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Abstract:
A numerical investigation utilizing the 3D displacement discontinuity method is performed
to examine the stress perturbations and induced displacements near a weak fault with
arbitrary orientations and dip, assuming zero shear stress and normal displacement. The
in-situ stress field near the fault is taken as known and varied with depth. The modelling
is constructed based on indirect boundary integral equations. In this work, the fault plane
is first modelled as a rectangular plane with negligible thickness between the adjacent
surfaces. The fault plane is then divided into numerous rectangular boundary elements
with imposed shear singularities on the surface, which is normal to the fault plane to
simulate a traction-free scenario. The numerical results of the total induced stresses and
displacements are then compared to the existing solutions of a penny-shaped crack for
validation purpose. With validated results, the paper moves on to the discussion of various
factors that have impacts on the induced stress and displacements, including: aspect ratio
which is defined by strike over dip; orientation of the strike on the horizontal ground
surface; as well as dip. The boundary integration method with modification is also used
to model an elliptical distribution of singularities with inner, corner, and edge elements to
accommodate more complex shape of a discontinuity; small differences are observed.

1. Introduction
Knowledge of in-situ stress is essential in civil, mining

and petroleum engineering, and many efforts have been made
towards its determination lately that provide new perspectives
(Dusseault et al., 1998; Li et al., 2000; Zhang and Yin, 2014;
Kaiser et al., 2016; Corkum et al., 2018; Faraji et al., 2021).
An in-situ stress field with three principal stresses aligned in
vertical and horizontal directions and constant stress gradients
is usually assumed to represent the stress condition where
faults are absent. However, at regions where a fault zone is
in vicinity, the alteration of direction and magnitude of the
principal stresses should be expected, which has been analyzed
by analytical or numerical methods under various settings
and assumptions (Homberg, 1997; Li, 2015; Anyim and Gan,
2020; Wang, 2020). Associated with stress perturbation, lo-
cally induced displacements and faulting behavior near fault
tips due to the in-situ stress have also been studied intensively
(Hazeghian and Soroush, 2017; Shi et al., 2020).

Consideration of perturbed stresses and displacements near

a fault is important in mining, geotechnical tunneling and
petroleum engineering as well as in earth science when the
behaviour of the rocks and soils is sensitive to local stresses.
Precise field measurement of local in-situ stress state in a
large area is either impractical or can be very costly (Zhao
et al., 2018; Kuszewski et al., 2021). Alternative analytical
and numerical analysis assuming relatively homogeneous and
isotropic strata is typical (Li, 2015). Before numerical methods
are used more frequently in recent decades, simple analytical
solutions of the stress perturbations were derived from the
theory of elasticity and the relationship between stress and
strain (Jaeger and Cook, 1969; Mandl, 1986; Pollard and
Segall, 1987). With the advancement of numerical modelling,
perturbation of in-situ stress by more complex settings of dis-
continuities has been evaluated, including stress perturbation
near dipping fault (Hazeghian and Soroush, 2017; Lobatskaya
et al., 2018; Wang, 2020), fracture localization along faults
with varying friction (Cooke, 1997), undersea geo stress field
(Li, 2015), and disturbed stress field near discontinuous faults
(Segall and Pollard, 1980). Among these efforts, various
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Fig. 1. Model of fault with far-field stresses.

numerical methods have been applied, including finite element
method (Henk, 2004; Lobatskaya et al., 2018; Wang, 2020),
distinct element method (Homberg et al., 1997; Hazeghian and
Soroush, 2017; Gao et al., 2021), displacement discontinuity
method (Ritz et al., 2012; Li, 2015), and boundary element
method (Brady, 1978; Beer and Poulsen, 1994; Ramos and
Daros, 2021).

In this paper, we focus on investigation of the impacts of
various parameters influencing the stress perturbation near a
weak fault, the most drastic scenario of alteration of the stress
field in terms of principal stress orientation. A weak fault is
found at a fault region where its shear strength is too low to
suppress the applied shear tractions, thus unable to restrict the
reorientation of the induced principal stresses (Kuwahara et
al., 2021). As an example, the San Andreas Fault in California
has been characterized as a weak fault with a shear strength
as low as 20 MPa. With such low frictional strength of
the fault, it shows significant stress rotation (Rybicki, 1995;
Fulton et al., 2009). The weakness of a fault can be attributed
to several reasons, including earthquakes, decrease of the
confining pressure due to near-lithostatic fluid pressure, and
pressure solution (Streit, 1997). The decrease of shear stresses
may vary between less than 10 to 40 MPa depending on the
nature of the earthquake and the fault system itself (Bletery et
al., 2017; Zalohar et al., 2020). In order to simulate the most
drastic scenario of a weak fault, the coefficient of friction is
taken to be zero for all simulations conducted in this paper.

