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Abstract:
Understanding the methane adsorption mechanism is critical for studying shale gas storage
and transport in shale nanopores. In this work, we conducted low-pressure nitrogen
adsorption (LPNA), scanning electron microscopy (SEM), and high-pressure methane
adsorption experiments on seven shale samples from the Longmaxi formation in Sichuan
basin. LPNA and SEM results show that pores in the shale samples are mainly nanometer-
sized and have a broad size distribution. We have also shown that methane should be not
only adsorbed in micropores (< 2 nm) but also in mesopores (2-50 nm) by two hypotheses.
Therefore, we established a novel DA-LF model by combining the micropore filling and
monolayer coverage theories to describe the methane adsorption process in shale. This
new model can fit the high-pressure isotherms quite well, and the fitting error of this new
model is slightly smaller than the commonly used D-A and L-F models. The absolute
adsorption isotherms and the capacities for micropores and mesopores can be calculated
using this new model separately, showing that 77% to 97% of methane molecules are
adsorbed in micropores. In addition, we conclude that the methane adsorption mechanism
in shale is: the majority of methane molecules are filled in micropores, and the remainder
are monolayer-adsorbed in mesopores. It is anticipated that our results provide a more
accurate explanation of the shale gas adsorption mechanism in shale formations.

1. Introduction
Shale gas has received increasing attentions in recent

years due to its remarkable success of commercial production
in North America (Ambrose et al., 2012), which has also
promoted the development of shale gas in many other coun-
tries. The exploration and development of shale gas reservoirs
in China, particularly in southern Sichuan Basin, has made
significant progress in the past few years (Zou et al., 2015).
Shale gas reservoirs differ from most of conventional gas
reservoirs including sandstone and carbonate because shale gas
formation is both source rock and reservoir storing natural gas
(Ambrose et al., 2012; Zou et al., 2015). Another significant
difference is that a large proportion of total gas content is in
the adsorbed state (Curtis et al., 2002; Zou et al., 2015). It is
no doubt that the quantity of adsorbed gas is significant for
accurate estimations of total gas-in-place and predictions of

shale gas productions (Curtis et al., 2002; Montgomery et al.,
2005; Ambrose et al., 2010).

The adsorption characteristics of shale gas has been studied
intensively in the last decade, mainly by experiments and
molecular simulations (Clarkson et al., 2013; Mosher et al.,
2013; Rexer et al., 2013; He et al., 2016; Tang et al., 2016;
Tian et al., 2016; Xiong et al., 2017). Extensive studies on
the methane adsorption capacity and its controlling factors
in various shale formations have been conducted, showing
that the total organic carbon (TOC) is a main contributor to
the adsorbed gas capacity (Ross et al., 2009; Weniger et al.,
2010; Gasparik et al., 2012; Zhang et al., 2012; Ji et al., 2015;
Wang et al., 2016a; Zhao et al., 2017). In addition, methane
in shale formations is typically in the supercritical state as
the formation temperature and pressure far exceed its critical
properties (-82.5 ◦C and 4.64 MPa) (Aranovich and Donohue,
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1996; Do and Do, 2003). As for the adsorption of supercritical
methane in shale, a common consensus has been established
that the observed (excess) adsorption isotherms decrease in the
high-pressure range (Do and Do, 2003; Gasparik et al., 2012;
Tang et al., 2016; Tian et al., 2016; Zhou et al., 2018b). Hence,
the key issues remaining in this field is how to model these
excess adsorption isotherms and reveal the real adsorption
mechanism of shale gas under formation conditions.

