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Abstract:
It is now commonplace to deploy neural networks and machine-learning algorithms to
provide predictions derived from complex systems with multiple underlying variables. This
is particularly useful where direct measurements for the key variables are limited in number
and/or difficult to obtain. There are many petroleum systems that fit this description.
Whereas artificial intelligence algorithms offer effective solutions to predicting these
difficult-to-measure dependent variables they often fail to provide insight to the underlying
systems and the relationships between the variables used to derive their predictions are
obscure. To the user such systems often represent “black boxe”. The novel transparent
open box (TOB) learning network algorithm described here overcomes these limitations by
clearly revealing its intermediate calculations and the weightings applied to its independent
variables in deriving its predictions. The steps involved in building and optimizing the TOB
network are described in detail. For small to mid-sized datasets the TOB network can be
deployed using spreadsheet formulas and standard optimizers; for larger systems coded
algorithms and customised optimizers are easy to configure. Hybrid applications combining
spreadsheet benefits (e.g., Microsoft Excel Solver) with algorithm code are also effective.
The TOB learning network is applied to three petroleum datasets and demonstrates both its
learning capabilities and the insight to the modelled systems that it is able to provide. TOB
is not proposed as a replacement for neural networks and machine learning algorithms,
but as a complementary tool; it can serve as a performance benchmark for some of the
less transparent algorithms.

1. Introduction
The potential of neural networks and machine learning has

been recognised since the 1940s (McCulloch and Pitts, 1943;
Hebb, 1949; Farley and Clark, 1954; Ince, 1992 (with reprint
of Turing, 1948)). There have been many steps forward in their
development and application, notably the perceptron algorithm
(Rosenblatt, 1958), the backpropagation algorithm (Werbos,
1975), multi-layer perceptrons (Cybenko, 1989), feedforward
networks (Scarselli and Tsoi, 1998), variously driven by gra-
dient descent methods (Behnke, 2003), radial basis function
networks (RBFN) applying various radially symmetrical func-
tions applied to three network layers (Santos et al., 2013).
These advances have gradually transformed artificial neural
networks (ANN), and other neural networks, into popular and
widely applied system learning tools with a range of complex
deep learning capabilities (Schmidhuber, 2015). The number
of neurons employed influences issues associated with under-

fitting and over-fitting of the systems modelled (Aalst et al.,
2010). However, as such networks become more complex it is
more and more difficult to reveal their inner calculations, and
they become black boxes to many of the users that employ
them (Heinert, 2008). It is difficult and time consuming to
extract useful information and functional relationships about
how these complex algorithms are making their predictions
and the relative significance of the input variables to those
predictions. It is possible to extract functional relationships
from some such networks, but this transforms them into whit
boxes (Elkatatny et al., 2016), not fully transparent boxes.

Other machine learning techniques including support vec-
tor machine (SVM) (Cortes and Vapnik, 1995), least squares
support vector machine (LSSVM) (Suykens and Vandewalle,
1999), and fuzzy logic combinations with ANN such as
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Sugeno
and Kang, 1988; Jang, 1993) suffer from the same trans-
parency limitations as neural networks. Nevertheless, this lack
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of transparency has not inhibited these algorithms from being
widely and successfully applied, often hybridized with various
optimization algorithms, to improve predictions from various
oil, gas and other industrial systems (Li et al., 2013; Meng
and Zhao, 2015; Zamani et al., 2015; Choubineh et al., 2017;
Yavari et al., 2018). Indeed, there is a growing body of
research in the petroleum sector that enters dataset records
with multiple variables into opaquely coded soft-computing
machine learning and neural network functions (MatLab,
in particular), blindly accepting the results in many cases
without even checking the veracity of the input data values.
If these results demonstrate reduced prediction errors versus
traditional formulaic relationships, then such blind machine
learning is frequently claimed to provide a superior prediction
tool. Although the prediction results may be impressive from
such an approach, without understanding how those prediction
processes work in detail, or how the underlying variables
contribute to the predictions in relative terms, leaves significant
uncertainty about the underlying system. This leads to doubts
about how apparent performance improvements can be confi-
dently applied to and relied upon related systems or datasets.

