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Abstract:
Nowadays, enhanced oil recovery using nanoparticles is considered an innovative approach
to increase oil production. This paper focuses on predicting nanoparticles transport
in porous media using machine learning techniques including random forest, gradient
boosting regression, decision tree, and artificial neural networks. Due to the lack of
data on nanoparticles transport in porous media, this work generates artificial datasets
using a numerical model that are validated against experimental data from the literature.
Six experiments with different nanoparticles types with various physical features are
selected to validate the numerical model. Therefore, the researchers produce six datasets
from the experiments and create an additional dataset by combining all other datasets.
Also, data preprocessing, correlation, and features importance methods are investigated
using the Scikit-learn library. Moreover, hyperparameters tuning are optimized using the
GridSearchCV algorithm. The performance of predictive models is evaluated using the
mean absolute error, the R-squared correlation, the mean squared error, and the root mean
squared error. The results show that the decision tree model has the best performance and
highest accuracy in one of the datasets. On the other hand, the random forest model has
the lowest root mean squared error and highest R-squared values in the rest of the datasets,
including the combined dataset.

1. Introduction
In the past few decades, there was a growth in the

worldwide energy demand, including oil, natural gas, and coal.
There is a continuous escalation in the world energy demand
and constant progress in technology development for exploring
new reservoirs or improving the techniques used in enhanced
oil recovery (EOR) (Kong and Ohadi, 2010). Nanoparticles
are used in EOR due to the difficulty of finding a new source
of hydrocarbon as most of the oil fields have 60 to 70% of
hydrocarbon is not extracted (Li, 2016). Silica is a form of
nanoparticle that is environmentally friendly, has a natural
structure similar to sandstone oil reservoirs, and can increase
oil production by increasing the recovery factor. The nature
of nanoparticles allows the increase in the surface area and
can affect the molecules reaction. Although the small size

of nanoparticles facilitates its transfer in porous media, some
nanoparticles can be attached to rocks by surface filtration,
straining, and physicochemical filtration, which can severely
lower the porosity and permeability of the porous medium.
Hence, various factors can affect the nanoparticles transporta-
bility in the pore throats, such as nanofluid concentration,
injection rate, slug size, and particle size. Traditionally, numer-
ical simulations predict the hydrocarbon movement in porous
media, which has many uncertainties and complex numerical
techniques. Nowadays, machine learning is intensively used in
many disciplines, including petroleum engineering.

This paper uses numerical modeling of nanoparticles in
porous media based on filtration theory to generate datasets
for machine learning techniques to forecast the nanoparti-
cles transport. Due to the lack of published datasets about
nanoparticles transport in porous media as most datasets from
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Fig. 1. (a) Oil-wet and (b) Water-wet rocks.

petroleum engineering companies are confidential. This study
generates an artificial dataset based on mathematical contin-
uum models that are validated against experimental results
from the literature. The artificial dataset is used as input to
train machine learning models for nanoparticles concentration
predictions. The machine learning techniques that are used
in the prediction include decision tree (DT), random forest
(RF), gradient boosting regression (GBR), and artificial neural
networks (ANN).

The paper structure is as follows. Section 2 presents back-
ground information about EOR using nanoparticles. Section 3
discusses the research methodology. The mathematical models
of nanoparticles transport in porous media are presented in
section 4, and section 5 covers the machine learning modeling.
Section 6 discusses the evaluation metrics, and section 7
demonstrates our results and discussions. Finally, section 8
presents the conclusion.

2. Background

2.1 EOR
EOR is a term referred to as the technique of raising

the hydrocarbon amount produced from a well Alvarado and
Manrique (2010a). EOR allows altering the hydrocarbons’
actual properties, making it different from the secondary
recovery methods where water flooding and gas injection
are used for pushing the oil through the well (Van Poollen,
1980). EOR has three different techniques: thermal recovery,
chemical injection, and gas injection (Alvarado and Man-
rique, 2010b). The selection of the EOR method depends
on information obtained from the reservoir evaluation phase,
including reservoir characterization, screening, scoping, and
reservoir modeling and simulation. The most traditional EOR
types are thermal, chemical, and gas injection recovery. The
thermal recovery method focuses on injecting hot steam into
an injection well. The injected hot steam would reduce the
oil viscosity to improve flow in the reservoir (Alvarado and
Manrique, 2010b). The chemical injection method allows free-
ing trapped oil within the reservoir. In the chemical injection
method, chemical substances such as polymers that are long-

chained molecules are injected into the subsurface reservoir to
increase waterflooding efficiency and boost the effectiveness of
surfactants (Manning, 1983). Finally, the gas injection method
focuses on injecting natural gas, nitrogen, or carbon dioxide
into the reservoir. Injecting gas can mix with or dissolve within
the oil, reducing the oil viscosity and increasing the flow,
which would enhance the extraction (Manning, 1983).

2.2 Nanoparticles for EOR
Nanotechnology offers an innovative approach to govern

petroleum recovery processes. Nanoparticles help improve the
geo-mechanism of reservoirs due to modification in reservoir
properties such as reactivity of chemicals, active surfaces, and
a higher specific area (Kazemzadeh, 2019). Nanoparticles can
boost hydrocarbon recovery by modifying various rock and
fluid properties. Rock properties include conductivity modi-
fication, rock, and oil interaction, and wettability alteration.
Fluid properties include altering the fluid viscosity, reducing
the interfacial tension (IFT), and stabilizing the emulsion, lead-
ing to the additional recovery of more than 20% compared to
conventional chemical surfactant-polymer flooding. The high
temperature inside the reservoir decreases the efficiency of
surfactant polymer flooding. However, the nanofluid mixture
has a stable behavior at increased temperatures, making it
an effective solution for EOR techniques for high tempera-
tures (Lashari and Ganat, 2020). Nanoparticles can alter the
wettability of the rock from oil-wet to water-wet. In oil-wet
rock, oil tends to stick on the walls of the porous media, and
the waterflooding technique is not productive in these rocks
because oil droplets cannot move easily between the pores of
the matrix. However, the injection of nanopacticles can change
the wettability of rock to water-wet. In water-wet rock, water
tends to imbibe to the rock surface, and by water flooding, oil
moves toward the production well; thus, oil recovery increases.
Fig. 1. illustrates oil-wet and water-wet rocks.