Many adsorption models have been proposed to charac-
terize the methane adsorption process under the formation
temperature and pressure, including Langmuir (Tang et al.,
2016), Langmuir-Freundlich (L-F) (Wang et al., 2016c), Ono-
Kondo (Bi et al., 2016), simplified local-density (SLD) (Chare-
onsuppanimit et al., 2012), Dubinin-Radushkevich (D-R) and
Dubinin-Astakhov (D-A) models (Sakurovs et al., 2016).
Researchers have attempted to reveal methane adsorption
mechanisms in shale using these models (Zhou et al., 2003;
Tian et al., 2016; Li et al., 2017). However, these models were
originally established based on a variety of assumptions. For
example, the Langmuir model assumes that gas molecules are
monolayer-adsorbed in adsorbents, and the surface of the solid
adsorbent is homogeneous with a constant adsorption heat,
which is over-simplified to describe complicated situations
in shale gas reservoirs (Langmuir et al., 1918; Tang et al.,
2016). Although the Langmuir model fits some experimental
isotherms quite well (Zhang et al., 2012; Yu et al., 2014;
Tian et al., 2016), it cannot be concluded that the methane
adsorption mechanism is monolayer adsorption. Therefore,
we cannot determine its mechanism by those models as all
the equations showing similar fitting effect (Sakurovs et al.,
2007; Wang et al., 2016c). In other words, we are unable to
explain the adsorption mechanism by a model only based on
the quality of curve fitting. A suitable model should have
the fact that, its internal hypothesis is consistent with the
real characteristics of shale. Therefore, an adsorption model
considering the complexity and heterogeneity of shale pore
structures, which most of adsorption models have ignored, is
critically needed.

Pores are the basis of shale gas accumulation and seriously
affect the adsorption properties of shale (Milliken et al., 2013;
Tian et al., 2013). The pore structures in shale have been
widely analyzed using fluid invasion and microscopic obser-
vation methods, such as low temperature N2/CO2 adsorption,
high pressure mercury injection, nuclear magnetic resonance
(NMR) and field emission scanning electron microscopy (FE-
SEM) and so on (Tian et al., 2013; Jiao et al., 2014; Zhao et al.,
2018). Almost all the experiments on Longmaxi shales have
indicated that pores are nanometer-sized and exist dominantly
in organic matter (Tian et al., 2013; Zhou et al., 2016).
Organic-rich shale has a broad pore size distribution with a
significant proportion of micropores (< 2 nm), mesopores (2-
50 nm), and macropores (> 50 nm) according to the pore
size classification of the International Union of Pure and
Applied Chemistry (IUPAC) (Sing et al., 1985). However,
the mechanisms of gas adsorption are different in micropores
and mesopores (Dubinin, 1967; Findnegg, 1983; Li et al.,
2017). In micropores, gas molecules are adsorbed in the
form of pore filling (Dubinin, 1967), which is caused by the

overlapping of the adsorption potential from both sides of the
pore wall surfaces (Mosher et al., 2013). On the other hand,
in mesopores, gas molecules are adsorbed as a single layer on
the pore wall surfaces (Do and Do, 2003). We can conclude
that the adsorption mechanisms and capacities depend on the
characteristics of pore wall surfaces in both micropores and
mesopores. Therefore, pore filling in micropores and mono-
layer adsorption in mesopores might occur simultaneously
during the process of methane adsorption.

In our previous work (Zhou et al., 2018b), we have
demonstrated that the adsorbed methane is stored not only
in micropores but also in mesopores through the analysis of
adsorbed-phase volume, which lays a foundation to investigate
the shale gas adsorption mechanism. Based upon previous
discoveries, the objective of this study is to propose a novel
adsorption model considering the different mechanisms of
methane adsorption in micropores and mesopores. In order
to prove the validity of the proposed model, we fitted the
methane adsorption isotherms at pressures up to 25.0 MPa.
Moreover, we compared it with other commonly used models
to elucidate the advantages of the new model. It is anticipated
that our results provide more accurate explanations of the true
adsorption mechanisms in shale formations.

2. Theoretical basis

2.1 Micropore filling theory

The micropore filling theory was first proposed by Dubinin
to study vapor adsorption in microporous solids (Dubinin,
1967). This theory assumes that the adsorbate fills the adsorp-
tion space via the mechanism of volume filling, and hence it
does not form discrete monolayers in micropores (Dubinin and
Astakhov, 1971). Because of the small pore diameter, the force
field generated between two pore walls is superimposed, which
makes the micropores more attractive to adsorbed molecules.
The adsorbed molecules do not cover the pore walls but fill
the bulk regions in a near-liquid state (Wang et al., 2016c).
Therefore, the vapor adsorption by micropores is enhanced
even at a very low pressure.

