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Abstract: Unconventional resource exploration has boosted U.S. oil and gas production, which is successfully by horizontal
well drilling and hydraulic fracturing. The horizontal well with multiple transverse fractures has proven to be effective stimulation
approach could increase reservoir contact significantly. Unlike the single fracture planes in typical low permeability sands, fractures
in shales tends to generate more complex, branching networks. The concept of stimulated reservoir volume was developed to
quantitative measure of multistage fracture interact with natural fractures in unconventional reservoir. However, the simple fracture
modeling of the past do not suitable for the complex scenarios simulation. This paper reviews the mainstream characterization
method of stimulated reservoir volume in shale reservoirs, including microseismic interpretation, rate transient analysis method,
analytical and semi-analytical method and numerical method. Finally, the systematic evaluation of application conditions with
respect to each method and further research directions for characterization method are proposed.
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1. Introduction
With conventional resources depletion recent years, uncon-

ventional oil and gas reservoir development has received more
and more attentions. The concept of “ Unconventional” mostly
reflect the technology, knowledge and also the experience at
present (Lolon et al., 2009; Mayerhofer et al., 2006), which
could change into the “Conventional” reservoir with the rapid
development of the science and technology. The important
development technology of unconventional reservoirs, such
as shale gas is hydraulic fracturing with stimulated reservoir
volume, which could stimulate the formation and increase
the reservoir contact significantly (Mayerhofer et al., 2010).
Moridis et al. (2010) divided the complex fracture network
system into four types of media in unconventional reservoir,
the fracture in different region have large differences either in
fracture geometry or in the fracture properties. Suliman et al.
(2013) divided the stimulated reservoir volume into three part
based on the density of microsesimic and reservoir conduc-

tivity. In view of this background, finding appropriate method
to characterize stimulation reservoir volume (SRV) will play
a key role in order to accurate predict well performance of a
shale gas and to optimize the design of the hydraulic fracturing
technology.

The present review describes the analytical and numer-
ical method of SRV characterization and to identify key
weaknesses where further research is needed. It summarizes
recent literature in order to improve the understanding of the
fundamentals underlying the SRV characterization in hydraulic
fracturing operations for shale gas reservoir.

2. Definition of stimulated reservoir volume
The definition of SRV technology has broad sense and

narrow sense, the concept of generalized SRV including
layered fracturing technology and horizontal well hydraulic
fracturing technology. The main purpose of former technology
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is to increase produce degree in longitudinal profile, the latter
technology is to improve reservoir flow capacity and reservoir
drainage area. This technology using large amount of low
viscosity fracturing fluid, as well as diversion materials and
technology to achieve complex fracture network, reduce the
fluid flow distance between matrix and fractures, significantly
improve the overall permeability of reservoir, and finally
stimulated the reservoir in three dimensional. This technology
not only can greatly improve the single well production wells
production, but also can maximize reservoir producing extent
and recovery factor.

The present review describes different method and its
application focusing on stimulated reservoir volume charac-
terization. It summarizes recent literature in order to im-
prove the understanding of the fundamentals underlying the
complex hydraulic fractures in hydraulic fracturing for shale
gas production and, finally, the different options available for
flow simulation and production prediction in the future are
explored.

3. Characterization of stimulated reservoir vol-
ume

3.1 Microseismic method

Microseismic monitoring is widely used in petroleum in-
dustry to image the hydraulic fracture network within SRV.
Microseismic images can provide information of the artificial
fracture height, azimuth, height, length and complexity caused
by interaction with natural fractures. With this technology, the
recorded seismic information during hydraulic stimulation can
be analyzed to characterize the failure mechanism and the rock
deformation location. It was developed as a method to get
information about the fractures activation and the nature of
improvement of permeability (Maxwell et al., 2002; Fisher
et al., 2004; Rutledge et al., 2004). For example, various
complex microseismicity patterns located in the Barnett Shale
are analyzed to be the reactivation of existing fractures instead
to induce new ones (Cipolla et al., 2008).