3D displacement discontinuity method (DDM) as a modifi-
cation of the boundary element method, with proved efficiency
in simulating the mechanical behaviours around thin, slit-
like openings or cracks in mining and petroleum engineering
(Crouch and Starfield, 1983; Fotoohi and Mitri, 1990; Verde
and Ghassemi, 2015; Yin et al, 2016; Shen and Shi, 2019), will
be employed to carry out numerical experiments on different
scenarios of investigations, including the impacts of aspect
ratio, dip, strike, and the rectangular/elliptical shaped fault
plane.

2. Methodologies
The elastic law is the fundamental for the numerical

computations of DDM, which expresses induced stresses and
displacements at any given point on the interior surface.
Consider a model as illustrated in Fig. 1 for a fault with
arbitrary strike direction and dip, bounded by domain with
a global coordinate system of (X , Y , Z).

Compared to the lateral extent of a fault plane, the thick-
ness is small enough to be considered negligible. Thus, the
3D boundary S becomes two planar surfaces that can be
differentiated with subscripts + and −, in an infinite body
governed by the global coordinate system. In order to proceed
with the numerical analysis using DDM, S is discretized
into finite numbers of planar displacement discontinuty (DD)
elements. A rectangular DD element has uniform traction and
displacement components, while a non-rectangular element
has nonuniform distributions (Brady, 1979; Wu and Olson,
2015;). Each element is assigned with a local coordinate
system (x′, y′, z′) depending on its angle of rotation. In
addition, each element has two surfaces normal to its local
z′-axis: S

′+ and S
′−, as shown in Fig. 2. The figure depicts

the general configuration for a rectangular DD element and
its two surfaces, for which the displacement discontinuities
along the local coordinate axes are defined as:

Dx =u−−u+

Dy =v−− v+

Dz =w−−w+

(1)

where u, v and w are the displacements along each local axis.
This paper will focus on the scenario of a weak fault system

without normal displacement, but only shear displacements
across the fault plane. Thus Dz equals zero; only Dx and Dy
are required to characterize such configuration.

2.1 Formulation of 3D DDM
The presence of the shear displacements and zero normal

displacement generate shear traction-free surfaces upon the
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local axis of each DD element representing a weak fault. To
replicate such scenario, it is necessary to apply a fictitious
distribution of shear singularities on each element so that the
shear stresses on the plane normal to the local z′-axis, τyz and
τxz, are eliminated. Based on Kelvin Equations, Brady (1979)
has derived expressions for stresses and displacements due
to such shear singularities, Sx and Sy, as shown in Eq. (2),
corresponding to a discontinuity as shown in Fig. 1.
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Fig. 2. 3D rectangular DD element.
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(2)

where υ is Poisson’s ratio, G is modulus of rigidity, and R is
defined as:

R =
√

x2 + y2 + z2 (3)

Using Eqs. (2) and (3), the following resultants can be
calculated for each DD element: the magnitudes of three
induced normal stress components along the global axes,
σx, σy, σz; the magnitudes of three induced shear stress
components on the global axial planes, τxy, τxz, τyz; the three
displacement components with respect to the global axes, U ,
V , W .

2.2 Modification for elliptical plane
Equations given in above section are sufficient to simulate

a rectangular fault plane. Now consider an elliptical-shaped
penny crack, as shown in Fig. 3, where the corner and
edge elements do not fully overlap with the area of each
corresponding rectangular DD element.

It is observed that the DDM rectangular elements can be
subdivided into three categories as shown in Fig. 4: inner,
edge, and corner element.

The inner element, for which local and global axis share
the same orientation, does not need further modifications from
Eq. (2). For the edge element which is depicted in Fig. 4(b),
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Fig. 3. Illustration of elliptical-shaped penny crack.

shape. The resultant singularity intensity on the edge of the
element at point (x

′
1, y

′
1), t2, can be expressed in the following

terms derived by Brady (1979):
a quasi-elliptical distribution of the shear singularities is

used to approximate the change in intensities due to the
elliptical

t2 = t1

[
0.188+

0.812
x′22

(
2x
′
2x
′ − x

′2
)]

= t1 f1(x
′
)

0≤ x
′ ≤ x

′
2

(4)
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Fig. 4. Singularity intensity variations over (a) Inner, (b) Edge, and (c) Corner element.

where t1 is shear singularity intensity at point (x
′
2, y

′
2); x

′
is

the x coordinate on the center of the element, relative to the
local axis.