2.3 Nanoparticles transport in porous media
The advancement in nanotechnology allows nanoparticles

to be injected into subsurface environments to transport them
into hydrocarbon reservoirs. Nanoparticles used in EOR pro-
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cess designed to travel far in the subsurface reservoirs. There-
fore, understanding nanoparticles’ properties are essential to
identify their mobility in the subsurface. Many experimental
studies investigated nanoparticles transport in porous media
and the retention mechanisms. Based on the application in
industries, many nanomaterials are tested for their mobility
in porous media. The porous media used for the laboratory
experiments of nanoparticles transport are columns packed
with sand grains or glass-beads. The main finding of such
experiments showed that nanomaterials retention in those
columns relies on the material properties in terms of size,
shape, and surface. Nanoparticles of similar types have effluent
histories affected by the flow velocity, the gain surface area,
and chemical additives in the solution (Zhang, 2012). Ju and
Fan (2009) conducted a theoretical and experimental study.
They stated that the concentration of silica nanoparticles
injected in core flooding for EOR was 2.0% to 3.0%. When
nanoparticles get adsorb onto a rock surface, they can change
their wettability and enhance recovery. Maghzi et al. (2014)
discussed the dispersion of silica nanoparticles in Polyacry-
lamide. The experiment conducted investigated the rheological
properties of Polyacrylamide and silica nanoparticles. They
found out an improvement in the fluid viscosity and the
polymers’ pseudoplastic behavior. A 0.1 wt% addition of
silica nanoparticles, leads to 10% additional recovery. Wasan
and Nikolov (2003) investigated the spreading behavior of
nanofluids mixed with surfactant on a solid surface. Ju and Fan
(2009) used experimental and numerical approaches to observe
the wettability modification that was caused by lipophobic
and hydrophilic polysilicon nanoparticles. They found out that
as the nanoparticles absorbed on rock grain, the wettability
changes. Ogolo et al. (2012) conducted experiments that
revealed that Aluminium oxide and Silicon oxide are effective
EOR agents. When combined with distilled water and brine
as dispersion agents, aluminum oxide nanoparticles increases
the oil recovery. Silicon oxide alters rock wettability and the
interfacial tension between oil and water, whereas aluminum
oxide decreases oil viscosity. Youssif et al. (2018) studied
the consequence of the injection of silica nanoparticles of oil
recovery. They used in their experiment silica nanofluid of
different concentrations ranging between 0.01 wt% and 0.5
wt%. They found out that as the nanoparticles’ concentration
increases until it reaches optimum, the recovery factor rises.
Khalilinezhad et al. (2016) used the multiphase simulator
University of Texas Chemical Compositional Simulator to
study the effect of nanoparticles on the flow behavior of
injected flood in porous media. They also used a polymer shear
thinning model to validate the adsorption of nanoparticles on
sandstone surface area and rheological results. They discov-
ered that incorporating nanoparticles into polymers decreases
sandstone retention and adsorption, while rheological activity
is shear-based (Khalilinezhad et al., 2017). Jeong and Kim
(2009) studied the transport of copper oxide (CuO) nanopar-
ticles in two-dimensional porous media. They examined the
aggregation of copper oxide nanoparticles in pores. They
discovered that nanoparticles’ accumulation and deposition
are affected by the nanoparticle’s flow velocity and surfactant
content. Moreover, they found out that the flow velocity

affects the density such that the flow velocity declines as the
number of aggregates enlarge. Shaniv et al. (2021) examined
the polystyrene nanoparticles transport in fully water-saturated
soil. They highlighted that particle size and surface texture can
affect polystyrene mobility in the soil. Abdelfatah et al. (2017)
used the combination of Darcy’s equation and convection-
diffusion equation to develop a mathematical model to inves-
tigate nanoparticles transport, interaction, and their behavior
with the fluid. They stated that various mechanisms play a
significant role in nanoparticles transport, such as permeability,
injection rate, concentration, and size. El-Amin et al. (2013,
2015) presented a numerical simulation and developed a math-
ematical model for nanoparticles water suspensions in two-
phase flow in porous media considering capillary forces and
Brownian diffusion. Through their studies, they monitored the
effect of injecting nanoparticles on the properties of solid and
fluid. El-Amin et al. (2012a, 2012b) developed mathematical
models for nanoparticles transport in porous media considering
the capillary forces, Brownian diffusion, and buoyancy.

2.4 Machine learning in petroleum industry and
EOR

Artificial intelligence (AI) is a discipline that employs
complex algorithms and networking tools to solve multidi-
mensional problems by imitating human brainpower allowing
machines to perform computational tasks (Yousef et al., 2020).
Machine learning is an area of AI that deals with algorithm
design and development to enable computers to use empirical
data and learn behaviors or patterns (Zhang et al., 2020;
Pirizadeh et al., 2021). The machine learning models find
relations between inputs and outputs. Machine learning can
solve regression, clustering, filtering, classification, and fore-
casting problems. Examples of machine learning techniques
are ANNs, RF, GBR, and DT.

Traditional mathematical models of reservoir fields are
used to simulate oil recovery processing. However, those
models are considered complex and have high computation
time (Daribayev et al., 2020). Thus, this leads to a longer time
to predict oil recovery. Parallel algorithms can be effective
in solving such problems considering the heterogeneity of
computing systems. Machine learning methods may also solve
these problems. The model is trained using historical oil
field data and synthetic data from surrogate models based
on injection and production wells. Irfan and Shafie (2021)
used deep learning and artificial neural networks to solve
and simulate fluid flow problems. You et al. (2020) proposed
a method for optimizing oil recovery, CO2 storage volume,
and reducing greenhouse gas emissions by integrating ar-
tificial neural networks and multi-objective optimizers. Van
den Doel et al. (2020) presented a method to monitor the
subsurface temperature remotely using low-frequency radar
pulses. They used feed-forward neural networks to extract the
modulation and measure the down hole temperatures. Yousef
et al. (2020) introduced a top-down model for a carbonate
reservoir in the Middle East that uses neural networks to
predict reservoir output three months ahead. Esfe et al. (2018)
proposed an artificial neural network model with two hidden
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Fig. 2. Research methodology flowchart.

layers for CuO/EG nanofluid dynamic viscosity prediction
over a temperature range of 27.5-50 ◦C. They evaluated
the developed model using mean relative error and the R2

value which was 0.0175 for mean relative error 0.999 and
0.0175 for R2. Changdar et al. (2020) used deep learning to
develop a modern approach of data driven viscosity prediction
model for water-based nanofluids. The feature selected were
nanoparticles density, size, volume fraction, temperature, and
viscosity of the base fluid. They found out that their proposed
model outperforms other traditional computer-aided models,
theoretical and empirical correlations by 99% accuracy.

Subasi et al. (2020) developed a machine learning model
based on stochastic gradient boosting regression for predict-
ing reservoir permeability based on well log information.
Their studies test several machine learning techniques such
as random forest, artificial neural networks, K-nearest neigh-
bors (KNN), support vector machine (SVM), and stochastic
gradient boosting. They found out that stochastic gradient
boosting achieved the highest performance in several evalu-
ation metrics tests, such as accuracy and root mean squared
error compared to other tested models. Moreover, El-Amin
and Subasi (2019) presented a new power-law scaling ve-
locity related to dimensionless time, and it is a function of
characteristic injection velocities. Their work used machine
learning techniques such as KNN, SVM, RF, and ANN to
forecast the dimensionless oil recovery time based on the oil
and rock primary physical data. Zhou et al. (2021) predicted
the nanoparticles transport behavior in porous media using the

data-driven approach. Their work filled all the missing data in
their dataset using random forest combining one-hot encoding.
They used the CatBoost technique combined with the synthetic
minority oversampling technique to perform the regression for
predicting the nanoparticles retention. Their proposed method
showed good performance in predicting retention.