If the wavefield sampling is sufficient and data quality is
satisfying, the mechanism of generating microseismic can be
interpreted to characterize the SRV. This is more accurate
when multiple orientations of existing fracture were reac-
tivated. The orientations of fracture failure planes can be
characterized by interpreting the source mechanism (Eisner
et al., 2010). The studies of different researchers indicate a
correlation between the SRV that emits seismic signal while
stimulation and the ultimate recovery factor of the well (Fisher
et al., 2004; Mayerhofer et al., 2006). The correlation is
attributed to bigger networks simulated around a well which
has a large microseismic area, resulting in higher permeable
flow path connected to the horizontal well and therefore a
higher production potential.

Different approaches were proposed to interpret the ob-
tained information from microseismic imaging. The basic
approach it to commonly refer the volume of microseismic
response cloud as SRV, under the premise that each of the
reservoir cell contribute to production (Mayerhofer et al.,

2010). However, this analysis approach disregards some of
the critical fracture characteristics, like connectivity between
different fractures and the conductivity distribution of the
fracture system. To couple more physical behavior, a geome-
chanical model was proposed to simulate the propagation of
complex fracture network of SRV (Mayerhofer et al., 2010;
Rogers et al., 2010). To form a network of induced hydraulic
fractures, a background natural fracture system is considered
to assist induced fractures propagation. The sophisticated
fracture network need to be validated by history matching
of the production history. Instead, a discrete fracture network
(DFN) can be directly modeled by considering the seismic
moment and focal mechanism of every microseismic event. To
develop the DFN, fracture planes are located at microseismic
events, and the aperture and are of the fractures are evaluated
based on the magnitude of the events (Kanamori, 1977). The
fracture orientation can be determined by analyzing source
attributes characterization (Williams-Stroud and Eisner, 2010).
The DFN modeled from analyzing focal mechanism also need
to be calibrated with production data to reduce the degree of
uncertainty.

Although DFN approach is more accurate compared with
dual porosity models in capturing complex fracture system, it
suffers from expensive computational cost. DFN method use
very small size of cells to discretize the volume near fractures,
which lead to more cells and larger computational load. The
substantial run time is more challenging for the subsequent
production history matching. Li and Lee (2008) developed
embedded discrete fracture model (EDFM) to discretize the
fracture into structured cubical cells. Since fractures are mod-
eled explicitly within the grid, the grids of matrix domain
remain structured without any refinement. With this feature,
EDFM can be simply used in reservoir simulator to be more
computationally efficient in calculating fluid transport within
SRV.

3.1.1 Microseismic-constrained DFN model

Williams-Stroud (2008) developed the approach of apply-
ing microseismic event to calibrate the discrete fracture net-
work model of SRV, and then implement it into conventional
reservoir simulation.

The microseismic events were identified, measured, and lo-
cated, and then the energy of event is measured by generating
a tomographic image of location. There are several factors that
influence the detectability of events; the strongest influence is
the ratio of signal to noise (S/N) for a specific location. Lower
confidence is applied to the events with lower S/N. if S/N is
big enough, the inversion of source mechanism is applied to
the seismic data to characterize the failure-plane orientation
and slip for almost all the detected seismic traces. Figure 1
(Williams-Stroud et al., 2013) represents the result of final
processed events of a well. Events showed in the image are
colored with respect to fracture stage and sized with respect
to different relative energy. The signal with the lowest S/N for
this set had a value of 2.75. In three of the eight stages, a
diffuse and well-defined trend, is parallel to a north-northeast
azimuth. Stage 1 also shows a south-southeast azimuth trend
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of events.
A geocellular model is filled with microseismic events,

the location and density of the fractures are calibrated by
location and relative energy. But the energy of the microseis-
mic events cannot be high enough to determine their source
mechanisms. Probabilistic method is employed to construct
fractures of SRV. Instead of assigning fractures directly to
analyze hypocenters, the microseismic events in geocellular
model can be used as a probability to identify the likelihood of
fracture generated within a specific cell. It is reasonable to use
the stacked amplitude values in the P32 parameter describing
fracture surface area for each rock volume (Dershowitz and
Einstein, 1988). Since the calibration of microseismic energy
with respect to fracture size is not available, fracture size
is evaluated by arbitrarily selecting between maximum and
minimum lengths, which follows a power-law distribution
(Vermilye and Scholz, 1995).

