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Abstract:
In double porosity media, fluid could flow through the distributed micro-fractures at a
larger scale as well as through the nanopores of the organic matrix at a smaller scale,
while fluid mass could be transferred between them. Besides, the solid deformation acts
as an important coupling term and leads to the two-way coupled process. However, these
processes are not well presented in previous studies. In this work, a new coupled modeling
approach was proposed for saturated double porosity media with strong permeability con-
trast. Specifically, the transversely isotropic equivalent fracture permeability is considered
for the preferentially oriented micro-fractures at the micro-scale or meso-scale; while at
the nano-scale, the non-Darcy flow and mass transfer equations are employed to consider
the interaction between fluid particles and the solid pore wall. Finally, the stabilized
finite element method is developed to investigate the settlement and pressure dissipation
behaviors of the strip load problem.

1. Introduction
Coupled flow and deformation is always an intriguing

research topic (Rutqvist and Stephansson, 2003) and is im-
portant for industry as well (Cui et al., 2018). The earliest
research could date back to Terzaghi and Biot, who established
the basis of poroelasticity (Lewis et al., 1998; Ye et al.,
2021), which is still a powerful tool in many engineering
problems nowadays (Chen and Baker, 2019; Chen et al.,
2021). The poroelasticity theory assumes the porous media is
homogeneous, which belongs to the category of single porosity
poromechanical model (Zhang and Mehrabian, 2020, 2021).
However, in the natural environment, the porous media could
be highly heterogeneous, which means there might be more
than one porosity scale of interest (Kim et al., 2012). Here a
special category named double porosity fractured media was
considered, which is proposed by researchers in petroleum
engineering (Barenblatt et al., 1960; Warren and Root, 1963).
Double porosity fractured media has micro-fractures at the
micro-scale or meso-scale, and nanoporous matrix at the
nano-scale. It should be noted that the macro-fractures and
faults belong to another much larger porosity scale (Wang
et al., 2020; Yang et al., 2021), which is not covered here.

Over the last 50 years, numerous frameworks with different
degrees of sophistication have been proposed to model the
double porosity fractured media. Here only the dual-continuum
conceptual framework is used (Coussy, 2003), which assumes
two pore regions overlap with each other in the computational
domain, and they are linked by a leakage (source/sink) term
(Lemonnier and Bourbiaux, 2010). Based on this framework,
many researchers have investigated the coupled flow and
deformation behaviors in double porosity fractured media (Bai
et al., 1993). However, most of these publications relied on
the phenomenological approach to obtain the poromechanical
coefficients, or they adopted two separate constitutive laws for
two continua.

For the fluid flow behavior, most of the previous studies
assumed it would follow Darcy’s law (Shao et al., 2020b;
Zhang et al., 2020). However, with the development of uncon-
ventional reservoirs, more and more attentions have been paid
to the flow mechanisms in matrix pores whose size is less than
1 micrometer such as the pores in the organic matrix of shale.
Experimental studies showed the fluid flux deviated from
what is calculated using Darcy’s law, and they believed the
interaction between fluid particles and the solid pore wall leads
to this deviation. Generally speaking, there are three types of

∗Corresponding author.
E-mail address: qzhang94@stanford.edu (Q. Zhang).

2207-9963 © The Author(s) 2021.
Received August 3, 2021; revised August 16, 2021; accepted August 17, 2021; available online August 20, 2021.

https://orcid.org/0000-0002-4637-6308


354 Zhang, Q. Advances in Geo-Energy Research, 2021, 5(4): 353-364

non-Darcy flow: high-velocity Forchheimer flow (Shao et al.,
2020a), gas slippage with Knudsen diffusion (Li et al., 2020),
and low-velocity non-Darcy flow of liquid (Hansbo, 1997; Li
et al., 2016). For this work, only the last type was considered.
Besides the fluid flux, in double porosity fractured media, the
leakage parameter exhibits a similar behavior, which is also
caused by the aforementioned interaction. Therefore, without
causing any confusion, the term “non-Darcy flow” applies
to both the flow through nanoporous matrix and the mass
exchange.

