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Abstract:

Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous
media including intrinsic permeability, where it is implicitly assumed that the LBM
is equivalent to the incompressible (or near incompressible) Navier-Stokes equation.
However, in LBM simulations, high-order moments, which are completely neglected in the
Navier-Stokes equation, are still available through particle distribution functions. To ensure
that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level,
the high-order moments have to be negligible. This requires that the Knudsen number (Kn)
is small so that rarefaction effect can be ignored. In our study, we elaborate this issue in
LBM modeling of porous media flows, which is particularly important for gas flows in
ultra-tight media. The influence of Reynolds number (Re) on the intrinsic permeability is
also discussed.
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1. Introduction

Lattice Boltzmann method (LBM) is a popular method for
calculation of flow properties of porous media e.g., intrinsic
permeability (Ferréol and Rothman, 1995; Spaid and Phelan,
1997; Pan et al., 2006; Hosa et al., 2016; Prestininzi et
al., 2016). The standard LBM is regarded as an alternative
method to computational fluid dynamics (CFD), equivalent to
solving the incompressible (or near incompressible) Navier-
Stokes equation. Through the Chapman-Enskog expansion, we
can show that the convergence of LBM to the incompressible
Navier-Stokes equation in the low Mach and Knudsen num-
bers limits. However, these two methods are very different.
For example, the third-order and higher-order moments are
completely neglected in the isothermal Navier-Stokes equation
while they are still available in LBM simulations through
particle distribution functions, despite that they can be neg-
ligibly small when the Knudsen number (Kn) is close to zero.
Therefore, the high-order moments have to be negligible if
the LBM simulation is correctly working at the Navier-Stokes
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level, which has been commonly oversighted in simulating
flows in porous media.

In LBM simulations, the model parameters can be corre-
lated with the kinematic viscosity v as follows:

v:w (1)

where Ax, At and 7 are the grid or lattice length, the time
step, and the normalized relaxation time, respectively; and
¢ = Ax/At. Therefore, we have flexibility in selecting ¢, Ax,
T for any given physical v. In the following examples, we
will demonstrate that with a given viscosity v, choice of time
step, grid size and relaxation time may lead to finite Kn,
which incurs unintentional rarefaction effect at the Navier-
Stokes level simulations. Therefore, appropriate combination
of these model parameters can reduce the problem of viscosity-
dependent permeability (Pan et al., 2006) even with single-
relaxation-time LBM.
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Fig. 1. The 2D geometry used in the pore-scale simulations, where the symmetric boundary condition is used at the top and bottom surfaces, while the

pressure boundary condition is applied at the inlet and outlet.

2. Single-relaxation-time Lattice Boltzmann
models

The standard LBM with BGK collision operator (Qian et
al., 1992) can be written as

fa'(x,1)

*fOC(X’t) (2)

Sfo(x+ Ateq,t + At) -

= fa (X’t )+
where the discrete equilibrium distribution function fg' i
defined as

e-u .
ol = Wup I3 +s—a 32 (3)

Since we are interested in low-speed flows, the distri-
bution function can be linearized around the equilibrium as
f = f(1+h). The governing Eq. (2) can be rewritten in
terms of perturbed distribution function 4 as follows

o (%,1) —ha(x,1)

T

ho(X+Ateq,t +At) = hg(x,1) + “)

where the perturbed equilibrium distribution function Ay is
determined by

o= ou[p+355] )

in which the high order terms of the flow velocity u are
truncated. The discrete velocities for D2Q9 model are

(0’0) a=0
€q =¢C (170)7(071)7(_1a0)a(0a_1) a=1-4 (6
(L,1),(-=1,1),(=1,-1),(1,-1) a=5-8

and for D3Q19 model are

(0,0,0) =0
eq =c< (£1,0,0),(0,£1,0),(0,0,£1) a=1-6
(£1,£1,0),(£1,0,+1),(0,£1,+1) a=7-18
The weights for D2Q9 stencil are 7
4/9 a=0
We=¢1/9 oa=1-4 (8)
1/36 a=5-38
and for D3Q19 are
/3 a=0
g =11/18 a=1-6 ©)]

1/36 a=7-18

The perturbed number density p and the flow velocity u
at a lattice point can be obtained by

f):Zha, “:Zeaha
] o

The rarefaction effect of the above LBM algorithm will be
demonstrated in the following simulations of two-dimensional
flows driven by pressure difference. Additionally, three-
dimensional flows driven by an external body force are also
modeled below to study the rarefaction effect again and the
force term is implemented by using the Shan-Chen model
(Shan and Chen, 1993, 1994) as discussed in Section 2.2 of
(Li and Brown, 2017).

(10)

3. Results and discussions

The intrinsic permeability depends on pore structure rather
than the flow properties. First, we apply the D2Q9 LBM model
to simulate a pressure-driven flow along the x direction in a
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Fig. 2. The simulated permeability normalized by the intrinsic permeability against the relaxation time 7 for 3 different resolutions.

2D randomly generated quartet structure (Wang et al., 2007),
see Fig. 1. The applied pressure difference at the inlet and
outlet is so small that the flows are in the Stokes flow regime.
The permeability is then calculated according to the Darcy
law with simulated mass flow rate. The porosity is 0.7394 and
the resolutions are Ny * Ny, = 400 * 200, where N, and Ny are
the lattice numbers in the x and y directions. We also increase
the resolutions to 800 * 400, and 1200 * 600 respectively.
The porosity is also slightly changed to 0.7532 and 0.7578
respectively.