Based on the micropore filling theory and Polanyi adsorp-
tion potential theory, the Dubinin-Radushkevich (D-R) and
Dubinin-Astakhov (D-A) equations have been developed to
model Type I adsorption isotherms (Foo and Hameed, 2010;
Pini et al., 2010; Ushiki et al., 2013; Hao et al., 2014).
The two equations were considered to provide an appropriate
description of the adsorption phenomena occurring in the
adsorbent micropores. The D-A adsorption model can be
expressed by Eq. (1) and can be further simplified to D-R
equation when k = 2 (Dubinin and Astakhov, 1971).

nab = n0 exp

{
−D
[

ln
(

p0

p

)]k
}

(1)

where nab is the absolute adsorption capacity, and n0 is the
maximum absolute adsorption capacity of micropore filling.
D is a parameter related to the pore structure through D =
(RT/βE)k, where E is the characteristic energy and β is the
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Table 1. The TOC, pore surface area and pore volume of the shale samples (Zhou et al., 2018a).

Sample Depth TOC SBET Smicro SBJH VBET Vmicro VBJH

(m) (%) (m2/g) (m2/g) (m2/g) (cm3/g) (cm3/g) (cm3/g)

X2-1 1,955.67 4.1 23.43 7.81 13.85 0.03340 0.00407 0.02889

X2-2 1,976.46 5.3 19.65 7.02 11.00 0.02837 0.00370 0.02424

X2-3 1,981.00 5.8 22.60 8.31 12.40 0.02813 0.00437 0.02325

X2-4 1,982.73 2.8 16.06 4.45 10.57 0.02694 0.00232 0.02443

X3-1 2,364.54 3.1 9.83 2.22 7.64 0.02305 0.00115 0.02184

X3-2 2,411.88 4.3 11.81 3.22 8.91 0.02314 0.00168 0.02172

X3-3 2,437.57 3.7 12.17 3.64 8.81 0.02284 0.00191 0.02125

SBET and VBET , the total surface area and volume by the BET equation (Brunauer et al., 1936); Smicro and Vmicro, the surface area and volume of
micropores (< 2 nm) by the t-plot equation (Mikhail et al., 1968); SBJH and VBJH , the surface area and volume of meso-macropores (2-200 nm) by the BJH

equation (Sing et al., 1985).

coefficient of adsorbate affinity. In Eq. (1), p0 is the saturation
vapor pressure of the adsorbate at temperature T , p is the
equilibrium pressure, and k is the structural heterogeneity
parameter. Notice that the parameter p0 in D-R and D-A
equations cannot be physically defined for a gas above its
critical temperature Tc (Clarkson et al., 1997; Do, 1998).
Although some scholars have defined a pseudo-saturation
vapor pressure (ps) to replace p0 (Amankwah and Schwarz,
1995; Clarkson et al., 1997; Do, 1998; Hao et al., 2014; Yu et
al., 2014), the adapted equations are rather empirical and lack
a physical basis (Sakurovs, 2007). Sakurovs and his coworkers
have modified the D-R equation by replacing p0 and p with the
adsorbed-phase density (ρa) and the bulk gas density (ρg), and
then their modified model has been widely used to describe
gas adsorption under supercritical conditions. The supercritical
D-A absolute adsorption model can be expressed as (Sakurovs,
2007):

nab = n0 exp

{
− D

[
ln
(

ρa

ρg

)]k
}

(2)

The observed adsorption capacity is the excess adsorption
capacity (nex) in high-pressure isothermal adsorption experi-
ments, so that the absolute adsorption should be transformed
to the excess adsorption by fitting the experimental isotherms
through the following equation (Zhou et al., 2018b).

nex = nab

(
1−

ρg

ρa

)
(3)

Consequently, the DA-based excess adsorption model can
be rewritten as

nex = n0 exp

{
−D
[

ln
(

ρa

ρg

)]k
}(

1−
ρg

ρa

)
(4)