Anisotropy is a ubiquitous property of natural geomaterials
such as shale (Liao and Yang, 2021; Liao et al., 2021). In other
words, the material properties show directional dependence
(Zhu et al., 2020). A very special case of anisotropy is
transverse isotropy, in which there exists a plane of isotropy
defined by its normal vector (Xiao and Yue, 2020). Transverse
isotropy could affect both mechanical properties and fluid
flow properties (Baker and Chen, 2020; Chen and Baker,
2021; Zhang and Wang, 2021). Therefore, it is necessary to
build a comprehensive coupled flow and deformation model
encapsulating these essential features.

In this work, we develop a framework for hydromechanical
modeling of double porosity media with strong permeability
contrast in which fluid flow through the micro-fracture net-
work continuum exhibits transverse isotropy while fluid flow
through the porous matrix continuum follows a low-velocity
non-Darcy law. The framework is comprised of conservation
laws, constitutive laws, and the finite element formulation.
Finally, the framework is applied to a practical example
to demonstrate the impacts of double porosity, transverse
isotropy, and non-Darcy flow.

2. Conservation laws

2.1 Balance of mass
For double porosity media, the balance of mass equations

start from the fundamental/primitive forms (Coussy, 2003):
∂ ρs

∂ t
+∇ ·

[
ρs (1−φ)~vs

]
= 0 (1)

∂
(
ρ f 1φ1

)
∂ t

+∇ ·
(
ρ f 1φ1~v1

)
= ρ f γ (p2− p1) (2)

∂
(
ρ f 2φ2

)
∂ t

+∇ ·
(
ρ f 2φ2~v2

)
= ρ f γ (p1− p2) (3)

where ρs = ρs (1−φ) is the partial density of the solid
material, ρs is the intrinsic density of the solid material, ~vs
is the velocity of the solid skeleton, φ = φ1 +φ2 is the total
porosity, φ1 and φ2 are individual porosities for two continua,
ρ f 1 and ρ f 2 are fluid densities in two continua, ~v1 and ~v2 are
intrinsic flow velocities in two continua, p1 and p2 are fluid
pressures in two continua, ρ f is the reference fluid density,
and γ is the leakage parameter.

Next, by adopting the material time derivative of the solid
motion and barotropic flows, above three equations could be
rewritten as:

1−φ

Ks

dps

dt
− dφ

dt
+(1−φ)∇ ·~vs = 0 (4)

φ1

K f 1

d p1

dt
+

dφ1

dt
+φ1∇ ·~vs+

1
ρ f 1

∇ ·
(
ρ f 1~q1

)
=

(
ρ f

ρ f 1

)
γ (p2− p1)

(5)

φ2

K f 2

d p2

dt
+

dφ2

dt
+φ2∇ ·~vs+

1
ρ f 2

∇ ·
(
ρ f 2~q2

)
=

(
ρ f

ρ f 2

)
γ (p1− p2)

(6)
where Ks is the bulk modulus of the solid material, ps is the
solid pressure, K f 1 and K f 2 are fluid compressibilities, ~q1 and
~q2 are superficial Darcy velocities defined as ~q1 = φ1 (~v1−~vs)
and ~q2 = φ2 (~v2−~vs).

In order to further simplify Eq. (4), a function Γ was
proposed such that it satisfies:

Γ(ps,φ , p) = 0 (7)

where p = χ p1 + (1−χ) p2 represents a weighted average
fluid pressure (0≤ χ ≤ 1). By taking time derivative on both
sides of Eq. (7):

∂ Γ

∂ ps

dps

dt
+

∂ Γ

∂φ

dφ

dt
+

∂ Γ

∂ p
d p
dt

= 0 (8)

By combining Eq. (4) with Eq. (8):

(
1+

1−φ

Ks

∂Γ/∂φ

∂Γ/∂ ps

)
dφ

dt
= (1−φ)∇ ·~vs−

1−φ

Ks

∂Γ/∂ p
∂Γ/∂ ps

dp
dt
(9)

Suppose that a Γ exists such that it satisfies following two
equations:

∂ Γ

∂ p
+

∂ Γ

∂ ps
= 0 (10)

(1−φ)2 KsA
Ks +(1−φ)A

= K (11)

where K is the drained bulk modulus and

A=
∂Γ/∂φ

∂Γ/∂ ps
(12)

Eq. (9) can be simplified into:

dφ

dt
=

(
1− K

Ks
−φ

)
∇ ·~vs +

1
Ks

(
1− K

Ks
−φ

)
dp
dt

(13)

The familiar Biot coefficient can be identified as (Cheng,
2016; Shao et al., 2021):