3. Research methodology
The steps implemented in conducting this research are as

follows: first, the published experimental studies of the trans-
port of nanoparticles in porous media are collected. Second,
the literature of published numerical models of nanoparticles
transport in porous media is reviewed. Third, a mathematical
model is selected, and the finite difference method is used to
solve it numerically using MATLAB. In the fourth step, A
model validation against the experimental data is performed.
Once the model is validated, an artificial dataset is generated
to be used in machine learning. Finally, the predictive models
are evaluated using the performance evaluation metrics such
as root mean squared errors. Fig. 2. presents the flow chart that
summarizes the method adopted in conducting this research.

The first step in the machine learning process is to acquire
a dataset. The second step is the preprocessing phase. This
phase focuses on removing noise, segmentation, scaling, and
removing whitespace from the dataset. The third phase is about
feature selection and extraction. This phase is about reducing
the dimensionality and selecting effective features. The fourth
phase is selecting proper learning techniques. Phase five is
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Fig. 3. Flowchart of machine learning phases.

about learning or training using the training dataset. The sixth
phase is the evaluation. This phase is concerned with testing
the performance of the model on the testing set. Fig. 3 presents
the flowchart of machine learning phases.

4. Mathematical model of nanoparticles
transport

The colloid filtration theory is commonly used to simulate
nanoparticles or colloidal particle transport and attachment
in water-saturated porous media. The nanoparticles transport
model selection is developed based on colloid filtration theory.

4.1 Filtration mechanisms
There are three types of filtration mechanism of solid

particles during transport in porous media (fine migration in
porous media): surface filtration, straining, and physicochem-
ical filtration (McDowell-Boyer et al., 1986). Surface cake
filtration occurs when the size of the nanoparticles is greater
than the porous media grain. Accordingly, nanoparticles will
be unable to penetrate the pores and make a filter cake at the
surface of the grains, which can sharply reduce the medium’s
permeability. Straining filtration occurs when nanoparticles are
stuck in some nanopores in the media grain by straining at tiny
pore throats in the medium, thus reducing permeability. How-
ever, the decline in permeability caused by straining is limited
compared to the reduction caused by filter cake. In physical
and chemical filtration, when the size of the nanoparticles is
smaller than media grains, the nanoparticles will not block any
pore throat; however, the nanoparticles are retained because of
the physical and chemical interactions between the particle and
the medium (Fan, 2018). Most nanoparticles can move through
the pore throats in sedimentary rocks without straining due to
their small diameters compared to typical pore throats. Thus,
physicochemical filtration can occur. This physicochemical
filtration can lead to a strong van der walls attraction between
nanoparticles and between nanoparticles and the rock surface.
Therefore, there are two alternative nanoparticles transport
models. One model depends on colloid filtration theory, which
is used in this paper. The other model depends on chemical
adsorption caused by a change in chemical potential between
the fluid and solid phases.

Cushing and Lawler (1998) based the mathematical equa-
tion of the transport of nanoparticles in porous media on an

advection-dispersion equation with a filtration term inserted to
it for the mass balance of particles during transport:

∂c
∂ t

= D
∂ 2c
∂x2 − vp

∂c
∂x

(1)

∂c
∂ t

+
ρb

φ

∂ s
∂ t

= D
∂ 2c
∂x2 − vp

∂c
∂x

(2)

The second term in Eq. (2) is the filtration term represents
the nanoparticles retention:

ρb

φ

∂ s
∂ t

= kdepc (3)

where c is the concentration of nanoparticles in the carrier
fluid, s is the nanoparticles deposition concentration [mass of
nanoparticles/mass of porous medium], D is the dispersion
coefficient, ρb is the bulk density of the porous medium, vp
is the interstitial velocity, φ is the medium porosity, and kdep
is the particle deposition rate coefficient.

The colloid filtration model highlights that if the dispersion
concentration c is greater than zero, the retention concentration
of nanoparticles s will continue to increase without an upper
bound. Thus, with the continuous injection of dispersion, the
effluent concentration of nanoparticles will never reach the
injection concentration after a complete breakthrough. Ac-
cordingly, the colloid filtration model indicates an irreversible
deposition of suspended nanoparticles with a capacity limited
to the level when there is no room for filtration to occur.
As the deposited nanoparticles increase, the porous medium’s
permeability gradually reduces (El-Amin et al., 2015). This
research ignores the permeability reduction caused by the
nanoparticles deposition.

The chemical potential gradient drives the adsorption of
nanoparticles with diameters less than 10 nanometers. Park et
al. (2009) carried out a series of experiments that revealed that
chemical adsorption of nanoparticles could occur on surfaces
that obey the Langmuir isotherm at equilibrium, implying that
the adsorption mechanism modeled as a balance of adsorption
and desorption. Thus, Eq. (2) changes to:

∂ s
∂ t

= ka

(
1− s

smax

)
c− kd

s
smax

(4)

where ka is the adsorption rate coefficient, and kd is the
desorption rate coefficient. smax is the adsorption capacity on
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the substrate surface, In a Langmuir type of adsorption, all
adsorptions are reversible. Opposite to the colloid filtration
theory, no prediction happens for the permanent attachment
of nanoparticles after post flush. Benamar et al. (2007) used
the colloid filtration model with the filtration term Eq. (2) to fit
the effluent concentration histories of nanoparticles transport
through water-saturated columns and found similar results with
some experimental findings but not with others. Moreover,
Cushing and Lawler (1998) added the maximum retention
capacity to colloid filtration model with site blocking:

ρb

φ

∂ s
∂ t

= kdep c (1− s
smax

) (5)

where smax is the maximum retention capacity.
Liu et al. (2009) presented experimental work with results

showing that when they injected a post flush containing no
particles into the column, some attached particle was released.
The tails of the particle breakthrough curves are longer than
those of the tracer curve. Bradford et al. (2002) introduced
a detachment term to the colloid filtration model to explain
particle detachment from the solid phase:

ρb

φ

∂ s
∂ t

= kdepc− ρb

φ
kdets (6)

Wang et al. (2008) modified the colloid filtration term
by adding both the site-blocking with maximum retention
(adsorption) capacity and the detachment term for reversible
adsorption:

ρb

φ

∂ s
∂ t

= kdep c
(

1− s
smax

)
− ρb

φ
kdets (7)

As long as the dispersion concentration is above zero,
this filtration model assumes that the nanoparticles surface
concentrations s will rise with no upper limit. The particle
deposition rate coefficient, kdep is a function of porosity,
single-collector contact performance, grain size, and flow rate,
which affect the plateau value of the effluent history and
the nanoparticles deposition (Zhang, 2012.) Furthermore, the
model predicts continuous growth in the surface concentration
during the injection of nanoparticles if there is no intrinsic
capacity.