The orientation of the fractures constructed in the DFN
within SRV are constrained by resistivity image log interpre-
tation of wells nearby, regional fault orientation and lineament
analysis. The regional geologic lineaments and faults are
similar to the spatial trend generated by the locations of
microseismic event. Characterization of the different modeled
fracture sets is performed by fluctuating of the maximum and
minimum fracture length of the fracture and changing the
fracture length distribution. For the developed DFN model,
an equivalent permeability value is implemented with the
approach proposed by Oda (1985). It need to have the value
of fracture aperture to use Oda (1985) calculation, which can
be achieved by image logs or core analysis. The equivalent
permeability is input into dual porosity model to simulate
the fluid flow behavior. Fig. 2 shows two generated fracture
network.

3.1.2 Microseismic-constrained embedded discrete fracture
model

The EDFM was originally developed to resolve the limita-
tions of DFN and dual continuum model and to take advantage
of the methods synergy. Moinfar et al. (2014) improved the
model to enhance its capability in modeling dip-angled and ar-
bitrary orientated fractures. This EDFM has been implemented
in many reservoir simulators recently and the application has
been illustrated (Mayerhofer et al., 2006).

In EDFM, fracture planes are delineated explicitly within
the matrix grid and are discretized through boundaries of cells.
A discrete modeling method can be used to characterize the
complexity inherent in the fracture system. Structured cells are
employed to discretize the rock matrix domain to achieve a
simple representation of reservoir geometry and to make the
setting of model parameters simple. Fig. 3 presents a schematic
view of a EDFM involving three fractured planes. As Fig.
3 indicates, different fracture planes could have arbitrary dip
angles and orientations, and it also could include non-aligned
orientations with respect to the major coordinate axes. The
induced fractures are discretized into unstructured grid because
of the intersection of the matrix blocks and planes of fractures.
It indicates three potential intersections of matrix blocks and

Fig. 1. Microseismic processing results. Spheres show located mi-
croearthquake hypocenters. Events are colored by stage and sized by energy.
Dashed arrows show the orientations diffuse trends defined by the event
locations (Williams-Stroud et al., 2013).

Fig. 2. DFN realizations constrained by microseismic events. The DFN on
the left has one fracture set with a strong preferred orientation. The DFN on
the right has two fracture sets, one with a strong preferred orientation and
the second fracture set with a higher degree of orientation scatter (Williams-
Stroud et al., 2013).

fracture planes, and the unstructured segments are created cor-
respondingly. Each attachment of the whole fracture segments
can regenerate the full fracture planes. The matrix domain is
still structured since the fracture network is regarded as explicit
in the fracture model. The detailed description of discretization
process of the induced fracture planes and the modification of
the conductivity are not belonging to the scope of this paper.



Wang, W., et al. Adv. Geo-Energy Res. 2017, 1(1): 54-63 57

Fig. 3. Schematic representation of reservoir model using EDFM: oblique
view (left), and top view (right) (Shakiba and Sepehrnoori, 2015).

Microseismic monitoring is applied to translate the seismic
data into discrete fracture network model to simulate the
reservoir depletion. The seismic event distribution is examined
to capture the complexity and size of the fracture system.
Supposing the ratio of length to width is high, then the
configuration can be categorized as a planar geometry. Under
this circumstance, the microseismic event distribution can be
used to quantifying the height and half-length of the hydraulic
fracture. On the other hand, supposing the microseismic cloud
length to width ratio is low, it can be described as complex
fracture network (Cipolla et al., 2008). The primary factors
developing complex networks are low stress anisotropy and
interaction between natural fractures and hydraulic fractures
(Fisher et al., 2004; Gale et al., 2007). It is complex to fit
to planar fracture to such a microseismic cloud, and it may
provide misleading interpretation. Although the volume of the
recorded seismic events seems to provide efficient estimate of
spatial extent of SRV, it provides little information about the
fracture connectivity. With this circumstance, it is essential to
consider the complexity and geometry of the fracture network
to ensure a reliable forecast of production.

