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Abstract:

Gas permeability, which is measured mainly through gas permeability experiments, is a
critical technical index in many engineering fields. In this study, permeability is firstly
calculated based on information from a digital image and an improved permeability
prediction model. The calculated results are experimentally verified. Subsequently, a self-
developed image-processing program is used to extract feature parameters from a scanning
electron microscopy image. Meanwhile, an extreme learning machine algorithm is used
to input the image feature parameters obtained using the image-processing program into
the extreme learning machine algorithm for machine learning. Additionally, we compare
several typically used machine learning algorithms, which confirmed the reliability and
accuracy of our algorithm. The best activation function can be obtained by comparing
the predicted permeability using an appropriate number of neuron nodes. Experimental
results show that the program can accurately identify the features of the microscopy image.
Combining the program with an extreme learning machine neural network algorithmgas
permeability results to be obtained with high accuracy. This method yields good predictions
of permeability in certain cases and has been adapted to other geomaterials.

1. Introduction

involves indoor experimental testing, on-site sampling, and
returns the results to a laboratory for evaluation. However,

Gas permeability is a key technical indicator in many
other geological engineering fields, such as deep energy ex-
traction (e.g., coal bed methane, shale gas, and natural gas
hydrate extraction), and deep energy and waste storage (e.g.,
underground oil and gas storage, high-level radioactive waste
(HLRW) storage, and CO; deep geological storage) (Mazarei
et al., 2019; Carbonell et al., 2019; Alafnan, 2022). Therefore,
methods for obtaining the gas permeability of geomaterials
in these engineering geological fields have been investigated
extensively. The typical method for predicting permeability

this method requires on-site core drilling and sampling, which
typically diminish the integrity of the entire engineering body,
and yields a low testing efficiency.

The characteristics of gas migration in geomaterials are
primarily determined by their pore structure characteristics
(e.g., porosity, size, and distribution of pores and throats) and
the connectivity of the pore network (Huang et al., 2021).
The development of scanning technology has enabled in situ
scanning for acquiring digital images of samples at different
locations without damaging the engineering structure. The
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Fig. 1. Scanning sample acquisition.

pore structure morphology of geomaterials can be directly
observed using digital imaging technology (Gebrenegus et al.,
2011). Some scholars have used digital images to directly
observe the microstructure characteristics of geomaterials,
perform quantitative characterization, and determine the re-
lationship between permeability and pore structure based on
relative theories (Dou et al., 2021; Zhao et al., 2022). However,
the process of digital image based on the penetration rate
is complicated, and the technical requirements are relatively
high. Generally, a significant amount of time is required to
obtain permeability based on an image, and the processing
efficiency is relatively low.

Owing to the development of artificial neural networks,
neural network models have been applied to solve inverse
problems. For example, scholars have used artificial neural
networks to determine reservoir parameters to assess the
production capacity of wells (Ahmadi et al., 2017; Xiao and
Hugh, 2018). Computer vision and neural networks were used
to acquire microscopy images, manually construct annotated
big data samples, and train those samples to identify, extract,
or count cracks, pores, or particles. Geological/geotechnical
parameters are essential in engineering surveys. Scholars have
attempted to obtain these parameters rapidly and accurately
using machine learning (ML), which significantly improved
efficiency (Arif et al., 2012; Taha et al., 2018; Bahmed et al.,
2019; Hossein et al., 2021). Existing ML prediction algorithms
include support vector regression (SVR), decision trees, Gaus-
sian process regression (GPR) models, and extreme learning
machine (ELM) (Dominguez-Olmedo et al., 2020; Shokouhi
et al.,, 2021). Each method exhibits its own characteristics;
for example, the decision tree is a classic binary-tree-based
principle construction model. However, it overfits easily, and
the structure of the tree changes significantly when only a
few changing samples is involved. The GPR model is a
nonparametric model that uses a Gaussian process to perform
a priori regression analyses of data; it is suitable for datasets
with low dimensions and small sample counts. Although the
GPR model offers high accuracy, its parameters are difficult
to adjust.