The above stated distribution induces a stress component,
σ , at any point of interest i with a coordinate of (xi, yi, zi) on
the global axis, which is expressed as:

σ = t1
∫ x

′
2

x′1

∫ y
′
2

y′1
f1(x

′
) f2(x,y,z)dx

′
dy
′

(5)

where

x = xi− x
′

(6)

y = yi− y
′

(7)

z = zi− z
′

(8)

f2(x,y,z) is the expression of induced stress and displacement
due to shear singularities that can be found in Eq. (2). The
double integral can be solved either analytically or numeri-
cally, depending on the desired level of accuracy.

The modification of the quasi-elliptical distribution of shear
singularity intensity on an edge segment should be applied to
both adjacent edges for a corner segment, as illustrated in
Fig. 4(c). To express the elliptical paraboloidal distribution
superimposed on a uniform distribution for shear singularity
intensity on a corner segment, Brady (1979) has derived the
following equation:

t2 =t1

[
0.188+0.812

(
2+ cos(2θ)

2x′2
x
′
+

2− cos(2θ)

2y′2
y
′

−2+ cos(2θ)

2x′2
x
′2− 2− cos(2θ)

2y′2
y
′2 +

x
′
y
′

x′2y′2

)]
=t1 f3(x

′
,y
′
)

(9)

where θ = y
′
2/x

′
2.

Similar to that composed for the edge element, the stress
and displacement components induced by the modified shear
singularity intensity t2 are obtained by integrating over the area
of the corner element with respect to its local is, as below:

σ = t1
∫ x

′
2

x′1

∫ y
′
2

y′1
f3(x

′
,y
′
) f2(x,y,z)dx

′
dy
′

(10)

2.3 Numerical procedure for DDM
With the equations derived for the induced stresses and

displacements due to a point shear singularity applied to each
DD element, and given that the fault plane has been divided
into a total of n rectangular elements, the stress transformation
took place at an arbitrary point of interest i on the global
axis due to the distribution of shear singularities over the fault
plane is the sum of stress perturbations on all n elements. As
an example, Eq. (7) expresses the relationship as:

σxi = [As][S
′
] (11)

where [As] is the coefficient vector with an order of [i,n]; S
′

is
the vector of shear singularities consisting of distributions on
xz and yz planes which can also be written as [Sx,Sy], with an
order of [n,2]. Same relationship can be found for the rest of
five stress components and three displacement components.

An equality is established between the sum of shear
stresses at the center of each DD element and the assumedly
known far field shear stresses on the same plane. This equality
can be expressed in the following terms:

[COEs][S
′
] = [ps] (12)

where [COEs] is a square matrix of order 2n, which can also

be written as
[

Fs 0
0 Es

]
, determined by the same method as

stated in Eq. (7); [ps] is a column vector of known far field

stresses, which can also be written as
[
−pxz
−pyz

]
.

The only unknown in the above equation is the shear
singularities for each DD element, which can be solved by
Gauss-Siedel iteration. MATLAB’s built-in matrix solver with
proven efficiency and accuracy is utilized in this paper to
perform the calculations.

3. Validation
Due to lack of analytical solutions, the resulted induced

stresses acquired using DDM in this paper are compared to
existing sets of numerical simulations for stress distributions
evaluated in the same scenarios. The comparable solutions
are obtained through a model designed by Brady (1979)
simulating a mining excavation around openings in a tabular
orebody using boundary element method.

The scenario described by Brady is a square slot in an
infinite medium, oriented in the same direction as the global
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axis of the fault plane. The far field stress state assigned to the
simulation has a magnitude of unity for pxz, while the other
five stresses are zero. This is similar to the scenario of a zero-
strike, zero-dip, squareplane discontinuity on the surface. The
variation of induced stress τxz is plotted against X-axis over
half of the length of the fault plane with values of Y and Z
for the observation points be zero, as shown in Fig. 5.

The modulus of rigidity is taken as 40 GPa, while the
Poisson’s ratio is 0.25. The square fault plane is subdivided
into 110 DD elements with equal length and width, which
is both computationally efficient and sufficient to represent
the entire surface. It is observed that the results from both
programs are in good agreement and indicates a satisfactory
performance of the developed model for the analysis of
induced stresses.