2.2 Monolayer coverage theory

The monolayer coverage theory was proposed by Langmuir
(Langmuir, 1918), assuming only a single layer of molecules

covering solid surfaces during the adsorption process. More-
over, this theory is also based on the assumptions of homo-
geneous pore surface and no interaction between neighboring
molecules. Integrating those ideal conditions, the Langmuir
equation can be derived from the kinetic theory of gases or the
statistical thermodynamics (Yang, 1987). The Langmuir model
is the most widely used model in coals and shales because of
its simplicity, effectiveness, and the reasonable explanation of
its parameters (Tang, 2017). Langmuir model is expressed as

nab =
nL p

p+ pL
(5)

where nL is the maximum absolute adsorption capacity of the
monolayer adsorption, p is the equilibrium pressure, and pL
is the Langmuir pressure defined as the pressure at which
the amount of adsorbed methane molecules equals half of the
maximum adsorption capacity.

Considering the heterogeneity of adsorption sites in adsor-
bents, Sips (1948) established the Langmuir-Freundlich (L-F)
adsorption model extended from the Langmuir equation. The
L-F equation is expressed as

nab =
nL(bp)m

1+(bp)m (6)

At lower concentrations, it can be simplified to the Fre-
undlich adsorption model. When m = 1, the L-F adsorption
model is simplified to a Langmuir adsorption model. Similarly,
the LF-based excess adsorption model is

nex =
nL(bp)m

1+(bp)m

(
1−

ρg

ρa

)
(7)

3. Experiments and results

3.1 Experiments

Seven core samples were collected from the Lower Silurian
Longmaxi Formation (LSLF) in the northeast Chongqing area
near the Sichuan Basin, China (Table 1). The organic-rich
shale of LSLF in this area is mainly composed of black shale,
black mud-shale, carbonaceous mud-shale, and siliceous shale
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(a) (b)

Fig. 1. (a) Low pressure nitrogen adsorption isotherms of all three representative samples at 77 K; (b) The pore size distribution analyzed by BJH equation.

(Liang et al., 2016). The total organic carbon (TOC) content,
low pressure nitrogen adsorption (LPNA) and high-pressure
methane adsorption experiments were strictly conducted, and
the detailed experimental procedures were presented in our
previous study (Zhou et al., 2018b).

In this study, we have conducted SEM experiments as a
supplement to analyze the nanopore structure of the shale
samples. Small offcut block samples were polished to create
a level surface using dry emery paper and were then milled
by argon-ion. After polishing, the samples were coated with
carbon atoms to enhance the surface conductivity. The samples
were inserted into FEI Helios NanoLabTM 650 DualBeamTM

system for imaging. The SEM images were taken on the newly
milled shale surface with a 4 mm working distance and 10
kV accelerating voltage for the secondary electron (SE) mode
(Zhou et al., 2016).

3.2 Results

According to the BDDT (Brunauer-Deming-Deming-
Teller) adsorption isotherm classification (Brunauer et al.,
1940), nitrogen adsorption isotherms of shale samples belong
to type IV (Fig. 1(a)), which indicates that nitrogen adsorp-
tion in shale can be divided into three stages: monolayer
adsorption, multilayer adsorption, and capillary condensation
(Li et al., 2016). The specific surface area (SSA), pore volume
(PV) and pore size distribution (PSD) can be obtained by
the isotherms using BET and BJH equations. In our LPNA
experiments, the PSD curves exhibit the unimodal nature for
most of the shale samples, and the peak is at approximately 4
nm (Fig. 1(b)), which is consistent with the results conducted
by other researchers for Longmaxi shale (Wang et al., 2016b;
Yang et al., 2016). The mesopore volumes of the shale samples
are mainly contributed by the pores with width between 2 and
10 nm, which is also consistent with the observations in Wang
et al. (2016b).