Inspired by these studies, we combined image processing
with neural networks. First, we developed a digital image pro-
cessing system to obtain the relevant characteristic parameters
of the image. Subsequently, we utilized digital image process-
ing technology to calculate the permeability of the image.
Earlier studies indicated that permeability calculation based
on digital images yielded results similar to those of physical

experiments. A sample-learning database can be established
using the image parameters and corresponding permeability
values, followed by ML based on the ELM algorithm. This
method allows a significant amount of image processing and
ML to be performed rapidly and yields accurate results. Hence,
it is suitable for the nondestructive in situ quantitative eval-
uation of engineering structures (e.g., to evaluate the sealing
performance evolution of the bentonite barrier in the HLRW
repository).

2. Methodology

2.1 Digital image quantitative characterization
and permeability prediction

2.1.1 Digital image quantitative characterization

(1) Experimental materials

Gaomiaozi (GMZ) bentonite was selected as the optimal
buffer material from a high-level radioactive waste repository
in China (Xu et al., 2020). Initially, a compacted GMZ
bentonite sample was loaded onto a triaxial cell to perform
gas permeability tests. Subsequently, three 9 mm x 9 mm
specimens were selected from different sections of the sample
to closely represent the pore structure of the entire sample.
This was performed to avoid images acquired in the same sec-
tion that were not representative owing to the heterogeneity of
the geomaterial. Additionally, because the bentonite specimens
were pressed, the homogeneity of the digital image showing
the pore structure should be greater than that of other geolog-
ical materials. Nine specimens obtained from three samples
were subjected to scanning electron microscopy (SEM), which
was performed at the Modern Analysis and Computing Center
of China University of Mining and Technology. The selected
image was magnified 1,000 times (Fig. 1).

(2) Image enhancement

The actual obtained image can be either overly bright
or dark. The brightness of the image can be adjusted using
grayscale mapping to restore it to the normal brightness level
by adding or subtracting a value from the original pixel
grayscale value. Notably, the range of the image brightness
adjustment is limited and cannot be infinitely increased or de-
creased. Furthermore, the brightness adjustment of the image
does not affect the gray curve shape, but rather the overall left
or right shift (Fig. 2). However, contrast adjustment affects the
morphology of the grayscale distribution curve of the image.
Therefore, to preserve the original grayscale distribution of
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Fig. 2. Effect of image preprocessing on grayscale distribution.

the image, we did not change the contrast of the image during
preprocessing. In this study, only the brightness of the image
was adjusted within a specified range to obtain the best visual
effect such that quantitative characterization would not be
significantly affected.

(3) Image denoising

During image acquisition, the quality of the captured image
is affected by the environment and equipment. Therefore,
appropriate filtering algorithms must be used to reduce image
noise (Wang et al., 2021). We compared several typically used
noise-removal algorithms (Fig. 3). A mean filter was selected
in this study, and an N X N template was moved across the
entire area. The average value (g(x,y)) of a certain pixel area
was calculated using Eq. (1), which was subsequently used as
the gray value of the pixel (Fig. 3):

)

g(x,y) = = (1)
N* (o EN()

where N(x,y) corresponds to the N x N neighborhood of image
Sf(x,y) at position (x,y); f(x,y) is the gray value of the pixel
at the position (s,) of the original image.

(4) Image binarization and porosity calculation

The principle of image binarization is straightforward; that
is, by comparing the gray value of each pixel in the image is
compared with the selected threshold such that the attributes
of the pixel can be determined based on the comparison results
(for geomaterials, pores, and matrices):

glx,y) = L re)> T
’ 0 flxy)<T

where T is the image segmentation threshold and f(x,y) is
the gray value of the pixel at the position of the original
image. In our previous study, we discovered that a threshold
segmentation algorithm based on pixel gradient information
is more suitable for bentonite SEM images (Song et al.,
2020). Therefore, this algorithm was used for binary image
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the number of pipes.
(5) Characterization of pore size distribution The fluid flow obeys Darcy’s law as follows:
Currently, two types of pore-size distribution algorithms
based on digital images are available: discrete pore-size distri- 0= 1 AP 5)
u

bution (DPSD) and continuous pore-size distribution (CPSD).
In the DPSD algorithm, irregular pores in an image are
equated to circles based on the principle of area equivalence.
Meanwhile, in the CPSD algorithm, the pores inside a sample
and changes in the pore size are assumed to be continuous
(Miinch and Holzer, 2008). The overall pore interval can be
obtained using a circle or sphere with a specific radius to
maximize the filling of the internal pore space of the sample
and to calculate the filled area or volume. The CPSD method,
as schematically shown in Fig. 4 was adopted in this study.

