient u j = 0 ( j > k), and correspondingly, Eq.
(14) can be approximated as:

k

∑
j=0

µ̂ j∆K(n− j) = 0,(k 6 m,n≥ m) (16)

where µ̂ j are estimates of µ j by treating λ j = 0 ( j > k).
Obviously, the approximation is much more accurate with a
larger value of the parameter k. In this paper, k = 3. The value
of µ̂ j ( j = 0,1...,k) can be obtained by solving the linear
equation:

k

∑
j=0

µ̂ jb jw = 0,(w = 1,2, ...,k) (17)

with b jw = 〈∆K(n− j),∆K(n−w)〉.
With the help of Eq. (16), the final result K(∞) predicted

from Eq. (10) can be approximated as:

K̂(∞) = K(n+1)−
∑

k−1
i=0 (∑

k
j=i+1 µ̂ j)∆K(n−i)

∑
k
j=0 µ̂ j

(18)

One can directly substitute K̂(∞) into the next iteration step
to accelerate the convergent procedure. Details of GDEM are
well recorded by Crowe and Nishio (1975) and Zhao et al.
(2020).

The criterion of GDEM is essential to its robustness and
efficiency. In 2020, Zhao et al. (2020) used the ratio of
‖∆K(n)‖ and ‖K(n)‖ as the criterion to trigger GDEM:

‖∆K(n)‖
‖K(n)‖

< ε (19)

where ε is a user-defined small value which could be 10−3,
10−4, and 10−5, et al. When the criterion Eq. (19) is sat-
isfied, the acceleration process of GDEM is triggered, and
the calculated value K̂(∞) from Eq. (18) will be used in the
next iteration. According to the criterion Eq. (19), the value
of ε determines when to use GDEM to accelerate the iteration
process. The conservative choice with small ε does not notably
improve the calculation efficiency. On the contrary, a large ε

can improve the calculation efficiency greatly but does harm
to the stability.

3. Modification of GDEM

3.1 Adding the fluid phase fraction FL as a
variable in GDEM

Flash calculation requires solving Nc +1 unknowns which
are the phase equilibrium ratios Ki (i = 1,2, ...,Nc) of each
component and the liquid phase fraction FL (or the vapor
phase fraction FV ). In the conventional GDEM as described
above, only Nc unknowns, the phase equilibrium ratios Ki, are
considered when performing GDEM. The other variable FL is
updated independently by Eq. (4) from the current values of
Ki. As temperature and pressure approach the critical point of
the mixture, the phase equilibrium ratios Ki will approach 1
for each component i. From Eq. (4), one can obtain:

∂FL

∂Ki
=

−zi

[FL +(1−FL)Ki]2
Nc
∑
j 6=i

zi(1−K j)2

[FL+(1−FL)K j ]2
+(Ki−1)2zi

(20)
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It can be seen from Eq. (20) that ∂FL/∂Ki approaches
infinity as all Ki approach 1, which means that a slight change
in Ki will cause a drastic change in FL. Even if Ki converge,
FL may still have a significant error. Thus, choosing only Ki as
iterative variables to perform GDEM may not be appropriate.

In the modified GDEM, the iterative values of the liquid
phase fraction FL are added to the variables to construct
the acceleration algorithm. As a result, the new augmented
variable D can be defined as:

D = (K1,K2, ..,KNc ,FL)
T (21)

Correspondingly, the linear difference equation between
two iterations can be approximated by:

∆D(n+1) = A′ ·∆D(n) (22)
Denote the eigencoefficients of the augmented iterative

matrix A′ as µ ′j. Their estimates µ ′j ( j = 0,1, ...,k) can be
calculated following the process described above. Similar to
Eq. (18), the final results D(∞) for the next iteration step after
GDEM can be approximated as:

D̂(∞) = D(n+1)−

k−1
∑

i=0

(
k
∑

j=i+1
µ̂ ′j

)
∆D(n−i)

k
∑
j=0

µ̂ ′j

(23)

Compared to the conventional GDEM, the difference in
the modified GDEM is that the augmented matrix A′, which
contains iterative information of the liquid phase fraction FL,
is employed to replace the original iterative matrix A. The
dominant eigenvalues of the augmented matrix A′ are different
from those of the matrix A, especially near the critical region.
Thus, the calculated values of µ̂ ′j are different from the values
of µ̂ ′j by the conventional GDEM. Through this method, the
predicted values of Ki in the modified GDEM are different
from those predicted by the conventional GDEM. From the
application point of view, the stability of the modified GDEM,
which takes the iterative behavior of the liquid phase fraction
FL into consideration, is improved.