The collected microseismic data can be directly applied
to build a EDFM, with the premise that the signal to noise
ratio is high enough to ensure the high-quality of the data.
The source mechanism need to be inverted into the focal
mechanism and a fracture is located at the hypocenter. By
analyzing the focal mechanism, the fracture orientation can
be determined. The corresponding fracture surface area can
be evaluated from size of the microseismic event. For small
magnitude events, a stochastic method can be employed to
evaluate the orientation and size of the fracture planes, which
provide a pseudo-deterministic fracture network (Detring and
Williams-Stroud, 2013).

3.2 Rate transient analysis method

Advanced analytical method employed to quantitative pro-
duction analysis is categorized as rate transient analysis (RTA)
method, which is analogous to pressure transient analysis
method (Clarkson, 2013). RTA cam be employed to evaluate
the following information about the SRV and unstimulated
reservoir volume (USRV):

1. Origional gas in place and ultimate recovery-by analyz-
ing the boundary dominated flow regime.

2. Permeability of both SRV and USRV, hydraulic fracture
half-length and fracture conductivity-through analyzing tran-
sient flow regime.

Fig. 4. Left side: flow-regimes sequences for a multi-fractured horizontal well
with planar infinite conductivity fractures, completed in a tight gas reservoir.
Arrows represent streamlines. Right side: flow-regimes identification of a
simulated multi-fractured horizontal well completed in a tight gas reservoir
(Clarkson, 2013).

Rate transient analysis method need to use both bottom
hole pressure and production rates for the analysis to account
for different operating conditions of the well. RTA start with
identifying the flow regimes, which are correspond to different
flow patterns and geometry of the reservoir, which could be an-
alyzed for hydraulic fracture and reservoir properties. For short
term, the flow patterns are affected by flow to the wellbore
or hydraulic fracture network within SRV for the stimulated
wells. The most common approach to determine flow regimes
for rate transient analysis is to employ a pressure derivative
or rate normalized pressure derivative versus material balance
time or superposition time on a log-log plot (Fig. 4). Flow
regime 1 is linear flow; flow regime 2 is elliptical flow; flow-
regime 3 is fracture interference; and flow-regime 4 is late
compound linear flow.

Brown et al. (2011) propose the tri-linear flow model for
multi-fractured horizontal well (MFHW). It is common to
regard the inner reservoir as stimulated reservoir and to charac-
terize the permeability of the whole SRV as an equivalent per-
meability. The impact of distance of investigation calculation
on rate transient analysis was proposed by Behmanesh et al.
(2015), which can be used to characterize the SRV. It proposed
a new way to calculate distance of investigation (DOI) with
the theory of maximum rate of pressure response. DOI is the
effective distance traveled by pressure transient with respect
to production well (Zheng, 2016). The DOI derived with the
condition of constant pressure and constant rate are:

yinv = 0.113

√(
k

φ µct

)
i
t (1)

yinv = 0.194

√(
k

φ µct

)
i
t (2)

Yuan et al. (2016) proposed a microscopic tank model to
capture the dynamic drainage volume for different production
time. In ultra-low unconventional reservoir, transient linear
flow regime can last for months to years, which make the
major contribution to hydrocarbon production. For transient
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Fig. 5. Trilinear flow model (Brown et al., 2011).

linear flow regime, with the pressure disturbance created at
the production well propagating throughout the reservoir, the
drainage volume will expand. The expanding of drainage
volume is regarded as a moving boundary problem. Dynamic
material balance approach is used to calculate the average
value of pressure, saturation for each production time within
the dynamic drainage volume.