4.2 The traditional mathematical model
This paper uses the modified colloid filtration theory with

two sites model (Zhang, 2012). In the two sites model, the
adsorbed nanoparticles on one group of sites can be removed,
while the particles on the other group of sites are permanently
retained on the solid surface. Each of the two groups of sites
has its adsorption capacity. The shape of the surface where the
nanoparticle adsorption is one factor that affects nanoparticles
removal (Zhang, 2012). The colloid filtration model presented
as follow:

∂c
∂ t

+
ρb

φ

∂ s
∂ t

= D
∂ 2c
∂x2 − vp

∂c
∂x

(8)

ρb

φ

∂ s
∂ t

=
ρb

φ

∂ s1

∂ t
+

ρb

φ

∂ s2

∂ t
(9)

ρb

φ

∂ s1

∂ t
= kirr

(
1− s1

s1max

)
c (10)

ρb

φ

∂ s2

∂ t
= kra

(
1− s2

s2max

)
c − ρb

φ
krds2 (11)

where s1 is the reversible adsorbed nanoparticles concentration
on a solid surface, s2 is the irreversibly adsorbed nanoparticles
concentration on a solid surface, s1max is the capacity for
irreversible adsorption, s2max is the capacity for reversible
adsorption, krd is the coefficient of the desorption rate, kra
is the coefficient of the reversible adsorption rate, and kirr is
the coefficient of the irreversible adsorption rate.

The initial conditions

c(x,0) , s(x,0) , 0 ≤ x≤ t (12)

The boundary conditions are:

c(0, t) =

{
c0, 0≤ t ≤ ts
0, t > 0

}
(13)

∂c
∂x

∣∣∣∣
x=l

= 0, t ≥ 0

where ts is the nanoparticles dispersion slug size, l is the
column length.

5. Machine learning modeling
There are various techniques for machine learning, such

as random forest, decision tree, artificial neural network, and
gradient boosting.

5.1 Random forest
Breiman (2001) proposed the random forest algorithm as

a method for regression and classification. Random forest
is an ensemble learning method in which a large group of
decision trees works together as an ensemble to solve a
problem. Each decision tree generates a class prediction in
the random, and the class with the highest votes used for
perdition. The random forest method is derived based on the
idea of bagging. In classification problems, the algorithm uses
the majority of votes of the class label across trees in the
ensemble for the prediction. While in regression problems,
random forest calculates the prediction average between trees;
it merges several randomized decision trees and aggregates
their predictions by averaging El-Amin and Subasi (2020a).
Random forest increases the forecasting accuracy and reducing
variance by averaging several noisy and unbiased trees. A
random forest with a total number of trees has the following
variance:

ρσ
2 +

1−ρ

M
σ

2 (14)

where σ2 is the variance of an individual tree, ρ is the
correlation between the trees, and M is the total number of
trees in the ensemble.
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Fig. 4. Artificial neural networks activation functions.

5.2 Artificial neural networks
Artificial neural networks are an effective method for iden-

tifying and classifying complex patterns. ANN is a conceptual
model inspired by biological neurons and simulates the human
brain based on predicting patterns (Álvarez del Castillo et al.,
2012). An ANN model is composed of neurons, which are the
basic processing units. The neural network models have three
components: the learning algorithm, the network architecture,
and the transfer function (Lippmann, 1987). ANN is a set of
nodes known as neurons, weighted connections between these
neurons that can be adjusted during the network’s learning
process, and an activation function that determines each node’s
output value based on its input values.

In neural network model training, the main parameters
used to optimize the learning process are the learning rate,
momentum, and minimal error. The learning rate value range
between 0 and 1, and it specifies how fast the learning process
is performed. The momentum is used to smooth out the
optimization process by using a fraction of the last weight
change and adding it to the new weight change. The minimal
error is a stop criterion for the learning process. Computing a
new weight for a connection can be calculated as follows:

W = lmεWp (15)

where W is the new weight change, l is the learning rate, m is
the momentum, ε is the minimal error, and Wp is the weight
change of the previous cycle. Furthermore, artificial neurons
calculate the weighted sum of inputs wi and add a bias term
w0

y =
n

∑
i=1

wixi +w0 (16)

where wi is the weight, xi is the input features, and w0 is the
bias. If y > threshold, y will be activated, and if y < threshold,
y will not be activated. The three common activation functions
are:

Sigmoid activation function (sigmoid)
The values below 0 drop off in the sigmoid function, and

the values above 0 escalated to 1.

f (x) =
1

1+ e−x (17)

Hyperbolic tangent activation function (tanh)
The hyperbolic tangent function is an activation function

that is a smoother and zero-centered function whose range

lies between -1 to 1. Thus the output of the tanh function is
as follows:

f (x) =
(

ex− e−x

ex + e−x

)
(18)

Rectified linear unit activation function (ReLu)
ReLu is an activation function was proposed by Nair and

Hinton (2010) that works by thresholding values at 0 with the
function:

c(0, t) = max(0,x) =

{
xi if xi ≥ 0
0 if xi < 0

}
(19)

ReLu function gives an output x if x is positive and 0
otherwise. It is linear in the positive dimension when x ≥ 0,
but zero in the negative dimension when x < 0. Fig. 4 presents
the three activation functions.

The models typically have three layers: the input layers,
the hidden layers, and the output layers. The input layers
connect to the hidden layers, which process the data using
weighted connections (Hansen and Salamon, 1990). Hence the
input layer assigns weight to the input data and calculates the
prediction at the output nodes. Each neuron in the hidden
layer communicates with all neurons in the output layer
(Sahli, 2020). The tuning of weights between layers affects
the network’s efficiency (Mohaghegh and Ameri, 1995).

Moreover, the network learns to send training examples
to the network one by one (El-Amin and Subasi, 2020b).
As a result, ANN’s predictive ability grows. The activation
mechanism for the output layer is ‘pure linear’. Furthermore,
in a multi-layer context, neural networks are viewed as a
combination of regression and multivariate techniques.

5.3 Gradient boosting regression
Gradient boosting regression is a machine learning method

for building predictive models. It creates an ensemble of shal-
low trees in sequence, with each tree learning and improving
on the previous one. The advantage of using an ensemble
tree is that the averaging can minimize the variance. The
GBR model minimizes the loss function by growing trees
sequentially and updating the weight of the training data
distribution. It decreases model bias and variance through
forwarding stage-wise modeling and averaging (Zhang and
Haghani, 2015).
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Table 1. Performance evaluation metrics.

Mean absolute error (MAE) MAE= 1
n

n
∑

i=1
|actuali−predictedi|

Mean squared error (MSE) MSE= 1
n

n
∑

i=1
(actuali−predictedi)

2

Root mean squared error
(RMSE) RMSE=

√
1
n

n
∑

i=1
(actuali−predictedi)

2

R squared ( R2) R2 = 1− MSEmodel

MSEbase

5.4 Decision tree
A decision tree is a statistical model that measures a target

value using a collection of binary rules. Each tree is a simple
model with branches, nodes, and leaves. In machine learning,
DT models solve problems in classification and regression.
Moreover, the decision tree can implement a sequential de-
cision process. As the function gets evaluated from the root
node, one of the two nodes (branches) is chosen. Each node
in the tree is essentially a decision rule. This process gets
repeated until the final leaf, which is usually the target, is
reached.