2.1.2 Modified permeability prediction model based on
digital images

In this study, gas permeability was calculated based on the
pore size distribution obtained above and the Hagen—Poiseuille
law as follows:

TRAAP
0= sl 3)

where AP is the pressure loss, / the length of the thin tube,
the dynamic viscosity, QO the flow rate, and R the tube radius.

For a porous medium, the total flow of fluid through
the sample and the sum of flows through each minute are
considered equal (Fig. 5) as follows:

0=Y 0 4)
i=1

where Q; is the flow rate through each minute pore and n is

where k is the permeability and A the cross-sectional area of
the fluid. Combining Eqs. (4)-(5):

T 1
k= 8—AZR;‘ = S—AZA[R% (6)
where R; is the radius of the pore and A; the area of the pore
with radius R;.

In Eq. (6), the contribution of the pore size to the seepage
characteristics is not considered. Therefore, we modified Eq.
(6) and introduced the permeability contribution rate C; as
follows:

SiR?

L % 100% 7
ZS,'R%

i=1

G

where §; refers to the area occupied by pores with a radius of
R;. Therefore, modifying Eq. (6) yields:

1 & 7nSiRS
k= ” n# 8)
i=1 'y ;RS
i=1

3. Data preparation

3.1 Digital image parameter extraction system

A grayscale image of the surface morphology of GMZ
bentonite was obtained, and the grayscale ranged from 0 to
255. The distribution probability (p(i)) of the gray value i in
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Fig. 4. Schematic diagram of discrete and continuous pore distribution principles: (a) an irregularly shaped pore, (b) a circular
pore based on the principle of area equivalence (DPSD), (c) the Euclidian distance map, and (d) a comarision between DPSD

and CPSD (Miinch and Holzer, 2008; Song et al., 2019).
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the figure is expressed as:

p(i)
where i represents the gray level, N, the total number of image
pixels, n; the sum of i pixels in the image, and L the number
of gray levels.

The gray mean of the image reflects the average brightness
of the entire gray image. A greater gas permeability of the
GMZ bentonite implies more pores on its surface, less light
reflection, a darker SEM image, and a lower average gray
value of the image.

For a normalized grayscale histogram, the gray mean (G)
of the image is expressed as:

n .
—,i=0,1,---,L—1 9
N,l ©)

L—1
G=1Y ip(i) (10)
i=0

The grayscale variance (%) of an image reflects the degree
of dispersion between the pixel and mean values of the image
expressed as follows:

1D
i=0

The energy of the imag; (U) reflects the uniformity of the
image gray value expressed as follows:
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L-1
U=Y p (12)
i=0
Image entropy (E) is a statistical form of features that re-
flects the average amount of information in an image expressed
as:

L—1

EZ*%MM%M@

13)

3.2 ELM system

The ELM algorithm is a feedforward neural networks.
The algorithm randomly generates weights and hidden layer
thresholds. It does not require adjustments during training and
can obtain a unique optimal solution rapidly. Fig. 6 shows the
basic structure of the ELM neural network. The connection
weight between the input and hidden layers, w, is expressed
as follows (see also Fig. 6):

w11 w12 Win
war w22 Wan
w= (14)
Wd1 Wd2 Wdn
L ddxn
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Fig. 6. Structure of the ELM neural network.