α = 1− K
Ks

(14)

In the special case of K f 1 = K f 2 = K f and p1 = p2 = p,
Eqs. (5), (6), and (13) can be combined to obtain the so-called
Biot modulus M (Cheng, 2016) in this novel way:

1
M

=
φ

K f
+

α−φ

Ks
(15)
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Now the question is whether this Γ exists? The answer is
yes and you can verify the following Γ satisfies Eqs. (10) and
(11):

Γ =Ks ln

(
1−φ

1− K
Ks
−φ

)
+ ps− p

−Ks ln

(
1−φ0

1− K
Ks
−φ0

)
− p0

s + p0

(16)

The last three terms on the right-hand side make Γ = 0 at
t = 0. When Ks→+∞, the limit of Γ is given as:

lim
Ks→+∞

Γ =
K

1−φ
+ ps− p− K

1−φ0
− p0

s + p0 (17)

In the following context, several stronger assumptions are
made such that Ks =K f 1 =K f 2 =+∞, ρ f 1 = ρ f 2 = ρ f , and the
internal structure of the double porosity media is not evolved
(Zhang, 2020) due to a lack of the experimental evidence, i.e.,
φ1/(φ1 +φ2) is a constant. Under these assumptions, Eqs. (5)
and (6) can be rewritten as:

α1∇ ·~vs +∇ ·~q1 = γ (p2− p1) (18)

α2∇ ·~vs +∇ ·~q2 = γ (p1− p2) (19)

where α1 = φ1/(φ1 +φ2) and α2 = 1−α1 are known as double
porosity Biot coefficients.

2.2 Balance of linear momentum
The balance of linear momentum is formulated with respect

to the bulk material and it is given as:

∇ ·σ+ρ~g =~0 (20)

where σ is the total stress tensor of the bulk material,
ρ = ρs (1−φ1−φ2)+ρ f (φ1 +φ2) is the bulk density, and ~g
is the gravity acceleration vector. The total stress tensor σ
contains contributions from fluid pressures p1 and p2, and we
use the following effective stress principle to decompose σ:

σ′ = σ+α1 p11+α2 p21 (21)

where σ′ is known as the effective stress tensor and it
purely depends on the deformation field, 1 is the second-order
identity tensor.

3. Constitutive laws
To close the boundary value problem, constitutive relations

are needed. The number of required constitutive relations
could be identified from the thermodynamics of porous media
(Coussy, 2003).

Based on the theory of linear elasticity, σ′ is linearly
related to the strain tensor ε as (Villamor Lora et al., 2016)
(assuming 3D, thus z axis corresponds to the vertical direction,

and a slight modification is needed for the 2D case in which
y axis corresponds to the vertical direction):


σ ′x
σ ′y
σ ′z
τ ′xy
τ ′xz
τ ′yz

=



1
Eh

− νhh
Eh

− νvh
Ev

− νhh
Eh

1
Eh

− νvh
Ev

− νhv
Eh

− νhv
Eh

1
Ev

2(1+νhh)
Eh

1
Gvh

1
Gvh



−1
εx
εy
εz

2εxy
2εxz
2εyz


(22)

where all the constitutive parameters Ev, Eh, Gvh, νhh, νhv, and
νvh are measurable in lab experiments (note νvh/Ev = νhv/Eh),
and their physical meanings are given in Villamor Lora et al.
(2016). Above equation can be briefly written as {σ ′}=Ce{ε}
where Ce is known as the 6×6 stiffness matrix and it is the
Voigt form of the fourth-order elastic tensor Ce.

The flow in the micro-fracture network continuum follows
Darcy’s law, which is given by the linear relation:

~q2 =−
k2

µ f
·
(
∇p2−ρ f~g

)
(23)

where k2 is the equivalent fracture permeability (Zhang et al.,
2021) that takes the form:

k2 = kmin~n2⊗~n2 + kmax (1−~n2⊗~n2) (24)

This mathematical expression characterizes a transversely
isotropic material with respect to fluid flow.