3.2 Modified criterion for GDEM
As mentioned in Section 2.3, the criterion Eq. (19) is em-

ployed to trigger the acceleration process in the conventional
GDEM. Generally speaking, the criterion Eq. (19) can only
be satisfied after enough number of SSM iterations. In other
words, before GDEM is triggered, many SSM iterations have
already been performed. In fact, as described in Section 2.3,
so long as k+1 terms {∆K(n− j)| j = 0, ...,k} are obtained after
completing k+ 1 successive SSM iterations, the acceleration
process of GDEM can be implemented. If the original criterion
Eq. (19) is abandoned and GDEM is implemented immediately
after k + 1 steps of SSM iterations, the total efficiency will
be improved greatly. Based on this idea, a modified form of
GDEM is proposed, in which a much higher efficiency can be
achieved by triggering GDEM immediately after k+ 1 SSM
iterations.

If the predicted values obtained after GDEM acceleration

are used directly in the subsequent iteration, especially when
the criterion Eq. (19) is abandoned, the iterative process is
usually unstable because not all K̂(∞)

i of the predicted K̂(∞)

keep the right direction of convergence. Even if the criterion
Eq. (19) is employed, the correct direction of convergence
cannot be ensured for each component since not all of the
eigenvalues of the iterative matrix are considered in GDEM.

To ensure the iterative direction for each component Ki
after GDEM in accordance with SSM, a post-calibration step
is added to the GDEM procedure. After GDEM acceleration,
the predicted value K̂(∞) (or D̂(∞) in its modified form)
is not directly employed in the next iterative step. Instead,
the iterative direction of each component in K̂(∞) (or D̂(∞))
is examined. Those components K̂(∞)

i (or D̂(∞)
i ) with their

iterative direction in accordance with SSM are retained, and
the others are replaced by their iterative value K(n+1)

i (or
D(n+1)

i ) in SSM.
In practical application, it is found that using the predicted

value K̂(∞)
i from GDEM may cause divergence if ∆K(nGDEM)

i
(defined as ∆K(nGDEM)

i = K̂(∞)
i −K(n)

i ) differs significantly from
∆K(n)

i . To alleviate this problem, the predicted value K̂(∞)
i

should also be abandoned and replaced by K(n+1)
i if the ratio

|∆K(nGDEM)
i /∆K(n)

i | is too large.
According to the above considerations, a post-calibration

step is imposed after each GDEM acceleration to judge
whether the predicted value K̂(∞)

i will be used in the next
iteration. The post-calibration step (in the form of augmented
variables D) can be described as follows:

D[n+1]
i =

{
D(n+1)

i , sgn(τi)< 0 or |τi|> τc

D̂(∞)
i , sgn(τi)≥ 0 and |τi| ≤ τc

(24)

with:

τi =
∆D(nGDEM)

i

∆D(n)
i

,

∆D(nGDEM)
i = D̂(∞)

i −D(n)
i ,

∆D(n)
i = ∆D(n+1)

i −D(n)
i .

The parameter τc in the post-calibration step Eq. (24) is a
user-defined constant, and our numerical tests suggest that it be
set to τc = 104. The calibrated value D[n+1]

i will be employed
in the next iteration. After calibration, each component Di
remains in the same iterative direction as in SSM, and the ratio
|∆D[n+1]

i /∆D(n)
i | (with ∆D[n+1]

i = D[n+1]
i −D(n)

i ) is restricted.
This ensures the stability of the entire iterative process.

Since the conventional criterion Eq. (19) is abandoned and
replaced by the post-calibration step Eq. (24), the GDEM
acceleration process will be triggered immediately after k+1
SSM iterations. Thus, the overall iterative efficiency of the
modified GDEM is greatly improved.

3.3 Steps of the modified GDEM
The steps of the modified GDEM are briefly described as

follows.
Step 1: Start with phase stability test results and obtain the
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Table 1. Flash calculation results of the 9-cp mixture.