6. Performance evaluation metrics
The evaluation metrics used to evaluate the machine learn-

ing models are mean-absolute error (MAE), R squared (R2),
mean squared error (MSE), and root mean squared error
(RMSE). Table 1 presents the various evaluation metrics.
The measurements are described by determining the numeric
predictions for each of the n test cases and the actual (ob-
served) and expected (estimated) values for test case i. The
following are some of the most common metrics for assessing
performance:

6.1 Mean Absolute Error
The mean absolute error is the absolute difference between

actual and predicted values. It indicates the magnitude of
error in the prediction. However, it does not explain the error
direction (e.g., over or under predicting).

6.2 Mean Squared Error
The mean squared error is similar to the mean absolute

error (MAE) in that it indicates the magnitude of the error.
MSE determines the average squared distance between the
actual and the expected values.

6.3 Root Mean Squared Error
The square root of the mean squared error is the root

mean squared error. RMSE highlights the average deviation of
predictions from actual values. In RMSE, the error is unbiased
and follows a normal distribution. For error presentation,
RMSE converts the units back to the output variables’ original
units.

6.4 R2 Correlation
The R2 metric indicates how well a series of forecasted

values match the actual values. In statistical literature, R
squared metric refers to the coefficient of determination. The
R squared value ranges between 0 for no-fit and 1 for perfect
fit; for example, with a value close to zero and less than 0.5,
the forecasts have an imprecise match to the actual values.

In the above table, n represents the number of samples in
the dataset, actuali is the actual value for the ith sample, and
predictedi is the predicted value for the ith sample.

7. Results and discussion

7.1 Traditional modeling results and dataset
generation
7.1.1 Collected experiments and measurements

This section discusses various laboratory experiments on
nanoparticles transport in water-saturated porous columns
found in the literature (Murphy, 2012). The nanoparticles
selected are made from different nanomaterials, such as silica
and iron oxide. The used porous media in those experiments
are columns filled with sand grains and saturated with water
or glass beads. This paper presents six different experimental
works of nanoparticles transport in porous media (Murphy,
2012). Table 2 demonstrates a summary of measured experi-
mental parameters used in Murphy’s experiments.

The selected experimental data from Murphy (2012) are
experiments 73, 75, 76, 91, 92, and 93 referred to in this
paper as experiments (i), (ii), (iii), (iv), (v), and (vi), re-
spectively. Experiments (i), (ii), and (iii) are conducted with
diluted nanoparticles with 5.0 wt%, 3.5 wt%, and 1.5 wt%,
respectively. Murphy injected Nexsil DP dispersion fluid at 1
mL/min in 100% Boise sandstone sand pack. In experiments
(iv) and (vi) with the 2.9 PV and 3.1 PV, he injected Coat-
ing I coated iron oxide nanoparticles with a concentration
of 0.1 wt% into a 100% Boise sandstone sand pack at 1
mL/min and 10 mL/min, respectively. Experiment (iv) targeted
the iron oxide nanoparticles retention at low flow rates and
low concentrations. In contrast, experiment (v) examined the
retention of iron oxide nanoparticles at high flow rates and
low concentrations. In the experiment (vi), Murphy used the
coated iron oxide nanoparticles with coating II with 3.8 PV
of 0.1 wt.% and injected them into a 100% Boise sandstone
sand pack. Murphy injected the diluted nanoparticles at a 10
mL/min rate, then reduced the rate to 1 mL/min at 2.5 PVI.
Murphy also investigated the effect of lowering flow rates on
the effluent history in the experiment (vi). Fig. 5 presents
a regeneration of the six experiments’ breakthrough curves
(Murphy, 2012).

Based on the published experiments of nanoparticles trans-
port in porous media, the retention of nanoparticles in columns
depends on the nanomaterial surface properties, shape, and
size. The effluent histories of the same type of nanoparticles
are affected by the collector surface, flow velocity, and chem-
ical components in the solution.
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Table 2. Experimental conditions of Nyacol DP nanoparticles (experiments: i, ii, iii) and Iron Oxide (IO) nanoparticles (experiments: iv, v, vi) (Murphy,
2012; Zhang, 2012).

Exp 73 75 76 91 92 93

Particle diameter [nm] 27 27 27 150 150 147

vp [cc] 14.9 14.6 14.6 14.5 14.8 15.5

Porosity [%] 51.4 50.3 50.4 46.4 47.3 50

Sand type Boise Boise Boise Boise Boise Boise

surface area SA [m2] 47.9 447.8 48 49.9 49 46.5

Flow rate q [cc/min] 1 1 0.88 1 8.33 9.3 then 1.07

interstitial velocity v [ft/day] 98.12 100.1 88.12 108.7 888 937 then 108

Slug size PV I [PVs] 3 3 2.64 2.9 3.108 3.8

Injection concentration CI [wt%] 5 2.84 1.5 0.1 0.1 0.1

Nanoparticle Nexsil DP Nexsil DP Nexsil DP IO (Coating 1) IO (Coating 1) IO (Coating 2)

grain size Dp [µm] 177-210 177-210 177-210 150-180 150-181 150-177

tarrival 1.06 1.04 1.09 2.6 1.86 1.85

Intrinsic adsorption capacity smax¸ [g/g] 3.31E-02 3.31E-02 3.31E-02 2.87E-01 2.87E-01 2.87E-01

Adsorption or attachment coefficient ka, [1/s] 8.00E-04 8.00E-04 8.00E-04 2.90E-03 2.90E-03 1.00E-01

Desorption or detachment coefficient kd , [1/s] 3.00E-03 3.00E-03 3.00E-03 2.00E-03 2.00E-03 1.50E-01

dispersion coefficient D, [m2/s] 1.88E-06 1.94E- 06 1.95E-06 3.16E-06 1.95E-05 2.2E-05

particle density [kg/m3] 1670 1670 1670 1670 1670 1670

matrix density [kg/m3] 2600 2600 2600 2600 2600 2600

column length [ft] 1 1 1 1 1 1
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Fig. 5. Regeneration of the breakthrough curves of the six experiments taking
from (Murphy 2012).

7.1.2 Simulation and Model Validation with Experimental
Data

This section uses the proposed modified colloid filtra-
tion model with two sites to simulate colloid nanoparticles
transport in porous media. The governing Eqs. (8)-(11), as
well as the initial and boundary conditions (12) and (13),
are solved numerically using the finite difference method and
implemented in MATLAB environment. Table 3 presents the
simulation parameters. The model variables used the given
experimental conditions to validate it. This paper compares the

simulated outcomes against experimental results and found out
that the simulated data showed a reasonable agreement with
experimental data, as shown in Fig. 6.

7.2 Machine learning results
7.2.1 Artificial datasets

After simulating the validated model with experimental
data from the literature, A finite difference method is used
to generate an artificial dataset of nanoparticles transport in
porous media for machine learning algorithms. The finite
difference method implemented in MATLAB is utilized to
produce six different synthetic datasets from each of the six
simulated experiments. Moreover, another diversified dataset
is built by combining the six datasets. Datasets of the experi-
ments (i), (ii), (vi), and the combined dataset are employed in
machine learning.