Suppose that the connection weight between the hidden
and output layers is B, which is expressed as follows:

Bi B o Pun]
5 - ﬁ.21 ﬁ'zz Bam as)
ﬁdl BdZ Bdm_ dxm

Therefore, when the input sample set is Y, the output of
the ELM neural network is F, which is expressed as follows:

-y -
'):1 Birg(wixj+bi)
=

d
Y. Biog(wix;+bi)
= (16)

d
Y. Bimg(wix;+bi)
Li=1 < mx1
For any weight w, 3, and threshold b, when the number
of ELM samples is equal to the number of hidden neurons,
the test set approximates the sample value with zero error.
In general, the number of hidden neurons is less than that of
training samples required to reduce the amount of calculations.

4. Results and discussion

4.1 Training sample construction

Next, training samples were obtained. In theory, a larger
number of samples corresponds to more accurate results of the
subsequent learning. However, the number of images obtained
via SEM in this study was insufficient to construct deep learn-
ing samples. To obtain a sufficient number of training samples,
we mirrored and folded the original SEM image at each edge
and vertex (Figs. 7(a) and 7(b)) and then expanded it to obtain

the image shown in Fig. 7(c). Subsequently, we created an
800 x 800 square labeled with a red dot to signify the center
(as shown in Fig. 7(c)) and clipped the corresponding area.
The square shifted horizontally and longitudinally in intervals
of 40 and stopped at the green point. This sample selection
method ensures that the number of samples is multiplied and
that the pore information of each sample area is not repeated.
A total of 1,100 SEM images were used in this study.
Prior to the scanning, we evaluated the gas permeability of
the complete sample (dry state; confining pressure 1 MPa)
and obtained 2.3 x 10715 m?2, which is comparable to the
calculation results shown in Fig. 8. However, the permeability
results calculated using the digital images differed from those
obtained from laboratory tests. Nonetheless, the feasibility of
predicting the permeability of porous media based on digital
images and deep learning was investigated in this study.

4.2 Relationship between image feature values
and permeability

Based on Egs. (8)-(11) and a set of self-developed systems
for extracting feature parameters from SEM images, the rela-
tionship between gas permeability and each of the image gray
mean, gray variance, image energy, and image entropy can be
obtained (Figs. 8(a)-8(d), respectively). However, owing to the
extremely discrete data in the graph, linear fitting and regres-
sion could not be performed accurately. Hence, a permeability
prediction model based on an ELM was established in this
study to analyze those data. In this model, multiple image
feature parameters were used as input to regress and fit the
output of the permeability to realize an accurate permeability
prediction.

4.3 ELM model training

To train the model using the ELM gas permeability pre-
diction model, the following steps were implemented:
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symmetry transformation, (b) image center

symmetry transformation, and (c) step-by-step cropping to obtain subsamples.
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Fig. 8. Relationship between gas permeability and (a) gray mean, (b) gray variance, (c) image energy, and (d) image entropy.

1)

2)

A total of 1,100 SEM images of GMZ bentonite corre-
sponding to the gray mean value, gray variance, image
entropy value, and image energy composition vector were
selected as the input sample. The output value was the
permeability corresponding to each SEM image. The
ELM neural network contained 1,095 training samples
and 5 test samples.

The number of neurons in the hidden layer was increased
from 1 to 1,000. Five activation functions, namely, “sig”,

3)

“sin”, “hardlim”, “radbas” and ‘“radbas” were selected.
The mean square error (MSE) of different neuron nodes
were calculated for each activation function. Subse-
quently, the MSE values were compared to determine
the optimal activation function and the number of neuron
nodes.

To avoid the unpredictable nature of single-time learning
outputs and improve the prediction stability of the neural
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network, the same set of SEM image samples was trained
10 times using the ELM neural network. Subsequently, the
average value of 10 MSEs were obtained, as presented in
Figs. 9(a) and 9(b), which show the MSEs of the training
and testing samples, respectively. During the training and
prediction processes, different activation functions and number
of neurons affected the calculation results. If an excessive
number of neurons is used, then overfitting and unsatisfactory
generalization are likely to occur. Therefore, better prediction
results can be achieved by simultaneously determining the
number of hidden layer neurons and the activation function.