Algorithm Failure rate (%) Average iterative steps Average CPU time (s)

SSM 0.00 3,129 2.75×10−3

Conventional GDEM (with ε = 1.0×10−3) 36.81 - -

Conventional GDEM (with ε = 1.0×10−4) 27.95 - -

Conventional GDEM (with ε = 1.0×10−5) 14.17 2,648 2.52×10−3

Modified GDEM 0.90 168 1.95×10−4

Fig. 1. Illustration of the phase envelope and the test region
for the 9-cp mixture.

initial guess of the phase equilibrium ratios K(0).
Step 2: Follow the standard steps in SSM to obtain k+1

iterative values of the phase equilibrium ratio and the liquid
phase fraction {D(n− j+1)| j = 0,1, ...k} (see Section 2.2).

Step 3: Perform the modified GDEM procedure to obtain
the predictive value D̂(∞) according to Eq. (23). (The iterative
values of the liquid phase fraction {F(n− j+1)

L | j = 0,1, ...k} are
added as variables in GDEM, which can improve the stability
of the entire iterative process.)

Step 4: Update the iterative value D[n+1]
i for the next

iteration according to the post-calibration step Eq. (24).
Step 5: Check whether the fugacity equilibrium relation

is satisfied. If not, update the phase equilibrium ratios K
according to the fugacity equality and repeat Steps 2-5 until
fugacity equality is achieved. Then, the current iteration values
of Ki, FL, xi, and yi are the solutions of the flash calculation.

4. Numerical tests
This section reports the high performance of the modified

GDEM during flash calculations in the near-critical region
indicated through numerical tests. Three hydrocarbon mixtures
with different components are employed to perform flash
calculations. For comparison, the test results of SSM and the
conventional GDEM are also provided. The initial guesses of
phase equilibrium ratios in all of the tests are obtained through
phase-stability analysis proposed by Michelsen (1982a). The
convergence criterion is set as the residual of fugacity equal-
ity relation

∥∥xiϕ
L
i − yiϕ

V
i

∥∥
∞
< 10−10. A flash calculation is

marked as failed if a trivial solution is obtained, the Rachford-
Rice equation breaks down, the liquid phase fraction exceeds
its bounds during iterations, or the number of iterations
exceeds 12,000.

4.1 Test for the 9-component mixture
The 9-component mixture comprises CO2, N2, and 7 other

hydrocarbons. Fluid compositions and EOS parameters of
the 9-component mixture can be found in Kenyon (1987).
Its critical temperature and pressure are Tc = 315.37 K and
Pc = 21.55 MPa, respectively. Fig. 1 shows the phase envelope
and the critical point of this mixture. The test region is a curved
quadrilateral ([300 K, 330 K]×[Penv−0.03 MPa,Penv]) in the
two-phase region clinging to the phase envelope, including
the critical point. A total of 180,000 points in the test region
(with pressure and temperature increments of 50 Pa and 0.1
K, respectively) are employed to perform flash calculations.
The performance of different algorithms illustrated based on
these points’ statistical properties

The stability and efficiency of SSM, the conventional
GDEM, and the modified GDEM for this flash calculation test
are summarized in Table 1. The average iterative steps and
CPU times are counted based on the successful test points.
Among all the three iterative algorithms, SSM is the most
stable, and no flash calculations fail in this test. Accordingly,
its efficiency is the lowest.

For the conventional GDEM, since the criterion Eq. (19) is
employed to trigger the acceleration process, its stability
and efficiency depend on the value of ε . The conservative
choice of a small ε seldom fails in flash calculations, but its
calculation efficiency is little improved over SSM. Even when
ε is set to 10−5, there is still a 14.17% of flash calculation
fails in this test. In addition, the calculation efficiency is
only approximately 10% better than SSM. Large values of
ε improve the computational efficiency significantly, but the
stability of the algorithm suffers considerably. In this test, the
percentage of failure calculations is 36.81% and 27.95% when
ε is set to 10−3 and 10−4, respectively. The average number of
iterations and the corresponding CPU cost of one successful
calculation are not provided in Table 1 for these two cases
due to their high failure rates. This test indicates that the
conventional GDEM is not efficient for flash calculations near
the critical point.