The SEM results in Fig. 2 also show that the shale samples
have abundant nanometer-scale pores and a small amount of

Fig. 3. High pressure methane adsorption isotherms of all the samples at
333.15 K.

micrometer-scale pores, mainly ranging from 5 to 200 nm. The
majority of pores are in organic matter (OM), which is caused
mainly by the thermal evolution process (Curtis et al., 2012;
Mastalerz et al., 2013). Numerous OM pores provide a very
large specific surface area, which creates a favorable condition
for gas adsorption and storage. This is also an important reason
that the amount of shale gas adsorption is positively correlated
with the TOC.

In Fig. 3, it can be observed that all the measured excess
adsorption isotherms increase to the maximum values at the
pressure of approximately 10 MPa, and then decline with
pressure. This commonly-known phenomenon is attributed to
the fact that the volume of the adsorbed phase increases with
pressure (Tian et al., 2016; Tamg et al., 2017). When the
pressure is high, the volume of the adsorbed phase cannot be
neglected, and the excess adsorption capacity would decrease
according to Eq. (3). Moreover, the maximum excess adsorp-
tion capacity (nex−max) is positively correlated with SSA and
PV of micropores as found in our previous studies (Zhou et
al., 2018b). However, there is no positive correlation between
nex−max and PV for the mesopores. The difference of the
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(a) (b)

Fig. 2. SEM results of polished shale samples. Abundant pores are developed in organic matter and are mainly nanometer-sized (5-200 nm).

correlation coefficient of micropores and mesopores (Zhou et
al., 2018b) indicates that the adsorbed gas might be mainly
stored in micropores due to much higher interactions between
gas molecules and micropores walls. This predictive viewpoint
will be proved and discussed in the following sections.

4. Discussion

4.1 Hypothesis and proof of adsorption mechanism

Our previous studies have shown that the DR-based and
Langmuir-based excess adsorption models perfectly fitted the
observed isotherms (Zhou et al., 2018b). However, we are un-
able to determine whether the methane adsorption mechanism
is micropore filling or monolayer adsorption or coexisting
of both. It can be further proved by the following two
hypotheses.

4.1.1 Hypothesis I

If we assume that all adsorbed methane molecules are filled
in micropores, yielding that the only adsorption mechanism
is micropore filling, the isotherms can be fitted by the DA-
based excess adsorption model (Eq. (4)). The fitting results
are presented in Fig. 4(a), showing the micropore filling theory
can well describe the adsorption process. We can calculate the
adsorbed-phase volume filled in micropores by Eq. (8).

Va−micro =
MCH4 ×n0

1000ρa
(8)

where Va−micro is the entire adsorbed-phase volume filled in
micropores, MCH4 is the molar mass of methane, n0 and ρa are
the adsorption capacity and the density of adsorbed methane
fitted by the DA-based excess adsorption model (Eq. (4)),
respectively.

Fig. 4(b) shows the comparisons between adsorbed-phase
volume (Va−micro) and micropore volume (Vmicro), Notice that
Va−micro is much larger than Vmicro for all shale samples.
However, Va−micro should be always smaller than or equal to
Vmicro based on the assumption that the micropore filling is
the only mechanism for methane adsorption, indicating that
the hypothesis I is not valid.

4.1.2 Hypothesis II

Assuming that all the adsorbed methane molecules are
monolayered in mesopores neglecting the affinity of micropore
walls, we can fit the isotherms by the LF-based excess adsorp-
tion model (Eq. (7)). Fig. 5(a) shows that the LF-based excess
adsorption model also fits the isotherms quite well, indicating
that the monolayer adsorption mechanism is also possible. We
can calculate the adsorbed-phase volume in mesopores by Eq.
(9).