Fig. 9(a) shows that, when the number of neuron nodes
is less than 500, the MSE values of the functions are similar,
except for the hardlim function. Fig. 9(b) shows that, when the
number of neurons is approximately 250, the MSE values of
the five activation functions are low. Based on the calculation
time (Fig. 10) and the MSE values of the training and
test samples, we selected “sin” as the activation function.
Meanwhile, the number of neuron nodes was determined to
be 250.

4.4 Results and discussion for the ELM
prediction model

After the prediction model was established, five sets of
SEM images with unknown permeability were input into the
established permeability prediction model. Subsequently, the
permeability of those five sets of images was predicted using
the ELM neural network model. The prediction was repeated
five times to reduce the contingency of model prediction. The
results, as presented in Figs. 11(a) and 11(b), show that the
prediction is better, except for that of the fourth sample, which
indicated a slight deviation. We compiled the statistics for
the relative errors of the five sets of images. The average
(minimum) errors were 1.50% (0.69%), 8.91% (8.33%), 0.69%
(0.04%), 2.06% (0.56%), and 0.95% (0.46%). These values
indicate the good adaptability and prediction ability of the
model, which can significantly improve the penetration rate
prediction and calculation efficiency based on digital images.
However, the ELM algorithm must be further improved to ach-
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=
3
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S
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Fig. 10. Computation time for each activation function for
different numbers of hidden neurons.

ieve more accurate predictions.

In the previous section, we explained that, in addition to
the ELM algorithm, several other ML algorithms are typically
used, such as SVR, decision tree, and GPR. To compare
the prediction results of different algorithms, we used the
same training samples as those mentioned above and selected
SVR, decision tree, and GPR for training and prediction, as
shown in Figs. 12(a) and 12(b). Except for sample No. 2, the
results predicted by the ELM algorithm were more similar
to the calculated values as compared with those predicted by
the other algorithms. In general, the results predicted by the
different algorithms did not differ significantly. Meanwhile,
the relative error rate of the prediction by the ELM model for
each sample was the lowest among the four methods, except
for sample No. 2.

The permeability prediction technology based on digital
imaging proposed herein can be used for in situ scanning and
calculations. Its combination with deep-learning technology
can significantly improve the efficiency of calculations and
predictions. The prediction accuracy depends on the number
and accuracy of training samples. The accuracy of the training
samples can be increased by optimizing and improving the
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relevant digital image algorithm.

In this study, permeability prediction and deep learning
were conducted on only two-dimensional SEM images. In
future studies, the same method can be used for three-
dimensional digital images, such as FIB/SEM and CT images,
to perform permeability calculation, deep learning, and predic-
tion.

5. Conclusions

Conventional digital image permeability prediction re-
quires a significant amount of time and a complicated cal-
culation process. In this study, digital images were combined
with ELM technology to construct a fast and accurate method
for predicting permeability. The conclusions are summarized
as follows.

First, the training samples were obtained using perme-
ability prediction technology based on digital images. Sub-

sequently, a custom-developed image processing program was
used to rapidly obtain four parameters of the image: gray av-
erage, gray variance, image energy value, and image entropy.
These were core parameters that indicated a relationship with
permeability.

To establish an ELM-based permeability learning and
prediction system, ELM technology was introduced. A vector
composed of the gray mean, gray variance, image energy,
and image entropy of an SEM image was used as the input
value. Meanwhile, the corresponding permeability value of
each SEM image was used as the output value. Multiple
adjustments and experiments were performed to determine the
appropriate number of neuron nodes and activation functions
to achieve the best learning and prediction results.

Permeability prediction based on digital images can be
used for in situ scanning and calculations. Combining digi-
tal images and ELM technology to establish a permeability



Liu, J., et al. Advances in Geo-Energy Research, 2022, 6(4): 314-323

prediction system can significantly improve the calculation
and prediction efficiency. Compared with other algorithms,
the ELM algorithm offers certain advantages in terms of
the accuracy and relative error of prediction. Generally, the
prediction results are dependent on the number of training
samples and their accuracy, and the accuracy of the training
samples can be improved by optimizing and improving the
relevant digital image algorithm, which should be investigated
in the future.
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