As for the porous matrix continuum, ~q1 follows the low-
velocity non-Darcy flow of liquid that can be expressed as
a nonlinear function of ~ϕ = ∇p1−ρ f~g. Here we extend the
scalar equation proposed by Hansbo (1997) to the vectorial
form in 3D together with a no flow part. The equation is given
as follows:

(~q1) j =


0

∣∣ϕ j
∣∣< λmin

− k1(|ϕ j |−λmin)
ξ

µ f ξ δ ξ−1 sgn
(
ϕ j
)

λmin ≤
∣∣ϕ j
∣∣≤ λmax

− k1
µ f

(∣∣ϕ j
∣∣−λmin− ξ−1

ξ
δ

)
sgn
(
ϕ j
) ∣∣ϕ j

∣∣> λmax

(25)
where the physical meanings of all parameters can be found
in Zhang et al. (2021). Later in the finite element formulation,
the construction of Jacobian matrix requires the expression
for ∂~q1/∂~ϕ , which is a ndim×ndim diagonal matrix, and the
diagonal element is given as ( j = 1, · · · ,ndim):

(
∂~q1

∂~ϕ

)
j j
=

∂ (~q1) j

∂ϕ j
=


0

∣∣ϕ j
∣∣< λmin

− k1(|ϕ j |−λmin)
ξ−1

µ f δ ξ−1 λmin ≤
∣∣ϕ j
∣∣≤ λmax

− k1
µ f

∣∣ϕ j
∣∣> λmax

(26)
While the flux of fluid through the porous matrix contin-

uum may be lower than that estimated from the Darcy’s law
due to boundary layer effects, the leakage parameter γ could
also change with ~ϕ . From Khalili et al. (1999), γ is closely
related to the apparent permeability of the matrix continuum
given in Eq. (26). Therefore, γ should be a piecewise function
with three stages, separated by λmin and λmax. Under the
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situations of Darcy flow (x > λmax) and no-flow (x < λmin),
γ should be a constant. In the middle transition stage, the
cosine function could make the first-order derivative γ ′ still
continuous at λmin and λmax. The exponent parameter ξ is
also included in the cosine term. The final form of γ is given
as:

γ =


γmin ϕmax < λmin

γmax+γmin
2 + γmin−γmax

2 cos
[

π

(
ϕmax−λmin

δ

)ξ
]

λmin ≤ ϕmax ≤ λmax

γmax ϕmax > λmax

(27)
where γmax and γmin are the maximum and minimum leakage
parameters, respectively, and

ϕmax = max
j∈{1,··· ,ndim}

∣∣ϕ j
∣∣ (28)

Note that when γmax = γmin, the leakage parameter γ

becomes a trivial constant as in the Warren and Root model
(Warren and Root, 1963). A sketch of ~q1 and γ is given in
Fig. 1, which clearly shows differences between Darcy and
non-Darcy types of flow behaviors.

In the following numerical simulation, the values of λmin,
λmax, and ξ are user-defined (assumed), while the leakage
parameter γ is estimated based on the empirical formula
(Sarma and Aziz, 2006):

γ ≈ σsh

l2
c

k1

µ f
(29)

where σsh is known as the shape factor constant (Sarma
and Aziz, 2006; Ranjbar and Hassanzadeh, 2011) that is
dimensionless, lc is the characteristic length of the matrix
block (cut by micro-fracture network) that should be much
smaller than the domain size. Here σsh takes values suggested
by Kazemi et al. (1976): σsh = 8 for 2D and σsh = 12 for 3D.

4. Finite element formulation
The Galerkin method is employed to develop the finite ele-

ment (FEM) formulation of the coupled flow and deformation
problem presented earlier. Here all the symbols are written in
the normal font. Without loss of generality, the formulation
is in 3D. In FEM, u ∈ R3 = Nud, p1 ∈ R = Npr1, and
p2 ∈R= Npr2, where Nu ∈R3×n is the shape function matrix
for the displacement field, d ∈ Rn is the nodal displacement
vector, Np ∈ R1×m is the shape function matrix for both fluid
pressures p1 and p2, r1 ∈ Rm and r2 ∈ Rm are the nodal fluid
pressure vectors. Here d, r1, and r2 are to be determined.
After spatial discretization and time integration, (n+2m) fully
coupled algebraic residual equations were obtained:

Ru =

∫
Ω

BT (
σ
′−α1 p11̃−α2 p21̃

)
dV

−
∫

Ω

NT
u ρg dV +FB.C.

(30)

R1 =

∫
Ω

α1NT
p 1̃T

(
ε− ε

[ω]
)

dV −∆t
∫

Ω

ET q1 dV

−∆t
∫

Ω

NT
p γ

[ω] (p2− p1) dV +GB.C.