The learning network methodology and algorithm de-
scribed here focuses on transparency of all calculations and
providing clarity regarding the relative contribution that each
variable makes to the prediction of the dependent variable
/objective function (OF). This transparent open box (TOB) net-
work makes no claims here in terms of improved precision of
prediction compared to other learning network methodologies,
but this learning network does provide fundamental insight
to the factors determining the level of precision it is able to
achieve. This makes it a useful complementary methodology
with which to benchmark the prediction performance of more
complex and opaque learning network algorithms. It also helps
to decide whether it is actually necessary and/or appropriate
to run more opaque learning algorithms, if a system can be
adequately modelled by a transparent alternative.

This paper is organized as follows: section 2 describes,
step-by-step, how the TOB learning network is constructed,
and tuned; section 3 describes how the TOB is optimized and
further tuned with the aid of sensitivity analysis; section 4
describes the application of the TOB algorithm to three quite
distinct oil field data sets; section 5 presents a discussion of
the potential benefits of the TOB algorithm and the type of
oil and gas datasets to which it could be beneficially applied;
section 6 draws conclusions for the study.

2. Description of transparent open box (TOB)
learning network methodology

The TOB learning network methodology involves a set of
simple, systematic and rigorous steps that enable its develop-
ment and progress in predicting the objective function of the
system being modelled to be clearly followed and interrogated.
There are fourteen steps divided into two stages:

1) building and tuning the network (steps 1 to 10 described
in Fig. 1);

2) optimizing the network and sensitivity analysis (steps
11 to 14, described in Fig. 2).

Step 1: setup a 2D array containing each of the data records
of the dataset in rows, each independent variable defining
the system to be predicted in columns, and the dependent
variable/objective function (OF) in the final column.

Step 2: sort and rank the records into ascending (or
descending) order of OF values. If there are many data records
with the same OF values, then one independent variable should
be selected as a secondary sorting criterion.

Step 3: calculate basic statistical metrics for each variable
covering the entire data set. These should include, minimum,
maximum, mean, variance (used for normalization) and a
range of percentiles available for use in clustering.

Step 4: Normalize all the data variables in the entire
dataset. Working with normalized data (i.e., between 0 and
1 or -1 and +1) removes scaling biases associated with the
different units associated with the variables.

X ′=(X- Xmin)/(Xmax-Xmin)provides normalized values
(X ′) in the range 0 to 1;

X ′= 2*[(X- Xmin)/(Xmax-Xmin)]-1 provides normalized
values (X ′) in the range -1 to +1.

Either of these normalization methods can be used, but
once selected the same method should be used consistently.

Step 5: repeat statistical analysis to calculate basic sta-
tistical variables on the normalized scale for each variable
covering the entire data set. Use these statistics to assign each
independent variable to numbered clusters. For example, by
establishing the minimum, 20-percentile, 40-percentile, 60-
percentile, 80-percentile and maximum values, those values
can be used as thresholds between five different cluster num-
bers. Normalized variable values that lie between the mini-
mum and 20-percentile are assigned to cluster#1, normalized
variable values that lie between the 20-percentile and 20-
percentile are assigned to cluster#2, etc. For the objective
function a larger number of clusters is determined by nar-
rowing the interval between the percentiles. By using every
tenth-percentile (and minimum (P0) and maximum (P100))
as cluster thresholds, then ten numbered clusters can be
distinguished; by using every fifth-percentile (and minimum
(P0) and maximum (P100)) as cluster thresholds, then twenty
numbered clusters can be distinguished. These clusters are
useful in ensuring that data subsets sample a comprehensive
range of the objective function (see Step 6).

Step 5a (optional): a simple quick-look learning network
can be established by matching the cluster number allocations
of the independent variables to test data records and selecting
the best matches to place that test record in a predicted cluster
of the OF. The precision of predictions made in this way
depend on the width of the percentile clusters used for the
dependent variable. For some applications, where lower level
of precision is acceptable, this approach can provide a rapid
and simple prediction.