Va−meso =
MCH4 ×nL

1000ρa
(9)

where Va−meso is the adsorbed-phase volume in mesopores,
nL and ρa are the adsorption capacity and the density of
adsorbed methane fitted by the LF-based excess adsorption
model (Eq. (7)), respectively. Fig. 5(b) shows the comparisons
between the calculated adsorbed-phase volume Va−meso and
the volume of mesopores Vmeso. We can see that Va−meso is
much less than Vmeso, which seems reasonable. To prove the
rationality of this hypothesis, the number of adsorption layers
(n) should be further investigated. The average number of
layers be calculated by the following Eqs. (10) and (11) (Zhou
et al., 2003),

n =
Va−meso

1000×Smeso ×σ
(10)
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(a) (b)

Fig. 4. (a) The fitting results of the excess adsorption isotherms of the seven samples using DA-based excess adsorption model (solid lines) based on micropore
filling mechanism. The solid points represent the observed adsorption capacities under different pressures; (b) The comparison results between the micropore
volume (Vmicro) and adsorbed-phase volume (Vmicro) after assuming all the adsorbed methane molecules are filled in micropores.

(a) (b)

Fig. 5. (a) The fitting results of the excess adsorption isotherms of the seven samples using LF-based excess adsorption model (solid lines) based on micropore
filling mechanism. The solid symbols represent the observed adsorption capacities under different pressures; (b) The comparison results between the mesopore
volume (Vmeso) and adsorbed-phase volume (Vmeso) after assuming all the adsorbed methane molecules are monolayer-covered in mesopores.

Fig. 6. The calculated average diameter of an adsorbed molecule (σ ) as
shown by blue solid points and the average number of adsorption layers (n)
as shown by red solid points based on the hypothesis II.

σ =

(
16

ρaNA

) 1
3

(11)

where n is the average number of adsorption layers, Va−meso is
the adsorbed-phase volume in mesopores, Smeso is the surface
area of mesopores, σ is the average diameter of an adsorbed
molecule, and NA is the Avogadro number. Fig. 6 shows the
calculated results of n. The average number of adsorption
layers is ranging from 1.45 to 2.6 for all shale samples that are
always higher than one, so that multi-layer adsorption mech-
anism becomes the only explanation in mesopores. However,
this conclusion is contradictive with the assumption of the
monolayer coverage mechanism. Therefore, the hypothesis II
is also not valid.

In conclusion, neither of the above two hypotheses is
reasonable. That is to say, the supercritical methane adsorption
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Table 2. Fitted parameters by the novel DA-LF adsorption model proposed in this paper (Eq. (12)) for the seven samples.

Model Parameter X2-1 X2-2 X2-3 X2-4 X3-1 X3-2 X3-3

DA-LF

n0 0.098 0.112 0.128 0.066 0.054 0.071 0.075

ρa 0.380 0.350 0.476 0.208 0.258 0.290 0.277

D 0.011 0.009 0.010 0.069 0.062 0.068 0.044

k 2.851 3.088 2.833 2.071 2.381 2.261 2.214

nL 0.029 0.031 0.030 0.008 0.026 0.043 0.010

b 0.222 0.160 0.208 0.139 7.836 0.047 0.092

m 2.203 2.205 2.033 5.056 0.225 0.010 2.295

RSS 1.25×10−6 9.97×10−7 1.15×10−6 7.92×10−7 4.22×10−7 4.17×10−7 3.27×10−7

D-A

n0 0.146 0.154 0.177 0.088 0.076 0.096 0.081

D 0.078 0.055 0.055 0.214 0.071 0.082 0.061

k 1.861 2.080 1.986 1.42 1.972 1.802 2.020

ρa 0.316 0.326 0.398 0.188 0.256 0.284 0.292

RSS 1.65×10−6 1.61×10−6 1.67×10−6 1.73×10−6 6.71×10−7 8.86×10−7 3.32×10−7

L-F

nL 0.201 0.189 0.234 0.166 0.093 0.129 0.102

b 0.217 0.323 0.262 0.060 0.327 0.240 0.315

m 0.658 0.745 0.645 0.617 0.751 0.630 0.717

ρa 0.300 0.311 0.372 0.184 0.249 0.275 0.280

RSS 1.59×10−6 2.47×10−6 1.60×10−6 2.03×10−6 8.87×10−7 1.41×10−6 3.75×10−7

mechanism cannot be only micropore filling or only monolayer
coverage. Therefore, we speculate that the adsorption mech-
anism is the coexistence of micropore filling and monolayer
coverage.