Fig. 2 shows that the permeabilities for 3 resolutions are
very different even for the same 7 and porous media. Only
when 7-0.5 is close to zero, they approach to their intrinsic
permeability. Note, slightly different porosity will lead to very
insignificant change to the intrinsic permeabilities. But the
significantly different normalised permeabilities indicate that
great care is required to choose right resolution and 7. If we re-
plot the normalized permeability against the Knudsen number
(Zhang et al., 2005), which is

t1t—0.5
Kn=,/=—=
" \/; N,

for the D2Q9 and D3Q19 lattice models with single relaxation
time (Qian et al., 1992), we find that the results also collapse
into a single line especially for small Kn, see Fig. 3. From Fig.
3, we can clearly see the choice of parameters T and N, should
ensure that Kn < 1073 to simulate intrinsic permeability. Here,
Kn is the global value based on the whole length of the domain
i.e., L, and the local Knudsen number can be much larger
to invalid Navier-Stokes level simulation even at Kn = 0.01.
Although the choice of parameter range may be wider for
multi-relaxation model, the underlying mechanism is still the

(1)

same, i.e., LBM simulations of intrinsic permeability should
choose appropriate T and resolution i.e., Ny to ensure Kn is
small to exclude rarefaction effect.

In addition, Discrete Velocity Method (DVM) solution with
very fine molecular velocity grid of 1,600 points (D2Q1600)
serves as referenced solution in Fig. 3 to show the validity
of LBM D2Q9 in the rarefied regime. Considering the same
resolution of Ny xNy = 800 * 400, significant deviation of the
LBM data (green curve) from the DVM data (black curve)
can be seen when Kn > 5 x 1073 and grows up to 20% at
Kn=15x1072. Tt is noted that both LBM and DVM use fully
diffuse boundary condition on the solid wall to facilitate the
comparison (Ansumali and Karlin, 2002; Wu et al., 2017).

We now use LBM D3Q19 to simulate a force-driven flow
in a more realistic 3D porous media, see Fig. 4, as another
example to study intrinsic permeability. The flows here are
always driven in the x direction, and the volumetric velocity
(u) is used to compute the permeability & [m?] according to
the Darcy law when an external force g = (g,0,0) [m/s?] is
applied:

V{weo Vv Ykenuia W
8 8 Ngid

K= (12)
where Y rcquig Uk 1s summation of the flow velocity u; over
all fluid grids k, and Ngq is the total grid number. We only
show the permeability component in the driven direction in
the following discussions the same as the above 2D case.

To calculate permeabilities of two similar geometries hav-
ing the same Ngiq but Axy = 0.1Ax;, we can select model
parameters based on Eq. (1) to ensure both the Froude number
(Fr) and Reynolds number (Re) are the same, so that the
calculated distribution functions will be the same. In these
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Fig. 3. The simulated permeability normalized by the intrinsic permeability against Kn.

Fig. 4. The geometry used in the 3D pore-scale simulations.
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Fig. 5. Variation of permeability in the driven direction with Kn for different g.

two sets of parameters, one choice is to have Ar = Ax
(so ¢ =0.1¢1), » =11 (so v» = 0.01v; according to Eq.
(1)), and g» = 0.1g;. Thus, at the Navier-Stokes level, the
velocity solutions of two cases satisfy u, = 0.1u; and we have
k> = 0.01x according to Eq. (12). Obviously, it is consistent
with the following normalized incompressible Navier-Stokes
equation:

p
ou . ou /o) Vol e (13
Ny T T T Tutt e

where U and L are the characteristic velocity and length
to define the normalized parameters ¢ = tU/L, X' = x/L
and ' = u/U. Eq. (13) also implies that more choices are
possible to produce the same result (i.e., k» = 0.01k)), e.g.,
Aty = 0.1A11 (so ¢ =c¢1), Tn =71 (so v, = 0.1v; according
to Eq. (1)), and g» = 10g;. Consequently, we have u, =u; at
the Navier-Stokes level. This analysis indicates that the same
intrinsic permeability should be obtained with different choice
of model parameters at the Navier-Stokes level.

However, both T and Ngiq can affect calculated value of
permeability as previously reported (Ferréol and Rothman,
1995; Pan et al., 2006; Hosa et al., 2016; Prestininzi et al.,
2016) and demonstrated in the above 2D case. As Fig. 3 shows,
it is actually through Kn, which indicates how far the flow is
away from the Navier-Stokes hydrodynamics. So we examine
how Kn affect the calculation of intrinsic permeability in this
3D case.

The computational domain of Fig. 4 has 1003 voxels (i.e.,
grids) and the porosity ¢ of 0.748587. The D3Q19 model is
used with six periodic computational boundaries. Fig. 5 shows
how the permeability changes with Kn for three different
values of g. We can observe that the permeability is the

same for different values of g except at the small Kn for the
large g, which is due to the increase of inertial effect while
the kinematic viscosity decreases with Kn via T at a fixed
lattice velocity ¢, as previously reported in LBM simulations
of pore-scale flows driven by pressure gradients (Sukop et al.,
2013). The permeabilities of the cases with smaller g will also
drop if we keep decreasing Kn via 7 leading to a significant
increase of Re. Therefore, in addition to Kn, inertial effect
has to be checked in calculation of intrinsic permeability. If we
remove the nonlinear velocity terms in equilibrium distribution
function, equivalent to solving the Stokes equation i.e., the
Navier-Stokes equation without the convective term (Li, and
Brown, 2017), the permeability becomes the same for all three
values of g.

4. Conclusions

Since the intrinsic permeability concerned here is defined
by the Darcy law for small Re, where the viscosity effect
is dominant, it is important to choose appropriate model
parameters according to Eq. (1) to make sure both Re and
Kn are small in computing the intrinsic permeability. The
resolution is usually low in pore-scale simulations to avoid
high computational cost and thus the choice of 7 becomes
more restricted as we need to make sure both Re and Kn are
small. If we can afford high resolution, rarefaction effect may
be excluded at a large 7 by grid refinement.
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