Step 5b (optional): refines the cluster approach by calcu-
lating the squared errors of each variable in the best matching
records to further refine the prediction. This provides an
alternative learning network approach incorporating elements
of steps 6 to 10 with the step 5a cluster analysis. This approach
is not developed further here, as it is less precise than steps 6
to 10.
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Fig. 1. Flow diagram summarizing ten steps involved in constructing and tuning a transparent open box (TOB) learning network. Steps 1 to 10 are described
in more detail in the text.
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Step 6: dividing the data set into a training subset, a
tuning subset and a testing subset is an important selection.
In many learning network methodologies, a random approach
is applied. However, random allocation does not always lead
to representative selections. It is important that the training
subset includes data records at or close to the minimum and
maximum values for the OF in the full dataset. If this does not
happen in a random selection, then it is likely that systematic
errors will occur in the prediction made at either end of the OF
range sampled. Consequently, the methodology here advocates
forcing the data records with the minimum and maximum OF
values into the training subset. Also, it is important that the
tuning set includes records that sample each percentile cluster
used to define the OF range. A random approach is unlikely to
achieve that. How many records to place in the training, tuning
and testing subsets depends upon the size and complexity of
the system being modelled. This requires some trial and error
and sensitivity analysis (see step 13). Typically, the training set
should be as large as possible (with multiple records included
in each of the OF percentile cluster), e.g., an initial starting
point could be between 70% to 90% of the dataset allocated
to the training subset, if there are sufficient remaining records
to provide adequate coverage of the OF clusters in the tuning
and testing subsets (particularly the tuning subset, as this will
influence how comprehensively the network can be improved
through learning).

Step 7: A key step in the methodology, this tests each of the
data records in the tuning subset for differences between each
of its variable values and everyeveryevery data record in the training
set. These differences for each variable are measured and
expressed as variable squared errors (VSE). Squaring the
differences removes the influences of negative signs in the
difference calculations and enables those VSE to be summed
for each data record comparison to provide summed error
value (∑VSE) that can be used to sort and rank the matches
between the tuning data record and each record of the training
subset. Weighting factors (w1 to wN+1) are applied to the error
differences for each of the N+1 variables. In the initial tuning
process, the same weighting value is applied to all the variables
(e.g., w1 = w2, wN+1 = 1 or 0.5), so no preference is applied to
any of the variables in the initial sorting and ranking process.
By ranking the matched records in ascending order of their
∑VSE values, the top-ranking records (i.e., those with the
lowest ∑VSE values) for matches to the tuned subset record
being assessed can be identified and selected for detailed OF
prediction (steps 8 and 9).

Step 8: A number (Q) of the top-ranking matched training
subset records for each tuning subset data record are selected.
The integer value of Q typically varies between 2 and 10
and is later used as a variable in the optimization process.
These Q records in the training subset are identified for each
tuning record in the subset. The sum of the ∑VSE values
for the Q records (i.e., ∑

Q
1 ∑VSE) for each tuning set data

record (applying equal weighting (w) values for w1 to wN ,
with wN+1 = 0, so the value of the dependent variable does not
influence the detailed tuning calculations) is used to assess the
relative proportion of the(∑Q

1 ∑VSE) error that is contributed
by each record making up the Q set of top-ranking matches. By

dividing each ∑VSE of the Q set of records by (∑Q
1 ∑VSE) the

fractional contribution, f , (where, f = 0 to 1 and ∑ f = 1) to
the (∑Q

1 ∑VSE) error is established. The matched data record
with the highest value of f is the one contributing the most to
the (∑Q

1 ∑VSE) error; whereas, the matched data record with
the lowest value of f is the one contributing the least to the
(∑Q

1 ∑VSE) error.
Step 9: The objective functions (OF) of the top-ranking

matching records for each record of the tuning subset con-
tribute to the prediction of the OF value for that tuning data
record in proportion to their (1− f ) values. The matching
record with the highest (1-f) value is the one that contributes
least to the (∑Q