4.2 The novel DA-LF adsorption model

Based upon the above analysis, we established a novel
adsorption model combining micropore filling and monolayer
coverage theory. This model is derived from the integration of
the D-A and L-F adsorption models and is written as

nex =

{
n0 exp

[
−D
[

ln
(

ρa

ρg

)]k
]
+

nL(bP)m

1+(bP)m

}(
1−

ρg

ρa

)
(12)

The unknown parameters (n0, nL, D, b, k, m, and ρa) can
be obtained from experimental adsorption data via the least-
squares fitting analysis by Eq. (12), and the fitting error can be
evaluated by the RSS (residual sum of squares). To minimize
the RSS error, the seven independent fitting parameters must
obey the following limits: 0 < n0 < 0.2 mmol/g, 0 < D < 1,
k > 1, 0< nL < 0.2 mmol/g, b> 0, m> 0. Once these unknown
parameters are determined, the adsorption capacities can then
be obtained for micropores and mesopores, respectively.

Fig. 7 shows the fitting results by the new DA-LF model,
and perfect fittings are observed. As shown in Table 2, the
value of n0 ranges from 0.054 to 0.128 mmol/g, which is
much larger than the nL value that ranges from 0.008 to 0.043
mmol/g. This indicates that the maximum methane adsorption
capacity in micropores is larger than that in mesopores.

Fig. 7. The fitting results of the excess adsorption isotherms of the seven
samples using the proposed DA-LF adsorption model (solid lines). The solid
symbols represent the observed adsorption capacities under different pressures.

Fig. 8. Comparisons of fitting error using DA-LF, D-A, L-F adsorption model.
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(a) (b)

(c) (d)

Fig. 9. The fitted excess adsorption isotherms of methane adsorbed in micropores and mesopores through micropore filling and monolayer coverage mechanism,
respectively.

Compared with the D-A and L-F models, the fitting error
of the new model is the smallest (Fig. 8) though the errors
of all models are very small. The most important criteria to
choose the suitable model is that it must correctly describe
the internal mechanism of supercritical methane adsorption
in shale. As mentioned above, the D-A model was estab-
lished based on the micropore filling theory, describing the
adsorption process in micropores (< 2 nm); whereas, the L-F
model was based the monolayer coverage theory, describing
the adsorption process in mesopores (2-50 nm). However,
pores in shale have a broad size distribution, ranging from
nanometers to micrometers. Therefore, in order to accurately
simulate the adsorption isotherms for the broad variety of pore
sizes, neither of the D-A model and the L-F model works
independently according to their assumptions. The proposed
DA-LF adsorption model combines these two theories, and
it covers the complete adsorption process in micropores and

mesopores. Therefore, the new model is more suitable for
shale.

4.3 Comparison of adsorbed capacity in micropores
and mesopores

The total adsorption capacity is the sum of adsorptions in
micropores and mesopores that are described by the first and
second terms in the proposed model (Eq. (12)). Fitting the
total adsorption isotherms using this model, we can obtain the
individual adsorption isotherms for micropores and mesopores.
Fig. 9 shows the methane adsorption isotherms in micropores
and mesopores. Similar to the total adsorption capacity, the
adsorption capacity in micropores also increases first and then
decreases with pressure. Although both the surface area and
pore volume of mesopores are larger than those of micropores,
the adsorbed capacity in micropores is much larger than that in
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(a) (b)

(c) (d)

Fig. 10. The calculated absolute adsorption isotherms of methane adsorbed in micropores and mesopores through micropore filling and monolayer coverage
mechanism, respectively.

mesopores. This indicates that the methane molecules are more
favorable in filling micropores than adsorbing on relatively
flat surfaces in mesopores because the attractive interactions
between methane molecules and micropore walls are much
stronger.

The absolute adsorption isotherms represent the actual
adsorption process in nanopores, and they can be obtained
from the excess adsorption isotherms through Eq. (3). As
shown in Fig. 10, all the absolute isotherms, including the
total adsorption, the micropore adsorption, and the mesopore
adsorption, increase monotonically with pressure whether it
is occurred in the micropores or mesopores. We can see that
at low pressures, while the adsorbed capacity in mesopores is
nearly nothing, the adsorption capacity in micropores increases
rapidly with pressure. At higher pressures, methane molecules
are adsorbed in micropores and mesopores simultaneously
until the saturation is reached.