The artificial dataset is composed of 16 features or in-
dependent variables. The features are time in seconds (t),
pore volume (pv), space (x), the irreversible adsorption rate
coefficient (kirr), the reversible adsorption rate coefficient
(kra), the desorption rate coefficient (krd), the capacity for
irreversible adsorption (s1max), the capacity for reversible
adsorption(s2max), porosity (φ ), particle density (ρ), dispersion
coefficient (D), velocity (vp), flow rate (q1), surface area
(A), the reversible adsorbed nanoparticles concentration on a
solid surface (s1), and the irreversible adsorbed nanoparticles
concentration on a solid surface (s2). On the other hand,
the target variable or the dependent variable selected for
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Fig. 6. Experimental (points) and simulated (curves) of nanoparticles concentration profile at different times effluent histories of experiments (i), (ii), (iii),
(iv), (v) and (vi).
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Table 3. Simulation parameters in the two-site model.

Exp 73 75 76 91 92 93

vp [cc] 14.8E-06 14.8E-06 14.8E-06 14.8E-06 14.8E-06 14.8E-06

Porosity ϕ [%] 51.4 50.3 51.4 51.4 50.3 51.4

total surface area SA [m2] 4.49E-05 4.49E-05 48 49.9 4.49E-5 4.49E-5

q [cc/min] 1 1 0.88 1 8.33 9.3 then 1.07

interstitial velocity v [t/day] 98.12 100.1 88.12 108.7 888 937 then 108

Slug size PV I [PVs] 2.64 2.64 2.27 1.21 1.88 2.74

Injection concentration CI [wt%] 5 2.84 1.5 0.1 0.1 0.1

particle density, [kg/m3] 1.52 E-03 1.52 E-03 1.52 E-03 2.87E-01 1.52 E-03 1.52E3

dispersion coefficient, [m2/s] 2.1E-06 1.39E-06 0.8E-06 3.16E-06 0.7E-6 2.39E-6

s1max [g/g] 12.4% 12.4% 12.4% 5.75E-04 3.40E-04 12.4%

s2max [g/g] 1.5% 1.5% 1.5% 2.87E-01 7.60E-06 1.5%

Kirr [1/s] 8.0E-03 8.0E-03 8.0E-03 7.00E-03 8.00E-03 8.00E-03

Kra [1/s] 1.0E-05 1.0E-05 1.0E-05 1.20E-04 1.0E-05 1.0E-05

Krd [1/s] 1.4E-02 1.4E-02 1.4E-02 5.00E-04 1.4E-02 1.4E-02

Table 4. The statistical information of the dataset features of the experiment (i).

count mean std min 25% 50% 75% max
t 300 173.23441 0 150 300 450 600

x 0.15 0.089443 0 0.07 0.15 0.23 0.3

kirr 8.00E-03 5.20E-18 8.00E-03 8.00E-03 8.00E-03 8.00E-03 8.00E-03

kra 0.00001 0 0.00001 0.00001 0.00001 0.00001 0.00001

krd 1.40E-02 1.21E-17 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02

s1max 1.24E-01 8.33E-17 1.24E-01 1.24E-01 1.24E-01 1.24E-01 1.24E-01

s2max 1.50E-02 1.04E-17 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02

φ 186031 5.14E-01 1.11E-16 5.14E-01 5.14E-01 5.14E-01 5.14E-01 5.14E-01

ρ 1520 0 1520 1520 1520 1520 1520

D 1.88E-06 2.12E-22 1.88E-06 1.88E-06 1.88E-06 1.88E-06 1.88E-06

vp 3.09E-03 2.17E-18 3.09E-03 3.09E-03 3.09E-03 3.09E-03 3.09E-03

q1 1.39E-07 0.00E+00 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07

A 4.49E-05 3.39E-20 4.49E-05 4.49E-05 4.49E-05 4.49E-05 4.49E-05

s1 0.00005 0.000031 0 0.000019 0.000062 0.00008 0.00008

s2 1.10E-08 8.97E-09 0.00E+00 1.73E-09 9.74E-09 2.07E-08 2.37E-08

c 4.73E-01 4.76E-01 0.00E+00 3.76E-10 2.47E-01 1.00E+00 1.00E+00

prediction is the nanoparticles concentration (c). Tables 4 and
5 present the statistical information of the dataset features.
It includes all instances, the mean, the standard deviation,
the minimum value, the quarter, the half, the three quarters,
and the maximum value of each feature of datasets of the
experiment (i) and the combined datasets, respectively.

7.2.2 Data pre-processing

Data processing includes data cleaning, applying normal-
ization techniques, and removing outliers. In the generated
artificial dataset, they have no empty cells to drop. The 16 fea-
tures are utilized as input for all the techniques, and the target

feature selected is the nanoparticles concentration. Moreover,
the Standard Scaler function of the Scikit-learn library is
used to scale and standardize the values of the independent
variables. This process would keep the independent variables
within a similar range. The important features for each model
are identified to be used for predicting the target, which is
very important in assigning weights.

7.2.3 Data correlation

In the preprocessing phase of the dataset, it is ensured
that no empty cells. Moreover, the correlations between each
feature in the dataset are tested. Checking the correlations
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Table 5. The statistical information of the combined dataset features from all six datasets.

count mean std min 25% 50% 75% max

t 292.856123 170.427085 0.000000 145.500000 291.500000 437.500000 600.000000

pv 3.019029 1.756919 0.000000 1.499947 3.005049 4.510151 6.185350

x 0.150000 0.089443 0.000000 0.070000 0.150000 0.230000 0.300000

kirr 0.007829 0.000377 0.007000 0.008000 0.008000 0.008000 0.008000

kra 0.000029 0.000041 0.000010 0.000010 0.000010 0.000010 0.000120

krd 0.011686 0.005088 0.000500 0.014000 0.014000 0.014000 0.014000

S1max 0.081644 0.058641 0.000340 0.000575 0.124000 0.124000 0.124000

s2max 0.059057 0.103828 0.000008 0.015000 0.01500 0.015000 0.287000

φ 217186 0.510543 0.005107 0.503000 0.503000 0.514000 0.514000 0.514000

ρ 1259.483969 572.749952 0.287000 1520.000 1520.0 1520.0 1520.0

D 1.241718e-06 7.838905e-07 5.000000e-09 7.000000e-07 1.110000e-06 1.880000e-06 2.390000e-06

vp 3.092675e-03 1.734727e-18 3.092675e-03 3.092675e-03 3.092675e-03 3.092675e-03 3.092675e-03

q1 1.388610e-07 0.000000e+00 1.388610e-07 1.388610e-07 1.388610e-07 1.388610e-07 1.388610e-07

A 4.490000e-05 1.355256e-20 4.490000e-05 4.490000e-05 4.490000e-05 4.490000e-05 4.490000e-05

s1 0.000115 0.000185 0.000000 0.000016 0.000049 0.000079 0.000575

s2 2.652439e-04 7.314784e-04 0.000000 1.680945e-09 1.187305e-08 2.204130e-08 9.946130e-01

c 4.020986e-01 4.537503e-01 0.000000 3.543135e-08 5.370073e-02 2.630185e-03 1.000000

is vital for exploring the artificial dataset and identifying
the features that affect the target variable the most for the
prediction. Fig. 7 illustrates the visualization of the correlation
matrices through plotting a heatmap in Python developed from
the combined dataset. Fig. 7 shows that kirr, krd, and rho are
highly correlated, however, c is correlated with s1, s2, D, ρ ,
s1max, s2max, kirr, kra, krd , pv, and t.