1 ∑VSE) error. If Q equals 2 and one has an f
value of 0.8 then the other has an f value of 0.2. In that case,
as just the top-two ranking matches are used in the prediction
calculation, the OF value of the record with f = 0.2 contributes
80% ((1− f )∗100) to the predicted OF value, and the other
record (with 1− f = 0.8) contributes just 20% to the predicted
OF value for that tuning subset record. The predicted OF value
calculated by this method is then compared to the measured
OF value for that record, by taking the difference between
them and squaring that difference to yield a OFSE prediction
error measure for that tuning subset data record. The OFSE
can be calculated using normalised values for the OF, but it is
more meaningful to use actual values for the OF to visualise
the significance of the prediction errors involved.

Step 10: The sum of the OFSE (squared errors of the
predicted versus measured objective function values) for all the
tuning subset records (∑OFSE) is calculated. The contribution
of each record to the total prediction error is available for
display and analysis. This sum-of-the- squared-errors value
(∑OFSE) is then divided by the number of records in the
tuning subset and its square root calculated to provide a root
mean squared error (RMSE). The RMSE becomes the objec-
tive function for the optimization process (steps 11 to 14). An
additional key metric calculated is the correlation coefficient
(R2) between the measured and predicted OF values. Clearly,
the closer the R2 value is to 1 the better the prediction per-
formance of the unweighted TOB learning network developed
for the system dataset modelled. Cross-plotting the measured
versus predicted values in an X-Y graphic helps to visualise the
prediction performance and identify potential anomalous data
records (i.e., outliers) worthy of closer scrutiny. Other statistics
worth calculating, that provide useful insight to the prediction
performance, are the standard deviation (SD) and the average
absolute relative deviation (AARD%) for the prediction errors
of the actual values (not normalized values) of the OF for the
entire tuning subset.

Having completed steps 1 to 10 the TOB learning network
is established and ready to be optimized, with all the inter-
mediate steps and calculated values available for scrutiny and
analysis for a prediction with no weighting yet applied. In the
next section the optimization of that TOB learning network is
described.
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3. Key role for optimization and sensitivity anal-
ysis in the learning process of the TOB network

The RMSE and R2 values established for the tuned and
unweighted TOB learning network are used as benchmarks
for the improvements in prediction that can be achieved by
optimization and sensitivity analysis applied to the network.
The steps 11 to 14 described here (Fig. 2) outline a sequence
that can use most optimization algorithms.

Step 11: the objective function of the optimization process
is to minimize the RMSE value calculated in step 10 of
the TOB learning network setup. This objective function is
optimized by varying the weights (the values for w1 to wN ,
with wN+1 = 0) between the constraint limits 0 and 1, and Q,
the number of top-ranking records included in the prediction
calculations, between the integer limits of 2 to up to 10. Three
distinct approaches can be adopted for the optimization and
detailed analysis of the TOB learning network, identified as
A, B, and C in Fig. 2.

A. 100% Excel.
All calculations are conducted on a Microsoft Excel

spreadsheet with cell formula, using Excels Solver optimizer,
which includes a generalized reduction gradient (GRG) non-
linear algorithm and an evolutionary algorithm (EA). Both of
these optimization algorithms are powerful fast, capable of
handling quite large datasets and flexible in the sense that they
offer various tuning options (population size, multi-start and
alternative seeding options). This makes the formulas involved
in all intermediate calculations readily visible and auditable.
For tuning subsets larger than about thirty records and for
large training subsets this makes the spreadsheet very large and
cumbersome to manipulate. The approach is therefore more
suited to small and mid-sized data sets.