(31)
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Fig. 1. Type curves of non-Darcy flow and leakage parameter (Zhao et al.,
2020). The scale qualification for these nonlinear behaviors would be the same
as that for the non-Darcy flow of shale gas.

R2 =

∫
Ω

α2NT
p 1̃T

(
ε− ε

[ω]
)

dV −∆t
∫

Ω

ET q2 dV

−∆t
∫

Ω

NT
p γ

[ω] (p1− p2) dV +HB.C.

(32)

where B ∈ R6×n is the strain-displacement matrix be-
cause the strain “vector” ε = Bd where ε = [εxx,εyy,εzz,
2εxy,2εxz,2εyz]

T ∈R6, σ ′ = [σ ′xx,σ
′
yy,σ

′
zz,σ

′
xy,σ

′
xz,σ

′
yz]

T ∈R6 is
the effective stress “vector”, 1̃ = [1,1,1,0,0,0]T is the Voigt
form of the second-order identity tensor, g ∈R3 is the gravity
acceleration vector, FB.C. ∈ Rn×1 represents the contributions
from the mechanical traction boundary conditions, ε [ω] is
the strain “vector” at the previous time step. Here the su-
perscript for quantities at the current time step and iteration
counter was omitted. ∆t = t [ω+1]− t [ω] is the time step size,
E ∈R3×m = ∇Np leads to ∇p1 = Er1 and ∇p2 = Er2, q1 ∈R3

and q2 ∈ R3 are the superficial velocity vectors, γ [ω] is the
leakage parameter at the previous time step, GB.C. ∈ Rm×1

and HB.C. ∈ Rm×1 represent the contributions from the flux
boundary conditions. Now the tangent operator (or Jacobian,
for short) K ∈ R(n+2m)×(n+2m) is: A B C

−BT D E
−CT E F


︸ ︷︷ ︸

K

δd
δ r1
δ r2

=

−Ru
−R1
−R2

 (33)

The block matrices A to F are given as:

A=

∫
Ω

BTCeB dV (34)
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FE spatial discretization and time integration: ∇ ⋅ 𝑣𝑠 ≈
∇⋅𝑢𝑛+1,𝑘−∇⋅𝑢𝑛

Δ𝑡
; 

𝛾 is updated explicitly (𝛾 = 𝛾𝑛); all the other terms are discretized 

implicitly (i.e., at time step n + 1 and iteration counter k)

Newton iteration counter k = 0. The initial guess is the 

converged values from the previous time step, i.e., xn+1, 0 = xn

Start and input of 
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(pre-processing)
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𝑑
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Fig. 2. Schematic of the standard time-dependent FEM implementation. In this flowchart, ICs stand for the initial conditions and BCs stand for the boundary
conditions.

B =−
∫

Ω

α1BT 1̃Np dV (35)

C =−
∫

Ω

α2BT 1̃Np dV (36)

D =−∆t
∫

Ω

ET ∂~q1

∂~ϕ
E dV +∆t

∫
Ω

NT
p γ

[ω]Np dV (37)

E =−∆t
∫

Ω

NT
p γ

[ω]Np dV (38)

F = ∆t
∫

Ω

ET k2

µ f
E dV +∆t

∫
Ω

NT
p γ

[ω]Np dV (39)

where k2 ∈ R3×3 is k2 written in 3 × 3 matrix form,
−∂~q1/∂~ϕ ∈ R3×3 is known as the tangential mobility of the
porous matrix continuum whose expression is already given
in Eq. (26).

If we adopt equal-order linear interpolations of the dis-
placement field and two pressure fields, the stabilization
scheme should be considered. The stabilized residual equations
R̄1 and R̄2 are:

R̄1 =R1 +

∫
Ω

τα1

2Ḡ

[
NT

p −Π

(
NT

p

)][
p̄− p̄[ω]−Π

(
p̄− p̄[ω]

)]
dV

(40)

R̄2 =R2 +

∫
Ω

τα2

2Ḡ

[
NT

p −Π

(
NT

p

)][
p̄− p̄[ω]−Π

(
p̄− p̄[ω]

)]
dV

(41)