7.2.4 Features’ importance

Feature importance referred to the techniques that give
a ranking to input features based on how effective they
are at predicting a target variable. In predictive modeling,
feature importance scores play an essential role in providing
insight into the data, insight into the model, and the basis
for dimensionality reduction and feature selection, increasing
the efficiency and effectiveness of a predictive model. Using
important features and having high scores while deleting
insignificant features can help in simplifying the developed
model, improve its performance, and speed up the modeling
process. Moreover, selecting the key features would help
avoid overfitting by reducing the number of features employed
for training. The importance of features for each machine
learning model is investigated to train the model. The Scikit-
learn library and feature importance function are applied for
calculating the score of each feature. Fig. 8 illustrates the
features importance score of DT, RF, and GBR models of
the combined dataset. It can be seen that the time t and x, D,
pv, s1, and s2 were important features used for predicting the
nanoparticles concentration in both DT and RF compared to
other features. The injection history is mainly measured by the
injection rate given by pore volume (pv), which is considered
an important feature, especially for the GBR machine learning

model.
The generated artificial datasets from the numerical simu-

lation results are employed in the machine learning algorithms.
Four different machine learning algorithms are used to design
the predictive models, including DT, ANN, GBR, and RF. The
datasets are divided into two subsets in a ratio of 80: 20. 80%
of the datasets are the training sets, the sets of samples used to
train the models, and 20% of the data is for testing. The test
sets were a collection of samples used solely to evaluate output
in unobserved data. This study utilizes Jupyter Notebook with
Python programming language for implementation. Jupyter
Notebook is an open-source web application to write live code
to build statistical and machine learning models and perform
numerical simulations (Mendez et al., 2019). The train test
split function from the Scikit-learn library is used to split the
dataset into training and testing. It generates four variables : x
train, y train, x test, and y test. The model is trained with x train
and y train, while the x test is used to evaluate the model on
the external testing set. Comparing the predicted value to the
actual value can identify the error and the model’s accuracy.

7.3 Machine learning results and discussion
This subsection presents the results of predicting nanopar-

ticles concentration in datasets from the experiment (i), (ii),
(vi), and the combined dataset of the six experiments using
the four machine learning algorithms: DT, GBR, ANN, and
RF. The performance of the models are evaluated using mean
square error, mean absolute error, R2 correlation, and root
mean squared error. It is found that DR model has the lowest
root mean square error and the highest R2 in the dataset of the
experiment (i). For datasets of experiments (ii) and (vi), RF
had the lowest root mean squared error value and the highest
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Fig. 7. Correlation Values between the dataset variables.
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Fig. 8. Features’ importance of DT and RF, and GBR models of the combined dataset.

R2 value. Moreover, in the combined dataset, it is found that
the RF model can reliably predict the nanoparticles’ concen-
tration with high accuracy and low error. RF has showed
a good performance by achieving the highest R2 value of
(0.999716) and the lowest RMSE of (0.007654). Moreover, the
DT model has high R2 squared value of (0.999507) and low
RMSR of (0.010076) compared to other models. Furthermore,
the predicted outcomes are compared with the actual for each
model by plotting the scatter plots, as demonstrated in Figs.
9-12 for the dataset of the experiments (i), (ii), (vi), and the
combined dataset respectively. The scatterplots between the
actual and the predicted nanoparticles concentration of RF
and DT models show a good linear correlation. The overall
results show that RF and DT models can accurately deal with
nanoparticles concentration prediction. Tables 6-9 present the
evaluation metric of all models of the four datasets.

7.3.1 Tuning the hyperparameters

Hyperparameters are the parameters that can be adjusted
and fine-tuned to improve the machine learning model’s per-
formance. Tuning the hyperparameters can improve the model
performance and reduce overfitting.
1) Random forest algorithm

Based on the RF features’ importance in Fig. 8, the signi-

Table 6. Model performance evaluation of dataset of the experiment (i).

Metric DT RF sc GBR sc ANN (tanh)

RMSE 0.001163 0.001783 0.017212 0.014800

MSE 0.000001 0.000003 0.000296 0.000219

MAE 0.000398 0.000198 0.006612 0.005813

R2 0.999994 0.999986 0.998692 0.999033
*sc: scaled dataset with standard scaler function.

Table 7. Model performance evaluation for the dataset of the experiment
(ii).

Metric DT RF sc GBR sc ANN (sigmoid)

RMSE 0.004825 0.004743 0.020561 0.022170

MSE 0.000023 0.000022 0.000423 0.000492

MAE 0.000519 0.000260 0.008206 0.006243

R2 0.999894 0.999897 0.998073 0.997759
*sc: scaled dataset with standard scaler function.

Table 8. Model performance evaluation of dataset of the experiment (vi).

Metric DT RF GBR sc ANN (sigmoid)

RMSE 0.000829 0.000561 0.017218 0.018258

MSE 0.000001 0.000000 0.000296 0.000333

MAE 0.000423 0.000202 0.009545 0.009762

R2 0.999997 0.999998 0.998571 0.998393
*sc: scaled dataset with standard scaler function.

Table 9. Model performance evaluation of the combined dataset.

Metric DT sc RF GBR sc ANN (sigmoid)

RMSE 0.010076 0.007654 0.089218 0.028778

MSE 0.000102 0.000059 0.007960 0.000828

MAE 0.001864 0.000862 0.050141 0.013217

R2 0.999507 0.999716 0.961272 0.995971
*sc: scaled dataset with standard scaler function.

ficant features for building the model are used. The key
features are t, x, D, pv, s1, s2, D, and ρ , to predict the
target c. In the RF technique, two hyperparameters are applied,
including the max features and the number of estimators. Max
features (number of features) that are used to construct the
predictive model. N estimator (number of trees) is used to
build the prediction model. In addition, the GridSearchCV
package of the Scikit-learn library is employed to find the
optimal hyperparameter values. The GridSearchCV method
tunes hyperparameter by performing an exhaustive search
of optimal parameters in a grid-wise manner. GridSearchCV
function can perform all possible pairwise computations of
the two hyperparameters. The number of computations is the
product of the parameter values. Running the GridSearchCV
for RF hyperparameters tuning, It is found out that the best
parameters that would give the highest accuracy of a score of
1.00 are using max features of 6 and n estimators of 80. Figs.
13 and 14 present the 2D contour plot and the 3D surface plot
of hyperparameter tuning of RF model with accuracy scores,
respectively.
2) Gradient boosting regression
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(a) (b)

(c) (d)

Fig. 9. Scatter plots of actual and predicted nanoparticles concentrations using different machine learning techniques DT, RF, GBR, and ANN of the experiment
(i) dataset.