B. Hybrid Program Code Plus Excel Solver.
The setup of the learning network (step 1 to the first part of

step 8) are conducted using any programming language (VBA,
R, Octave, MatLab, Python, etc.) for the calculations with the
output placed in a spreadsheet. Steps 8 to 10 are set up as
cell formulas in the spreadsheet and the Solver optimizers are
deployed for the optimization process. The Solver optimizers
can easily be driven by VBA code, but they need to optimize
objective functions that are related to cell formulas on the
spreadsheet. Hence, the need to set up steps 8 to 10 with
cell formulas. It is therefore possible with one coded macro
in VBA to setup the TOB learning network and then run the
Solver optimizers on it. If other programming languages are
used then two distinct sets of code are required, one with VBA
and the setup code with the other language. In practice it is
therefore typically more convenient for this hybrid approach
to use VBA.

C. 100% Program Code Not Using Excel’s Solver
Optimizer.

Conduct all the TOB learning network set up and optimiza-
tion in a programming language that does not employ Excel’s
Solver optimizer. This can be readily achieved in VBA (using
a customized optimizer not Excel’s solver), Octave, MatLab
or Python. This approach makes sense for large datasets as
it avoids large cumbersome spreadsheets with cell formulas

to handle and adjust. An Excel spreadsheet can still be used
to display and analyse the dataset and results, but few cell
formulas would be involved. This alternative has the advantage
of flexibility to adjust to different sized data sets quickly, but
the disadvantage of the intermediate calculations only being
auditable in the software code.

There are pros and cons to all three alternatives, with
selection depending upon the dataset dimensions and the
manner in which the application is to be deployed. For many
field applications operators may prefer one or other of these
alternatives to fit with software availability.

Step 12: Compare the optimized (minimum RMSE value
and its associated R2 value) weighted solution with the un-
weighted solution establish by Step 10. As well as verifying
that a significant improvement has been achieved by the
optimizer, the key information to review is the value of the
weights (w1 to wN) that are associated with the optimum
solution. Typically, the weights will be high for some inde-
pendent variables (the variables having significant influence
on the prediction accuracy of the TOB learning network) and
zero, or close to zero, for others (the variables having no, or
insignificant, influence on the prediction accuracy of the TOB
learning network). Graphical analysis of the highly significant
independent variables and their relationship with the dependent
variable needs to be carefully assessed at this point.

It is also important to conduct sensitivity analysis at this
stage to establish how robust the optimized solution is with
respect to: 1) different numbers of records in the training and
tuning subsets; 2) the influence of different values of Q (one
will be associated with the minimized RMSE case) on the
optimum solution selected and the RMSE and R2 values of
those solutions; 3) the impact of varying the optimizer’s tuning
parameters, or the optimizer algorithm itself (e.g., Solver’s
GRG versus Solver’s EA).

The information gained from this sensitivity analysis and
closer inspection of the relationships between the significant
independent variables (those with high w values) and the
dependent variable will help to decide whether the optimized
learning network has been improved and modified in such a
way that its predictions of the dependent variable can be relied
upon.

Step 13: Evaluate the prediction performance of the se-
lected weightings for the optimized TOB learning network for
the testing subset. The testing subset includes data records
representative of the systems range of dependent variable
functions that have not been involved in either the training
subset or the tuning subset, but for which accurate measured
values of the dependent variable (OF) are available. If the TOB
network is effective then the RMSE and R2 values achieved
for the testing subset should be close to that of the tuning
subset, but probably displaying slightly higher RMSE and
slightly lower R2 values. Slightly poorer performance should
be expected as the data records of the testing subset have not
been able to influence the tuning of the TOB learning network.

Step 14: If the RMSE and R2 values for the tuning and
testing data sets achieve levels of accuracy that are sufficient
to generate confidence in their prediction accuracy then deploy
the TOB learning network for practical applications. If the
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Fig. 2. Flow diagram summarizing four steps involved in optimizing and fine-tuning through sensitivity analysis a transparent open box (TOB) learning
network. Steps 11 to 14 are described in more detail in the text.
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level of uncertainty remains unacceptably high (i.e., RMSE too
high and R2 too low) then consider applying more complex
and less transparent learning networks and machine learning
algorithms (e.g., ANN, RBF, ANFIS, LSSVM) using the
accuracy achieved by TOB to benchmark their performance.