Ḡ =
1
3

[
Eh

2(1+νhh)
+2Gvh

]
(42)

where τ is the stabilization constant (on the order of 1) that
is used to “tune” the level of stabilization (Yan et al., 2020,
2021)1, Ḡ is the generalized shear modulus, p̄ = α1 p1+α2 p2
is the weighted pressure (a scalar), p̄[ω] is p̄ at the previous
time step, and the projection operator Π(·) is defined as:

Π(·) = 1
Ve

∫
Ωe

(·) dV (43)

where Ve and Ωe denote the volume and domain of an element,
respectively. That’s to say, this operator projects a given field
to its average value within the element. Due to R̄1 and R̄2,
the stabilization of the Jacobian K was also needed:

D̄ =D+

∫
Ω

τα2
1

2Ḡ

[
NT

p −Π
(
NT

p
)]
[Np−Π(Np)] dV (44)

Ē = E+
∫

Ω

τα1α2

2Ḡ

[
NT

p −Π
(
NT

p
)]
[Np−Π(Np)] dV (45)

F̄ = F +

∫
Ω

τα2
2

2Ḡ

[
NT

p −Π
(
NT

p
)]
[Np−Π(Np)] dV (46)

1A single τ would be enough for both R̄1 and R̄2 because the weak inf-sup condition is imposed on p̄.
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Fig. 3. Schematic of the plane strain strip load problem: the geometry, boundary, and loading conditions. Gravity is considered in this example. Variation in
ρ due to changes of porosities is assumed to be very small. The origin (0, 0) coincides with the lower-left corner of the domain.

Consequently, the modified tangent operator K̄ satisfies: A B C
−BT D̄ Ē
−CT Ē F̄


︸ ︷︷ ︸

K̄

δd
δ r1
δ r2

=

−Ru
−R̄1
−R̄2

 (47)

A complete and brief FEM implementation is summarized
in Fig. 2.

5. Strip load on a double porosity medium

5.1 Problem description
A 2D rectangular double porosity medium 10 m wide and

5 m deep is shown in Fig. 3. Here a full mesh instead of
a half mesh was used to define the computational domain
because k2 may not be isotropic. For the problem initialization,
a preloading stage generates steady state fluid pressures p1 =
p2 = ρ f g(H− y) and initial preloading settlement induced by
gravity, where H is the depth (here is 5 m). Then we apply the
strip load p0 = 150 kPa instantaneously, which leads to excess
pressures. As time goes on, the excess parts will finally vanish.

This problem is a simple schematization of the shallow
foundation of a structure, using a long strip foundation made
of concrete, for instance. In the case of a permanent load
applied to this shallow foundation, it can be expected that pore
pressures will be developed below the foundation, and these

pore pressures will dissipate in course of time due to the fact
that pore water is expelled from the soil. In some clays, this
may take a certain time, due to the small permeability. This
process is called consolidation. In our situation, there are both
horizontal flow and vertical flow, so it is a 2D consolidation
problem. Furthermore, the “foundation soil” contains micro-
fractures. It will be interesting to explore the consolidation
patterns under these special settings.

The boundary conditions are highlighted here. For the
bottom boundary (y = 0), uy = 0, τxy = 0, and q1y = q2y = 0.
For the two lateral boundaries (x = 0 or x = 10 m), ux = 0,
τxy = 0, and q1x = q2x = 0. For the top boundary (y = 5 m and
the unit of x is m):

p1 = p2 = 0,σyy = τxy = 0, 0≤ x≤ 4
q1y = q2y = 0,τxy = 0,σyy =−p0, 4 < x < 6
p1 = p2 = 0,σyy = τxy = 0, 6≤ x≤ 10

 (48)

5.2 Simulation parameters
Three cases are analyzed here. We give the entire parameter

set for the first case and mention the differences for the
remaining two cases from the first case. The first case can
be regarded as the “basic” case: the permeability for the
micro-fracture network continuum k2 is isotropic and the
flow through the porous matrix follows Darcy’s law (ξ = 1,
λmin = 0). The parameters are given as: fluid density ρ f = 1000
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(a) 

 
(b) 

 

 Fig. 4. (a) Preloading deformation on the deformed mesh (magnification of 20) due to gravity. (b) Immediate undrained deformation (including preloading
deformation) on the deformed mesh (magnification of 20) due to strip load. The color bar is from -0.048 m to 0.