(a) (b)

(c) (d)

Fig. 10. Scatter plots of actual and predicted nanoparticles concentrations using different machine learning techniques DT, RF, GBR, and ANN of the
experiment (ii) dataset.
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(a) (b)

(c) (d)

Fig. 11. Scatter plotx of actual and predicted nanoparticles concentrations using different machine learning techniques DT, RF, GBR, and ANN of the dataset
of the experiment (vi).

(a) (b)

(c) (d)

Fig. 12. Scatter plots of actual and predicted nanoparticles concentrations using different machine learning techniques DT, RF, GBR, and ANN of the
combined dataset of all the six experiments.
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Fig. 13. 2D contour plot of hyperparameters tuning of RF model.

Fig. 14. 3D surface plot of hyperparameters tuning of RF model with accuracy
scores.

The features that are used in training the GBR model
are t, x, D, pv, s1, s2, s1max, kirr, and s2max, which are the
key features presented in Fig. 8. the GridSearchCV function
is utilized for GBR hyperparameters tuning; it is found that
the best parameters that give the accuracy score of 0.9 are
max features of 6 and n estimators of 200. Figs. 15 and
16 present the 2D contour plot and the 3D surface plot of
hyperparameters tuning of the GBR model with accuracy
scores, respectively. Comparing between GBR models with
and without scaling the dataset. It is observed that without
scaling, the combined dataset has a RMSE of (0.139996) and
R2 of (0.904826). However, when the combined dataset is
scaled using the standard scaler function, better performance
for the predictive model is achived with a RMSE of (0.089218)
and R2 of (0.961272).
3) Decision Tree algorithm

The features that is selected to train the DT model based
on the important features presented in Fig. 8 are t, x, D, pv,

Fig. 15. 2D contour plot of hyperparameters tuning of GBR model.

Fig. 16. 3D surface plot of hyperparameters tuning of GBR model with
accuracy scores.

s1, s2, krd , and s1max. The features are standardized using
the standard scaler function and found out that there was
an improvement in the model performance. Using the Grid-
SearchCV method to tune the hyperparameter, it is remarked
that the best parameters are a max depth of 21 and max
features of 10, leading to an accuracy score of 1. The 2D
contour plot and the 3D surface plot of hyperparameters tuning
of DT model with the accuracy scores are shown in Figs. 17
and 18, respectively.
4) ANN optimization

The ANN model is built using the TensorFlow library with
one input layer, three hidden layers, and one output layer.
Standard Scaler function is used to scale the dataset. Different
three hidden layers with various number of neurons are utilized
in the ANN model. One model has three hidden layers with
six neurons each and with ReLu activation function. Another
ANN model is built using three hidden layers with 15 neurons
each and with ReLu activation function in the first two hidden
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Fig. 17. 2D contour plot of hyperparameters tuning of DT model.

Fig. 18. 3D surface plot of hyperparameters tuning of DT model with
accuracy scores.

layers and a sigmoid activation function in the last hidden
layer. A third neural networks model is built with three hidden
layers of six neurons each and ReLu activation function in
the first two hidden layers, and the third hidden layer with
tanh activation function. The model is compiled with adam
optimizer. Fig. 19 illustrates the scatter plot between the actual
and predicted data of the ANN models of different datasets
and with different activation functions: ReLu, sigmoid, and
tanh. While tables 10-13 present the performance evaluation
of the ANN models with different activation functions of
diverse datasets of experiments (i), (ii), (vi), and the combined
dataset. It is noticed that the third hidden layer with a sigmoid
activation function has better results in most datasets.

Our objective is to reduce the error concerning the weights
to develop an accurate and not-overfit model. Moreover, other
parameters that can be tuned to enhance the model perfor-
mance further are:

Table 10. Evaluation metric of ANN models with different activation
function of the dataset of the experiment (i).

Metric ANN (tanh) ANN (sigmoid) ANN (ReLu)

RMSE 0.014800 0.017889 0.016492

MSE 0.000219 0.000320 0.000272

MAE 0.005813 0.007737 0.007472

R2 0.999033 0.998588 0.998799

Table 11. Evaluation metric of ANN models with different activation
function of the dataset of the experiment (ii).

Metric ANN (tanh) ANN (sigmoid) ANN (ReLu)

RMSE 0.034156 0.022170 0.023138

MSE 0.001167 0.000492 0.000535

MAE 0.013908 0.006243 0.013118

R2 0.994682 0.997759 0.997560

Table 12. Evaluation metric of ANN models with different activation
function of the dataset of the experiment (vi).

Metric ANN (tanh) ANN (sigmoid) ANN (ReLu)

RMSE 0.029627 0.018258 0.036722

MSE 0.000878 0.000333 0.001348

MAE 0.017099 0.009762 0.020380

R2 0.995769 0.998393 0.993500

Table 13. Evaluation metric of ANN models with different activation
function of the combined dataset of all the six experiments.

Metric ANN (tanh) ANN (sigmoid) ANN (ReLu)

RMSE 0.033885 0.028778 0.034945

MSE 0.001148 0.000828 0.001221

MAE 0.017075 0.013217 0.015759

R2 0.994414 0.995971 0.994059

• Max depth: The maximum depth of an individual tree
in the ensemble. Increasing the depth will result in
overfitting.

• Learning rate: The rate of updating the weights. As the
learning rate increases, the model learns faster but with
the risk that the model might miss the global minima. As
the learning rate decreases, it could be difficult for the
model to converge. A learning rate of 0.3 is used in the
ANN model.

• N estimators: The number of trees used in the ensemble.

8. Conclusions
Nanotechnology is a promising tool for managing various

petroleum engineering problems. Nanoparticles can be used in
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“ReLu” activation function “sigmoid” activation function “tanh” activation function

ANN scatter plots for the dataset of the experiment (i)

ANN scatter plots for the dataset of the experiment (ii)

ANN scatter plots for the dataset of the experiment (vi)

ANN scatter plots for the combined dataset of the six experiments

Fig. 19. Pore fractal dimensions based on FHH model.

EOR to escalate oil production to meet the energy demand.
Nanoparticles can change the properties of the reservoir and
the formation; therefore, they are utilized in the area of EOR
through the injection of nanoparticles into the formation and
monitoring their impact on the recovery factor. Thus, this work
generates artificial datasets using the mathematical continuum
models validated against experimental results from the litera-
ture. The machine learning algorithms are performed on three
datasets, and another dataset is generated by combining all
the datasets. Scikit-learn library is used to investigate data
preprocessing, correlation, and feature importance of datasets.
Moreover, the GridSearchCV algorithm is applied to optimize
hyperparameters tuning. DT, RF, GBR, and ANN models are
applied to predict the nanoparticles concentration in porous
media. Furthermore, the performance of the predictive models
is assessed using mean absolute error, R-squared correlation,
mean squared error, and root mean squared error. It is found
that the RF models and DT achieved high performance to
predict the nanoparticles concentration for all the predictive
models from all the four datasets compared to other developed

forecasting models.
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