It is worth noting that for some complex systems with
large numbers of independent variables displaying very poor
correlations with the dependent variable achieving a high R2

value is not very likely with a TOB learning network or other
less transparent networks. In such cases the question to be
addressed is does a learning network (TOB or other) provide
a better solution than the alternative prediction measures avail-
able. If the answer to that question is yes, then it may still be
worthwhile deploying the optimized network with a low (but
better-than-otherwise-achievable) R2 prediction performance.

4. Example analysis and insight provided by the
TOB learning network

Here, datasets for three petroleum-related systems are eval-
uated with TOB networks to predict their objective functions.
Only portions of the evaluations are described to illustrate
the type of insight and prediction improvements that TOB
learning networks can achieve and to highlight the type of
petroleum activities that can benefit from this methodology.
Detailed analysis of each system is not provided, as this will be
provided in papers focused specifically on each data set. The
hybrid program code plus Excel Solver approach (alternative
B in step 11) was used for each evaluation presented.

4.1 Dataset 1 (prediction of loss circulation while
drilling)

Lost circulation is a significant issue and risk when drilling
oil and gas wells and a number of machine learning algorithms
have been applied in attempts to provide reliable predictions of
loss severity (Sheremetov et al., 2008; Moazzeni et al., 2010).
The example considered here involves datasets of drilling
metrics recorded while penetrating two formations: zone A
above the main reservoir; and, zone B the main reservoir.
The dependent variable is the occurrence and quantity of
circulation loss (i.e., loss severity in barrels/hour). There are
sixteen independent variables (N = 16) defining the system,
with the dependent variable being the seventeenth variable.

1. length of section drilled (feet)
2. borehole size (inches)
3. weight on bit (WOB) (tons)
4. pump rate (gallons/minute)
5. pump pressure (pounds per square inch)
6. drilling fluid viscosity (centipoise)
7. drilling fluid shear stress at shear rate 600 rpm

(lb/100ft2)
8. drilling fluid shear stress at shear rate 300 rpm

(lb/100ft2)
9. drilling fluid gel strength (shear stress in quiescent state)

(lb/100ft2)
10. drilling time (hours)

y = 0.7656x + 7.0271
R² = 0.7266
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Fig. 3. Predicted versus measured loss severity for tuning data set (23 records)
for Dataset 1-Formation A.

11. drilling fluid velocity (feet/second)
12. drilling fluid solids (percent)
13. drilling bit rotation speed (revolutions per minute)
14. pore pressure (pounds per square inch)
15. drilling fluid pressure (pounds per square inch)
16. formation fracture Pressure (pounds per square inch)
17. loss severity (barrels/hour)-objective function
For formation A there are 93 (M = 93) data records; for

formation B there are 289 (M = 289) data records. For both
formations the analysis of the TOB through to step 12 are
presented using tuning subsets of 23 records in both cases;
meaning that the training subset consists of 70 records for
formation A and 266 records in the case of formation B.
Tables 1 and 2 summarizes the prediction performance of the
TOB learning networks constructed and optimized for these
two formations.

For formation A the evenly weighted TOB network (in-
volving errors treated evenly for all sixteen independent vari-
ables, and for Q = 3) achieves RMSE of 52.6 bbls/hour and R2

of 0.3129 (predicted versus measured loss severity). This is not
that impressive as the range of loss severity in the entire data
set is min = 0 barrels/hour and max = 270 barrels/hour (with
35 records displaying 0 barrels/hour loss severity, i.e., no loss
of circulation). Optimization of the TOB network significantly
improves its prediction performance, with the minimum error
achieved by the Solver GRG optimizer applying the multi-
start option and a population of 150 (RMSE of 31.1 bbls/hour
and R2 of 0.7266). That optimum solution involves Q = 5
and applies non-zero weights to only the following variables
(variable with highest weight listed first):

drilling fluid gel strength (variable 9) w = 1.00
drilling fluid solids (variable 12) w = 0.43
pump pressure (variable 5) w = 0.0027
pore pressure (variable 14) w = 0.0017
drilling fluid pressure (variable 15) w = 0.0017
drilling time (variable 10) w = 0.00099.
All other independent variables involve w = 0, so con-

tribute nothing to the loss severity prediction. The two key
variables influencing the optimized TOB learning prediction,
drilling fluid gel strength and drilling fluid solids show poor
correlations with loss severity for the 23 records of the tuning
subset (R2 = 0.1085 and 0.1912, respectively). Fig. 3 shows
a cross plot of predicted versus measured loss severity for the
optimized tuning subset.
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Table 1. Loss severity prediction performance of TOB learning network applied to Dataset 1-Formation A.