Since the inner reservoir volume is regarded as SRV, the
procedures for analyzing transient linear flow of oil and gas
proposed by Zheng (2016) is as follows.

1. Draw the plot rate normalized pressure vs. material
balance time to identify the flow regime. Find out the time
when DOI reaches the midline of two adjacent hydraulic
fractures, and calculate the permeability of SRV.

2. Guess a fracture length and input it into macroscopic
tank model, then calculate the relationship between average
saturation and average pressure.

3. Draw the plot, RNP vs. square-root of material-balance-
time, and find out the slope m.

4. Supposing that the correction factor equals to 1 at
beginning, the fracture length can be calculated by x f =
39.83/h f mL

√
(kφ µ0ct)t , which is an approximate value since

the correction factor is not real.
5. Input the new fracture length calculated last step into

macroscopic tank model, and find out the average pressure
and average saturation for each time interval.

6. Draw the plot 4m/qo(t)/ f (p) vs.
√

t , and find out the
new slope m of early time points (DDV does not reach outer
reservoir).

7. Input m into step 4 to iterate until the error of fracture
length within required discrepancy.

Employing the analyzation approach, fracture half-length
and equivalent permeability of SRV can be evaluated. Thought
different definition of DOI can also be implemented in the
integrated analysis approach to characterize the SRV, the DOI
calculated based on the theory of unit impulse method is
most accurate to evaluate the equivalent permeability of SRV
(Behmanesh et al., 2015).

3.3 Analytical and semi-analytical method

With technical innovation in the past decades, massive
stimulation has been broadly applied into the field and proved
effectively, especially the application of MFHW achieves the

commercial exploitation. However, modeling fluid flow in the
complex fracture networks remains challenging.

In many cases, a fracture propagation can create a branch
pattern and a complex fracture networks around the hydraulic
fractures, which were defined as SRV. The high conductivity
of SRV makes liquids flow into the well easily and benefits the
well production. Most of shale gas reservoirs in Eagle ford,
Barnett and Marcellus have obtained high production due to
SRV.

The numerical approach could realize apparent permeabil-
ity to characterize shale gas flow, but it has some drawbacks,
such as the complex computational process, relationships of
parameters and difficult application, so the simplifications of
the flow models have to be considered.

Linear flow models can describe the complex flow of
MFHW in unconventional reservoirs. Ozkan et al. (2009)
and Brown et al. (2011) presented the tri-linear model and
studied the performance of MFHW in unconventional oil and
gas reservoirs, assuming that the SRV between the hydraulic
fractures are described as dual-porosity mediums and linear
flow existed in hydraulic fractures and formation. Sang et al.
(2014) introduced the adsorption and desorption process into
the tri-linear model to predict the production of MFHW in
shale gas reservoirs. Stalgorova and Mattar (2012) and Wang et
al. (2017) improved the tri-linear model to a five-linear model
by simplifying stimulated reservoir volume in a region with
limited width. Aybar et al. (2014) revised the trilinear model
considering the effect of stress on natural fracture permeability
in SRV to study the performance in unconventional reservoirs.
Zhang et al. (2015) then presented a numerical five-region
model with multi-nonlinearity to study the production of shale
gas. To account for heterogeneity of complex fracture network
inside the SRV, Wang et al. (2015a, 2015b) and Fan and
Ettehadtavakkol (2017) introducing the fractal dimension to
quantitatively describe the complex fracture density inside the
SRV in Barnett shale reservoir.

The linear flow models have been used widely at present,
but some radial flow and transition flow regimes of MFHW
are ignored in PTA.