4. Numerical experiments
For the following simulations, the configuration presented

in Fig. 6 is used. The length of the strike is taken as 2 km,
which implies that xc, or half-length of the fault strike, is
1 km in length. The strike direction is measured counter-
clockwise from the positive X-axis, and the dip is measured
with respect to the XY plane, the horizontal plane on the top
of the fault. Limestone is chosen to be the sample rock with

mechanical properties given by Lama and Vutukuri (1978): the
density of the rock is 2700 kg/m3, with an average Young’s
modulus of 60 GPa and Poisson’s ratio is 0.25. Both cohesion
of the discontinuity and coefficient of the internal friction are
considered as zero. The following in-situ stress state evaluated
upon the horizontal plane is used to model the fault with
respect to its global axis: 80 MPa in X-direction, 50 MPa
in Y -direction, and 60 MPa in Z-direction. Increase of in-situ
stresses in the far field over depth is described by a gradient
of 27.0 kPa/m. The assumed principal stresses correspond to
a thrust faulting stress regime of the far field, for which the
lowest principal stress is perpendicular to the horizontal plane
(Anderson, 1951).

An initial configuration of a zero-strike rectangular fault
plane with the strike direction parallel to the global X-axis and
a dip of 60◦ is simulated with the DDM model as the reference
case, as shown in Fig. 7. The six contour plots illustrate
the spatial distributions of the magnitudes of three induced
principal stresses with varying orientations with respect to the
global stress field, denoted by sigma 1, sigma 2, and sigma
3; as well as the three displacement components along the
corresponding global axes, U , V , W , respectively. The induced
principal stress sigma 1 and displacement U both show a point-
reflection nature about the midpoint of the fault strike line;
rough symmetry can be observed for the remaining induced
stresses and displacements about the strike line. Various spatial
distributions for the above reference case reveal the difference
in results for each comparison that will be presented in the
later sections, where the observation points are placed on the
sampling line shown as red dotted line in Fig. 7, parallel to
the global Y -axis with X values equal to zero. In the following
sections, series of 1D plots consisting of the three induced
stress components and three displacement components will
be generated instead of 2D contour plots. This will help to
better visualize the differences between various scenarios by
changing the aspect ratio, dip, strike direction, as well as the
geometrical configuration of the modelled plane.

4.1 Impact of aspect ratio of the fault
The aspect ratio is defined as the ratio of fault’s total depth

over the length of the strike line; in other words, yc over xc as
illustrated in Fig. 6. To examine the impacts of aspect ratio,
the simulations of induced principal stresses and displacements
using the DDM discussed in this paper are carried out for a
rectangular fault plane, as shown in Fig. 8, with the strike
direction equal to zero and a dip of 60◦ for the following
variations of aspect ratios: 0.5, 1, 2, and 5. Due to the presence
of singularities, the values between (-0.6, 0.6) are excluded.

From Fig. 8, the results show a prominent asymmetry on
the hanging wall and the footwall. The reverse in magnitudes
along the opposite side of the fault can be interpreted as a
reverse in the orientation of the induced principal stresses
(Homberg et al., 1996). For observation points located on
the sampling line that is perpendicular to the strike line, the
deviations for both stresses and displacements from the far-
field stresses and zero line, respectively, increase as the aspect
ratio becomes larger. As the aspect ratio becomes even greater,
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Fig. 9. Induced principal stresses and displacements near a zero-strike, square fault plane with varying dip angles.

with a drastic increase from 2 to 5 shown in Fig. 8, its impact
on the induced stresses and displacements largely decreases
compared to the cases where the aspect ratio increases from 1
to 2, or from 0.5 to 1. It should be noted that this impact cannot
be demonstrated in plane-strain assumption based analysis, and
therefore cautions should be taken in any 2D analysis of in-situ
stress perturbation near a fault.

4.2 Impact of dip angle of the fault
The dip of the fault, as illustrated in Fig. 9, is assessed

for its impact on the induced stresses and displacements. The
simulations are carried out for a zero-strike, square fault plane
with the following dip angles: 30◦, 45◦, 60◦, 90◦.

As seen in Fig. 9, for a thrust-faulting stress regime of
far field, asymmetry is observed for all induced stresses and
displacements along the opposite walls of a simulated fault.
Despite its impact on each parameter to different extents
and even in opposite trends in some cases, the dip angle is
clearly influencing the induced stresses and displacements.