Transparent Open Box (TOB) Learning Network Results and Variable Weightings in the Prediction of Loss Severity for Formation A (Dataset 1)

Variable Description Variable
Number

Pre-
optimi-
zation
Even
Weightings

Best
Solution
Solver
GRG
Multi-
start

Best
Solution
Solver
Evolu-
tionary
Algorithm

Solver
GRG
with no
Multi-
start

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Mul-
tistart
with
Q con-
strained

Q Constained to Integer # 3 2 to 10 2 to 10 2 to 10 6 4 3 2

Q selected for solution Integer # 3 5 5 5 6 4 3 2

Prediction Performance of Optimum Solution

RMSE barrels/hour 52.61 31.13 31.15 32.70 31.40 33.32 43.29 46.69

R2 % 0.3129 0.7266 0.7266 0.7102 0.7273 0.6976 0.5213 0.4628

Weightings (0≤ w≤ 1) Applied to solutions

Length drilled 1 0.5 0 <0.0001 0 <0.0001 0 0 0

Hole size 2 0.5 0 <0.0001 0.79712 0.24942 0 0 0

wieght-on-bit 3 0.5 0 <0.0001 0 0 0 0 0

Pump rate 4 0.5 0 <0.0001 0 0 0 0 0

Pump pressure 5 0.5 0.00271 0.00340 <0.0001 <0.0001 0 0.00177 0

Viscosity 6 0.5 0 <0.0001 <0.0001 0 0.00825 0.03992 0.21492

Shear stress at 600 rpm 7 0.5 0 <0.0001 0 0 0 0 0

Shear stress at 300 rpm 8 0.5 0 <0.0001 0 0 0 0 0

Gel strength 9 0.5 1.00000 0.99544 1 1 1 1 1

Drilling time 10 0.5 0.00099 0.00135 <0.0001 <0.0001 0.00265 0.01721 0.06840

Mud velocity 11 0.5 0 <0.0001 0.65324 0.00294 0.18591 0 0

Solid percent 12 0.5 0.43280 0.56492 0.01028 0.01024 0.24159 0 0

Bit rotation speed 13 0.5 0 <0.0001 0 0 0 0.00306 0

Pore pressure 14 0.5 0.00166 0.00366 0.000600339 0 0.00818 0.14226 0.02024

Mud pressure 15 0.5 0.00173 0.00064 0 0 0 0 0

Fracture pressure 16 0.5 0 <0.0001 0 0 0 0 0

Loss Severity Obj Fn 0 0 0 0 0 0 0 0

Constraining the value of Q to values other than 5 during
optimization leads to higher RMSE and lower R2 values for the
minimum solutions found. For values of Q = 6 the minimum
solution is close in performance to the optimum solution with
Q = 5. However, as Q is reduced progressively from 4 to 2
the prediction performance of the TOB network deteriorates
significantly.

For formation B (main reservoir) the evenly weighted
TOB network (involving errors treated evenly for all sixteen
independent variables, and for Q = 3) achieves RMSE of 15.8
bbls/hour and R2 of 0.1401 (predicted versus measured loss
severity). This is not that impressive as the range of loss
severity in the entire data set is min = 0 barrels/hour and max
= 850 barrels/hour (with 91 records displaying 0 barrels/hour
loss severity, i.e., no loss of circulation; and the second highest
loss severity being 65 barrels/hour). Optimization of the TOB
network does improve its prediction performance (Table 2),
with the minimum error achieved by the Solver GRG optimizer
applying the multi-start option and a population of 150 (RMSE
of 13.21 bbls/hour and R2 of 0.3073). However, a relatively

low level of confidence remains in the prediction performance
of the optimized TOB network.