Some work has focused on the semi-analytical models
derived by using the point source function to describe the
SRV and study the complete pressure responses of MFHW.
Zhao et al. (2014a) derived a model for a vertically fractured
well in coal seam reservoirs with SRV considering adsorption
and Fick diffusion, which were used to develop the source
functions into well-test-analysis. Zhao et al. (2014b) extended
the unconventional multiple hydraulic fractured horizontal
well in a composite model to describe the SRV and analyzed
the effects of related parameters on pressure and production
performance. Jiang and Younis (2015) developed the single-
porosity model into rate transient analysis for multistage
fractured horizontal wells in tight oil considering a circular
SRV. Zhao et al. (2015) derived the Laplace point source func-
tion in anisotropic reservoirs to further analyze the transient
pressure of partially penetrated fractured wells. Zhang et al.
(2015) presented a composited model for MFHW to model
the shale gas flow in fractured shale reservoirs. In their work,
the formation properties of the circular SRV and USRV are
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different, and the stress-sensitivity effect of the SRV was taken
into account. In addition to the circular SRV, the elliptical
SRV is also applied to analyze the performance of MFHW
in tight gas reservoirs. The radial flow model is applicable to
homogeneous reservoirs and requires a long period, which can-
not describe a complete transient performance for a fractured
well or an anisotropic reservoir. The elliptical flow appears
surrounding a hydraulic fracture in an anisotropic formation or
in an area with an elliptical boundary. Therefore, it is essential
to conduct research on the transient performances of fractured
wells in shale reservoirs.

Currently, much research about elliptical flow in porous
media focused on the single hydraulic fracture. Prats et al.
(1962) studied the flow performances of compressible and
incompressible fluids for a vertically fractured well in a closed
elliptical reservoir. Meanwhile, they presented a solution for
long times at a constant rate and an equivalently effective
well radius. Russell and Truitt (1964) studied the transient
pressure behavior in vertically fractured reservoirs. However,
Gringarten et al. (1974) found that the model presented by
Russell and Truitt was not suitable for short-term analysis and
presented the analytical solutions for both closed and infinite
reservoirs with the infinite conductivity fractures. Kucuk and
Brigham (1979) studied the transient elliptical flow in an
elliptical or anisotropic-radial reservoir. Riley et al. (1991)
analyzed the behavior of a vertically fractured well with
infinite conductivity in elliptical flow. Blasingame et al. (2007)
obtained a series of decline-type curves for a system consisting
of a hydraulic fracture using an analytical model. Considering
both the full and partially penetrating infinite conductivity
fractures, Igbokoyi and Tiab (2008), and Igbokoyi and Tiab
(2010) presented the pressure transient analysis in an ellipti-
cally fractured reservoir. Actually, the hydraulically fracturing
technology can stimulate an area around the fractures with
different reservoir properties from the initial formation, so the
results of the above research have not been applied to well
testing. Therefore, some scholars (Obut and Ertekin, 1987;
Stanislav et al., 1992) focused on studying the behavior of the
elliptical reservoir with SRV. Xu et al. (2015) developed the
elliptical tri-porosity model (Zhang et al., 2011) into the tight
oil reservoir with an elliptical SRV.

3.4 Numerical method

There are mainly four classes of numerical methods that
are used to model fluid flow and transport in fracture-matrix
system: continuum medium model, discrete fracture model
(DFM), EDFM.

The continuum approaches including dual porosity, dual
permeability (DPDK) or multiple porosity models. The typical
continuous medium model is dual porosity model proposed by
Warren and Root (1963), which uses two sets of separated
continuous medium to describe fracture-matrix system (As
shown in Fig. 6). The communication between fracture and
matrix is accomplished by exchange function related to matrix
shape factor. It is appropriate for reservoirs with uniform
distribution connected fractures and has limitation to model

large-scale fracture that dominates the flow (e.g., hydraulic

Fig. 6. Dual porosity model.

fractures). DPDK model was proposed by Rossen (1977) and
Kazemi et al. (1976). Both dual porosity and dual perme-
ability have been implemented in most commercial reservoir
simulators. However, the traditional dual porosity and dual
permeability in unconventional reservoirs could lead to large
inaccuracy because it will take long time to reach pseudo-
steady state in the ultra-permeability matrix. Recently, multiple
porosity systems (Yan et al., 2013; Sheng et al., 2015) were
used to better model fluid flow mechanisms in different
pore types such as kerogen, inorganic minerals, and natural
fractures. However, this method is based on the assumption
that the fracture is very well connected and evenly distributed.
It is not possible to solve the problem in the presence of large-
scale fractures and dominant fluid flow paths.