Note that for the case of displacement W, where increasing dip
angles always led to larger displacements on the same point
of observation along the sampling line. It should be noted that
such impact of dip angle from a 2D analysis of in-situ stress
perturbation near a fault may be derived differently due to the
simplification of the stress state.

4.3 Impact of the strike of a fault
According to Jaeger and Cook (1969), the pre-existing

planes of strike can be reactivated when external stresses are
applied at certain directions. Simulations of a square fault
plane with a dip of 60◦ are conducted for various strike
directions that are illustrated in Fig. 10.

The following trends can be observed from Fig. 11, where
the induced stresses and displacements due to the presence of
a fault with strike directions of 45◦, 135◦, 225◦, and 315◦

are plotted upon the sampling line: fault pairs with strike
directions of 135◦ and 315◦, as well as 45◦ and 225◦, show
prominent symmetry about the midpoint of the strike line
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Fig. 10. Variations of strike direction used for the simulations carried out using a square fault plane with 60◦ of dip. (a) 2D plan view on the plane; (b) 3D
model.
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Fig. 11. Induced principal stresses and displacements near a square fault plane with varying strike direction.

on the opposite sides of the fault, for both induced stresses
and displacements. In addition, for sigma 2 and sigma 3, as
well as displacements V and W , the results are identical for
fault pairs with strike directions of 45◦ and 225◦, as well as
135◦ and 315◦. This relationship was revealed in Fig. 7 that
demonstrated the spatial distributions of in-situ stress state:
sigma 1 and U bare point reflection in the center of the
strike line, while the rest of the stresses and displacements
are symmetrical about the strike line.

4.4 Impact of the shape of an elliptical fault plane
As discussed in the previous section, a modification is

available for an elliptical discontinuity surface, compared to
a rectangular plane that has been used for the previous dis-
cussions. A simulation of induced stresses and displacements
near a fault with aspect ratio equals unity is conducted for
rectangular and elliptical modelling, as shown in Fig. 12. To
accommodate the differences drawn from rotating directions
of principal stresses, the model is constructed to simulate a
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Fig. 12. Induced principal stresses and displacements near a fault with a dip of 60◦.

fault with a dip of 60◦ and a strike direction of 0◦. The
spatial distribution of in-situ stress state for this configuration
simulating a rectangular plane is illustrated in Fig. 7.

Similarities are observed for induced principal stresses for
observation points on the sampling line; the average differ-
ences between the two models are below 0.7%. On the other
hand, the induced displacements show significant differences,
particularly for the vertical displacement perpendicular to the
ground, where the maximum difference is 26.2%. This is
noteworthy for monitoring the faulting process in earth science
and suggests that the shape of the fault might be taken into
consideration. The induced displacements for the rectangular
model are larger than the elliptical model in both cases, which
is a reasonable conclusion since the area of applied shear
singularities for the rectangular fault plane is larger than the
elliptical fault plane given the same fault width and depth, as
illustrated in Fig. 3.

5. Conclusion
In this paper, a 3D DDM is developed to study the impacts

of various parameters on the induced stress and displacements
near a weak fault zone. With modifications implemented,
the model can simulate both rectangular and elliptical fault
planes with varying configurations including aspect ratio, dip
angle, strike direction, and in-situ stress states before the
perturbation. Numerical experiments under a thrust-faulting
regime based on the developed model led to the following
conclusions:

1) The deeper a fault penetrates in dip direction, or the
shorter a fault strike line is compared to its depth, the

larger the in-situ stress perturbation will be locally. This
impact can be reduced as the aspect ratio increases in
magnitude.

2) The dip angle of a fault plane clearly influences stress
states and deformations near an fault, without an uniform
trend observed.

3) Fault planes that share the same strike line and opposite
dipping directions have same degree of perturbations on
the opposite side of the fault. Fault pairs with strike
directions that are symmetrical by the local X-axis bare
identical degree of perturbations for its in-situ stress state
that has symmetrical spatial distribution.

4) Models based on fault planes with elliptical and rectan-
gular configurations show virtually identical results for
induced stresses but much more significant differences
for the displacements; induced displacements from the
rectangular model always appear to be larger than the
elliptical model in terms of magnitudes. The selection of
model can be made based on the characterization of the
discontinuity geometry.

These findings provide useful references for local in-situ
stress perturbation characterization and faulting monitoring in
mining, petroleum, and civil engineering as well as in earth
science, where results can vary when impacts of aspect ratio,
dip and strike angle are not well considered.
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