The proportions of methane adsorbed in micropores and
mesopores can also be calculated, respectively. Fig. 11 shows

that the methane adsorption in micropores accounts for 77%
to 97% of the total adsorption capacity, with an average of
86%, which is far greater than that in the mesopores. The
primary force related to gas adsorption include the interactions
between gas molecules and pore surfaces, the interactions
between pore surfaces in extremely confined pores, and the
interactions between gas molecules themselves either in a
free gas state or an adsorbed state (Mosher et al., 2013).
We can infer that if the size of a micropore is comparative
with an adsorbed gas molecule, the forces from the opposing
walls will be more significant as well as forces from the
neighboring molecules adsorbed to the pore walls. Therefore,
the affinity of micropore surfaces is much stronger than that of
mesopores surfaces, leading to the fact that methane molecules
are primarily adsorbed in micropores.

4.4 Methane adsorption mechanism

The methane adsorption mechanism is a basic and key
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Fig. 11. Comparison between methane adsorption capacity in micropores and mesopores. The red line represents the ratio of methane adsorbed in micropores.

Low pressure Medium pressure High pressure

Methane molecule Micropores Mesopores

Fig. 12. Schematic diagram of methane adsorption process and mechanism from low pressure to high pressure based on discussions made in this study.

issue for understanding the shale gas storage and transport
in nanopores. In the literature, most researchers have studied
the methane adsorption mechanism by molecular simulations,
and they stated that methane is double-layer adsorbed in
nanopores. Mosher et al. (2013) simulated methane adsorption
in nanopores from 0.4 nm to 9 nm and observed two adsorption
layers at high pressures. Xiong et al. (2017) also indicated that
the adsorbed methane in nanopores changed from a monolayer
to multilayers with the increase of pore size or pressure.
However, the adsorbent materials used in simulation studies
are mostly homogeneous, and the pore is fixed at a single size
(Mosher et al., 2013; Chen et al., 2017; Xiong et al., 2017;
Huang et al., 2018), which are completely different from the

heterogeneous nature of shale.
In this study, we have taken into account the different ad-

sorption mechanisms of methane for different-sized nanopores,
and we established a new model to characterize the whole
adsorption process. Based on the above discussions, we hold
the opinion that the methane adsorption mechanism in shale
is: the majority of methane molecules are filled in micropores,
and the remainder are monolayer-adsorbed in mesopores. Fig.
12 shows the adsorption process of methane in nanopores for
three stages. When the pressure is low, methane molecules
are only adsorbed in micropores by filling; as the pressure
increases, methane molecules begin to invade and adsorb on
mesopore surface as monolayer coverage; when the pressure is
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high enough, micropores are fully filled by methane molecules,
and mesopores are partially covered until surface is saturated.

5. Conclusions
The conclusions can be drawn from the results of the

current study as follows:

1) From two hypotheses, we have proved that separate use of
the micropore filling theory or the monolayer adsorption
theory are unable to explain the true methane adsorp-
tion mechanism in shale. Methane should be not only
adsorbed in micropores (< 2 nm) but also in mesopores
(2-50 nm).

2) Combining the micropore filling and monolayer coverage
theories, we established a novel DA-LF model that can fit
the high-pressure isotherms quite well. The fitting error
of this new model is slightly smaller than the commonly
used D-A and L-F models.

3) The adsorption isotherms and capacity in micropores and
mesopores can be calculated using this new model sep-
arately. We also found that methane is mainly adsorbed
in micropores, and the adsorbed methane in micropores
accounts for 77% to 97% of the total adsorption capacity.

4) Considering different adsorption mechanisms for
different-sized pores, we can conclude that the methane
adsorption mechanism in shale is: the majority of
molecules are filled in micropores, and the remainder
are monolayer-adsorbed in mesopores.
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