Table 1 shows that the modified GDEM performed well
in this test. The stability of the modified GDEM is almost
the same as SSM, and only 0.90% of the flash calculations
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Fig. 2. Variations of the residuals of fugacity equality for the 9-cp mixture flash calculation test during iterations.
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Fig. 3. Number of iterations for the 9-cp mixture flash calculations near the critical point.

fail. In addition, the modified GDEM improves the calculation
efficiency greatly. The average number of iterations in the
modified GDEM is approximately 1/19 of that in SSM, and the
CPU cost is approximately 1/14. Compared to the conventional
GDEM with ε = 10−5, a speedup of nearly 12 is reached.

The calculated residuals of fugacity equality during it-
erations at two specific points (T = 313.17 K, P = 20.800
MPa and T = 317.00 K, P = 21.174 MPa) are presented in
Fig. 2. Without acceleration, SSM converges smoothly and
slowly, but the number of its iterative steps required is the
largest, leading to the lowest calculation efficiency. For the
conventional GDEM, the number of its iterative steps depends
on the choice of the threshold value ε . Larger values of ε

can trigger the GDEM acceleration much earlier, and the
corresponding number of iterative steps can be significantly
reduced from SSM. Applying the criterion Eq. (19) implies
that many SSM iterative steps are required before the accel-
eration process of GDEM is triggered, as mentioned above.

Based on this point, the calculation efficiency cannot be
improved much in the conventional GDEM. In contrast, in
the modified GDEM, the criterion Eq. (19) is abandoned and
replaced by Eq. (24), the post-calibration step; the acceleration
is performed immediately after k+ 1 (normally k = 3) steps
of SSM iterations. Thus, as shown in Fig. 2, the acceleration
operation is triggered the earliest for the modified GDEM, and
correspondingly, the fewest iterative steps are required.

Fig. 3 compares the number of iterations required by dif-
ferent algorithms at a fixed temperature of T = 315.00 K (see
Fig. 3(a)) and a fixed pressure of P = 21.200 MPa (see Fig.
3(b)) near the critical point. The number of iterations required
in SSM increases notably when the test point approaches the
critical point. In Fig. 3(a), the test point moves closer to the
critical point as its pressure increases. In Fig. 3(b), the test
point moves closer to the critical point as its temperature
decreases. The situation is similar for the number of iterations
required in the conventional GDEM (with ε = 10−5), though
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with fluctuations. In contrast, the number of iterations required
in the modified GDEM is stable despite its distance to the
critical point. More importantly, of all of the algorithms, the
modified GDEM required the least number of iterations, much
less than the other two. This test shows that the proposed
modified GDEM is much more efficient, especially for flash
calculations near the critical point.

Fig. 4. Illustration of the phase envelope and the test region
for the 15-cp mixture.

4.2 Test for the 15-component mixture
The 15-component mixture comprises CO2, N2, and 13

other hydrocarbons. Fluid compositions and EOS parameters
of the 15-component mixture can be found in Hearn and
Whitson (1995). Its critical temperature and pressure are
Tc = 689.4 K and Pc = 12.20 MPa. Fig. 4 shows its phase
envelope and the test region. The test region is still a curved
quadrilateral ([675 K, 705 K]×[Penv−0.03 MPa,Penv]) next to
the critical point. A total of 180,000 points in the test region
(with pressure and temperature increments of 50 Pa and 0.1
K, respectively) are employed to perform flash calculations.

The stability and efficiency of SSM, the conventional
GDEM and the modified GDEM for this flash calculation test
are summarized in Table 2. The high stability and efficiency of
the proposed modified GDEM are reconfirmed. Only 1.37% of
the flash calculations fail for the modified GDEM, indicating
its high stability. At the same time, the average number of
iterations required in the modified GDEM is approximately
1/25 of that in SSM, and the CPU cost is approximately
1/20, indicating its high efficiency. Even when compared to
the conventional GDEM with ε = 10−5, a speedup of nearly
3.5 is reached.

The calculated residuals of fugacity equality during itera-
tions at two specific points (T = 686.00 K, P = 12.030 MPa
and T = 689.96 K, P= 11.810 MPa) are presented in Fig. 5. It
can also be seen that the acceleration operation is triggered the

Table 2. Flash calculation results of the 15-cp mixture.