Fig. 5. Ground surface displacement uy (including preloading displacement).

kg/m3, fluid viscosity µ f = 0.001 Pa · s, kmax = kmin = 10−10

m2, k1 = 5× 10−16 m2, γmax = γmin = 0.24 GPa−1 · s−1 (lc ≈
0.129 m), initial φ1 is φ 0

1 = 0.15, initial φ2 is φ 0
2 = 0.1,

α1 = 0.6, α2 = 0.4, ρs = 2600 kg/m3, Eh = 6670.59 kPa,
Ev = 6300 kPa, νhh = 0.1, νvh = 0.15, and Gvh = 2750 kPa.
The second case only makes k2 to be transversely isotropic
by assigning ~n2 = [−sinθ ,cosθ ]T , θ = π/18, kmax = 10−10

m2, and kmin = 5×10−12 m2. The third case assumes ξ = 1.3,
λmax = 19.62 kPa/m, λmin = 0, γmax = 0.24 GPa−1 · s−1, and
γmin = 0.1γmax, while k2 is still isotropic as in the first case.

The constrained modulus Dv in the vertical direction for
this transversely isotropic material is defined as:

1
Dv

=
1
Ev
− 2(νvh/Ev)

2 Eh

1−νhh
(49)

We can then calculate the surface displacement uy in the
preloading stage by using this constrained modulus, and the
result is known as upre:

upre =
ρbgH2

2Dv
(50)

where H is the depth (here is 5 m), ρb is the initial buoyant
density (subtract the fluid density ρ f from the initial total
density ρ , i.e., ρb = 1200 kg/m3 in our simulation). The
value of upre can be used as a preliminary check of the
code implementation. Two different meshes are used in this
problem: the fine mesh contains 14,676 triangle elements and
the normal mesh contains 3,146 triangle elements. The element
type is quadratic-displacement/linear-pressure element. The
simulation time step is chosen to be logarithmically equally
spaced between 100 to 104 s (401 steps). The computation
time is about 1 minute on the fine mesh.

5.3 Simulation results
Unless otherwise stated, the results have been verified

that they are not mesh-sensitive. In our simulation, upre =
−0.02212059 m and the instantaneous/immediate undrained
deformation are depicted in Figs. 4 and 5. Fig. 5 also shows
deformations for these three cases at one specific time t = 400
s, from which a direct sense of the consolidation degree can
be obtained. For instance, both the purple and green curves are
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above the orange curve, which suggests a faster consolidation
rate in the basic case. Besides, the purple curve is unsymmetric
due to a transversely isotropic k2 and the strong coupling
between flow and deformation.

Figs. 6, 7, and 8 show the undrained responses on the
whole computational domain. In these three figures, for the
micro-fracture network continuum, we plot the excess pressure
p2−ρ f gD instead of the true pressure p2, in order to visualize
its change over time (Fig. 6). For all three figures, significant
difference can be observed between the two pressure fields p1
and p2, both quantitatively and qualitatively. This is different
from the typical behaviors of the naturally fractured reservoir
at t = 0+ due to the absence of pressure coupling (Zhang et al.,
2021). The porous matrix pressure p1 is much higher than the
pressure p2 of the micro-fracture network continuum, which is
a basic non-equilibrium flow pattern in double porosity media
(Zhang, 2020). In fact, p1 in the vicinity of the strip load is
even higher than the magnitude of that load. Thus we could
conclude that if you adopt Eqs. (18) and (19) to investigate

the coupled flow and deformation of double porosity media,
you may never observe the stage when p2 drops rapidly and p1
remains unchanged. The non-equilibrium flow happens if there
exists pressure difference and it promotes fluid mass transfer,
thus the dissipation of porous matrix pressure p1 is mainly
through mass transfer while the contribution of flux is tiny.

Now we compare the differences among Figs. 6, 7, and 8.
First, transverse isotropy in k2 could change the pattern of p2
immediately, which is confirmed by Fig. 7a. The contour lines
are skewed and inclined. Second, in this example, since the
drainage path is from the bottom to the top, the transversely
isotropic k2 weakens the overall drainage capacity. As a result,
p2 in Fig. 7a is higher than that in Fig. 6a. Third, for the
non-Darcy flow case, the shape of the contour line in Fig.
8a is exactly the same as that in Fig. 6a with scaled values.
Finally, the undrained responses of the weighted pressure
p̄ = α1 p1 +α2 p2 are identical among three cases. Since the
undrained responses of p2 are quite different among three
cases, it is fair to expect slight differences in the distribution

(a) Contour of p2 − ρ f gD at 1 s where D is the depth from the top
surface, the color bar is from 0 to 2.694 kPa

(b) Contour of p1 at 1 s, the color bar is from 0 to 270.1 kPa

(c) Contour of p2−ρ f gD at 100 s (d) Contour of p1 at 100 s

Fig. 6. The pressure fields when k2 is isotropic and the flow in the matrix continuum follows Darcy’s law.