Compared with continuum medium model, DFM, in which
the fractures are represented explicitly, is a better approach to
model realistic, complex, and non-ideal fracture geometries
and to account for the effects of individual fractures on fluid
flow explicitly. Moreover, the transfer flow between matrix
and fracture is more accurate and straightforward because it
depends directly on the fracture geometry. For DFM, the key
step is to generate unstructured grids for complex fractured
networks. In essence, the discretization problem is transformed
into a grid problem. In order to accurately meet the frac-
ture geometry, unstructured PEBI (perpendicular bisector) or
Voronoi grid was introduced to the petroleum industry by
Heinemann et al. (1989). The PEBI grids are widely used to
model complex fracture networks. In order to accurately model
fracture geometry and fracture aperture, Karimi-Fard et al.
(2003) introduced a low-dimensional method to represent each
fracture mesh block of a 2D line segment with “zero” aperture.
This method has been widely used by many researchers
(Branets et al., 2009; Romain et al., 2011; Moog, 2013; Fung
et al., 2014; Jiang and Younis, 2015). Recently, Hoteit and
Firoozabadi (2006) developed a compositional DFM using
mixed finite-element and discontinuous Galerkin methods to
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Fig. 7. Hysical model for DFM models.

resolve the mass conservation error for multiphase flows.
Balasubramanian (2007) developed a compositional DFM us-
ing the control-volume finite-element method. Furthermore,
Monteagudo and Firoozabadi (2004), Reichenberger et al.
(2006), Matthai et al. (2007), Monteagudo and Firoozabadi
(2007), Geiger-Boschung et al. (2009), and Marcondes et
al. (2010) applied control-volume finite-element methods to
develop numerical simulators for multiphase flow in discrete
fractured media. The DFM has a great progress in reservoir
with complex fractures. However, as the geometries of discrete
fracture networks become more and more complex, unstruc-
tured grid generation is becoming increasingly difficult to deal
with Sun (2016).

The EDFM (Li and Lee, 2008; Moinfar et al., 2014) is
a new method proposed to efficiently handle the complex
fractures. The EDFM is an efficient approach to handle the
complex fracture geometries through discretizing the fractures
into segments with matrix cell boundaries (Li and Lee, 2008;
Moinfar et al., 2014; De Araujo Cavalcante Filho et al., 2015).
In addition, virtual cells are added for these fracture segments.
The Non-Neighboring Connections are used for these cells to
account for fluid transport associated with fractures, including
the flow between matrix and fractures, flow inside an individ-
ual fracture, and flow between intersecting fractures (Zhang et
al., 2017).

4. Conclusions
Effective development of unconventional reservoirs in the

future still need to develop the following techniques and
methods.

1) The combination of multiple methods to describe the
complex fracture network and the SRV. According to
the comprehensive introduction of several mainstream
methods, different methods have their advantages and
applicable range, so comprehensive characterization of
next technical research should be focused on a variety of
methods, such as micro seismic monitoring and unstable
seepage characteristics analysis comprehensive character-

ization, etc.
2) Accurate characterization of effective SRV or effective

proppant volume. The method of SRV estimate exist
many problems, by combining the geology characteristic
of fracture network, detailed research on the effective
stimulated reservoir volume parameters is beneficial for
hydraulic fracture optimization and accurately predict the
well performance.

3) Coupling mutil-physical mechanism of unconventional
resource, such as shale oil and gas flow in porous media,
adsorption and desorption, etc.

4) The novel fracture simulation method. Existing fracture
simulation methods have their limitations and shortcom-
ings, how to exploit its strong points and avoid exposing
its weaknesses of all these models, to find better method
is the trend in the future.
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