Algorithm Failure rate (%) Average iterative steps Average CPU time (s)

SSM 0.01 3,402 6.55×10−3

Conventional GDEM (with ε = 1.0×10−3) 22.64 - -

Conventional GDEM (with ε = 1.0×10−4) 20.03 - -

Conventional GDEM (with ε = 1.0×10−5) 4.09 690 1.48×10−3

Modified GDEM 1.37 136 3.29×10−4
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Fig. 5. Variations of the residuals of fugacity equality for the 15-cp mixture flash calculation test during iterations.
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Fig. 6. Number of iterations for the 15-cp mixture flash calculations near the critical point.

Table 3. Flash calculation results of the 28-cp mixture.

Algorithm Failure rate (%) Average iterative steps Average CPU time (s)

SSM 0.01 2,065 8.65×10−3

Conventional GDEM (with ε = 1.0×10−3) 18.66 - -

Conventional GDEM (with ε = 1.0×10−4) 17.52 - -

Conventional GDEM (with ε = 1.0×10−5) 1.98 447 1.99×10−3

Modified GDEM 1.17 113 5.50×10−4

earliest in the modified GDEM. Correspondingly, the required
number of iterative steps is the least.

Fig. 6 shows the comparisons among the number of
iteration steps required for different algorithms at a fixed
temperature of T = 689.75 K (see Fig. 6(a)) and a fixed
pressure of P= 11.850 MPa (see Fig. 6(b)). When approaching
the critical point, the number of iterative steps required in SSM
and the conventional GDEM increase notably. In contrast, the
number of iterations required in the modified GDEM is stable
and much smaller than the other two algorithms.

4.3 Test for the 28-component mixture
The 28-component mixture comprises CO2, N2, and 26

other hydrocarbons. Fluid compositions and EOS parameters
of the 28-component mixture can be found in Hendriks and
Van Bergen (1992). Its critical parameters are Tc = 701.94 K
and Pc = 9.16 MPa. Fig. 7 shows the phase envelope of this
28-component mixture and the test region. It is still a curved
quadrilateral ([685.00 K, 715.00 K]×[Penv−0.03 MPa,Penv])
next to the critical point, and a total of 180,000 points in the
test region (with pressure and temperature increments of 50
Pa and 0.1 K, respectively) are employed to perform flash
calculations.

The stability and efficiency of SSM, the conventional
GDEM and the modified GDEM for this flash calculation test
are summarized in Table 3. The high stability and efficiency

Fig. 7. Illustration of the phase envelope and the test region
for the 28-cp mixture.

of the modified GDEM are reconfirmed. Only 1.17% of the
flash calculations fail for the modified GDEM in this test. The
average number of iterations required in the modified GDEM
is approximately 1/18 of that in SSM, and the CPU cost is
approximately 1/16. Even when compared to the conventional
GDEM with ε = 10−5, a speedup of 2.6 is reached.

The comparisons of the number of iteration steps for
different algorithms at a fixed temperature of T = 702.30 K
(see Fig. 8(a)) and a fixed pressure of P = 9.000 MPa (see
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Fig. 8. Number of iterations for the 28-cp mixture flash calculations near the critical point.

Fig. 8(b)) are shown in Fig. 8. Near the critical point, the
iterative steps of SSM and the conventional GDEM increase
rapidly, and the acceleration effect of the conventional GDEM
algorithm is unstable. In contrast, the modified GDEM requires
fewer iterative steps in the pressure (Fig. 8(a)) and temperature
(Fig. 8(b)) areas throughout the test, and the number of
iterative steps is maintained at a low level, far less than the
iterative steps required by the other two algorithms.

5. Conclusions
Fast and stable flash calculations are crucial in compo-

sitional reservoir models. However, flash calculations in the
near-critical region of hydrocarbon mixtures can be time-
consuming and prone to failure. In this article, a modified
GDEM is proposed to improve the speed and stability of flash
calculations in the near-critical region. The conclusions are
summarized below.

1) The impact of the liquid fraction on the iterative process
should be fully taken into consideration. By adding the
liquid fraction as a variable when performing GDEM
acceleration, the stability of GDEM is greatly improved.

2) A post-calibration step is proposed to replace the con-
ventional criterion. Applying the post-calibration step can
ensure the stability of GDEM and improve its efficiency
in flash calculations.

3) Numerical tests show that the modified GDEM per-
forms significantly better than SSM and the conventional
GDEM. Its stability is almost the same as SSM, which
is seen as the most stable algorithm. The calculation effi-
ciency of the modified GDEM remains almost unchanged
in the near-critical region and is much higher than SSM
and the conventional GDEM.
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