(a) Contour of p2−ρ f gD at 1 s, the color bar is from 0 to 20 kPa (b) Contour of p1 at 1 s, the color bar is from 0 to 270 kPa

Fig. 7. The pressure fields when k2 is transversely isotropic and the flow in the matrix continuum follows Darcy’s law.
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(a) Contour of p2−ρ f gD at 1 s, the color bar is from 0 to 0.287 kPa (b) Contour of p1 at 1 s, the color bar is from 0 to 270.3 kPa

Fig. 8. The pressure fields when k2 is isotropic and the flow in the matrix continuum follows non-Darcy’s law.

of p1 at t = 0+, which again matches results in Figs. 6, 7, and
8.

We are also interested in the pressure dissipations in these
three cases. We plot the evolutions of weighted pressure p̄
at one specific point (point B) as well as its average over the
whole domain. The results are shown in Figs. 9 and 10, which
are somehow surprising. First of all, the result of p̄ at point
B is mesh-sensitive in the non-Darcy case, while the mesh-
sensitivity is not apparent when plotting the average of p̄ over
the whole domain. Second, for point B, the shapes of the red
curve and the blue curve are quite different from each other.
However, in Fig. 10, the red curve and the blue curve are
close to each other. This characteristic in Fig. 10 is consistent
with Figs. 5 and 11. Therefore, an obvious question would be
why in the case of non-Darcy flow, the behavior of p̄ at one
point is so “strange”? To answer this important question, we
should recall our non-Darcy flow constitutive laws. Since the
contribution of flux is tiny, the only possibility would come
from the leakage parameter γ . The leakage parameter γ is a
function of ϕmax by using Eq. (27). Therefore, the “strange”
behavior comes from the heterogeneous (non-smooth) pattern
of ϕmax, and ϕmax around point B is rapidly changing with
time, as shown in Fig. 12. In this figure, in order to analyze
the leakage parameter γ , the range of the color bar is from
λmin/

(
ρ f g
)
= 0 to λmax/

(
ρ f g
)
= 2. To summarize, the non-

Darcy equation of γ could make the p1 field not smooth and

Fig. 9. Evolutions of weighted pressure p̄ = α1 p1 +α2 p2 at point B (5, 0)
m. “ND” means non-Darcy equation of γ .

Fig. 10. Evolutions of weighted pressure p̄ = α1 p1 +α2 p2 (average over the
whole domain). “ND” means non-Darcy equation of γ .

Fig. 11. Evolutions of vertical displacement uy at point A (5, 5) m. “ND”
means non-Darcy equation of γ .

you might need an extremely fine mesh to resolve this issue
(computational prohibitive at this moment). The experimental
techniques are also currently not capable to verify the numer-
ical results. Nevertheless, this mesh-sensitivity does not affect
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(a) 1 s (b) 1 s

(c) 100 s (d) 100 s

(e) 500 s (f) 500 s

(g) 1000 s (h) 1000 s

Fig. 12. The evolution of ϕmax/
(
ρ f g

)
for Darcy flow (left column) and non-Darcy flow (right column, fine mesh).

the global pressure dissipation and it is a meaningful attempt
to try a dynamic γ in double porosity modeling analogous
to the multi-rate mass transfer model (Geiger et al., 2013;
Tecklenburg et al., 2016).

6. Closure
In this work, the new treatment is the combination of

transverse isotropy and non-Darcy flow. Transverse isotropy
allows us to capture new excess pressure patterns in the frac-
ture continuum. Furthermore, the dynamic leakage parameter γ

could lead to a dramatic change of potential gradient in a local
area. Both the transverse isotropy and non-Darcy flow would

affect the foundation settlement and global pressure dissipation
behaviors. The goal of this work is to accommodate more
possible features (on the constitutive level) for future geome-
chanics simulators and to provide some possible (theoretical)
explanations for experimental findings.
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