The best optimum solution found involves Q = 6 and ap-
plies non-zero weights to only the following variables (variable
with highest weight listed first):

borehole hole size (variable 2) w = 1.00
drilling fluid shear stress at shear rate 600 rpm (variable

7) w = 0.1608
drilling fluid gel strength (variable 9) w = 0.0847
length of drilled section (variable 1) w = 0.0129
drilling time (variable 10) w = 0.00032
All other independent variables involve w = 0, so contribute

nothing to the loss severity prediction for the optimized
solution. Note the difference in the variables selected by
the formation B TOB network compared to the formation
A TOB network. Only gel strength and drilling time are
selected by both networks. The two key variables influencing
the optimized TOB learning prediction for formation B, i.e.,
borehole hole size and drilling fluid shear stress at shear rate
600 rpm, show very poor correlations with loss severity for
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Table 2. Loss severity prediction performance of TOB learning network applied to Dataset 1-Formation B.

Transparent Open Box (TOB) Learning Network Results and Variable Weightings in the Prediction of Loss Severity for Formation B (Dataset 1)

Variable Description Variable
Number

Pre-
optimi-
zation
Even
Weightings

Best
Solution
Solver
GRG
Multi-
start

Best
Solution
Solver
Evolu-
tionary
Algorithm

Solver
GRG
with no
Multi-
start

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Mul-
tistart
with
Q con-
strained

Q Constained to Integer # 3 2 to 10 2 to 10 2 to 10 5 4 3 2

Q selected for solution Integer # 3 6 6 6 5 4 3 2

Prediction Performance of Optimum Solution

RMSE barrels/hour 15.76 13.21 13.22 13.44 13.61 14.41 14.82 16.53

R2 % 0.1401 0.3073 0.3046 0.2821 0.2661 0.2076 0.1817 0.1235

Weightings (0≤ w≤ 1) Applied to solutions

Length drilled 1 0.5 0.01286 0.00814 0.01801 0.00022 1.00000 0 0

Hole size 2 0.5 1.00000 0 1.00000 1.00000 1.00000 0 0

wieght-on-bit 3 0.5 0 0 0 0 0 1.00000 0

Pump rate 4 0.5 0 0 0 0.00727 0 0 0

Pump pressure 5 0.5 0 0 0 0 0 0 0

Viscosity 6 0.5 0 0 0 0 0 0 0

Shear stress at 600 rpm 7 0.5 0.16084 1.00000 1.00000 1.00000 0 0 0

Shear stress at 300 rpm 8 0.5 0 0 1.00000 0 0 0 0

Gel strength 9 0.5 0.08469 0.93542 0.35598 0.26806 0.50069 0.00259 0

Drilling time 10 0.5 0.00032 0.00052 0.00477 0.00059 0.24511 0.00037 0

Mud velocity 11 0.5 0 0 0.00005 0.00001 0 0 0

Solid percent 12 0.5 0 0 0.36081 0.00414 0.42393 0 0

Bit rotation speed 13 0.5 0 0 0 0 0 0 0

Pore pressure 14 0.5 0 0 0 0 0.38808 0.01042 0

Mud pressure 15 0.5 0. 0 0.00482 0 1.00000 0 0.76363

Fracture pressure 16 0.5 0 0 0 0 0.17086 0 0

Loss Severity Obj Fn 0 0 0 0 0 0 0 0

the 23 records of the data set (R2 = 0.0394 and 0.0194,
respectively). Fig. 4 shows a cross plot of predicted versus
measured loss severity for the optimized tuning subset, with
significant dispersion and uncertainty around a linear correla-
tion line fitted to that data.

Constraining the value of Q to values other than 6 for
the formation B TOB network during optimization leads to
higher RMSE and lower R2 values for the minimum solutions
found. As Q is reduced progressively from 5 to 2 the prediction
performance of the TOB network deteriorates significantly (for
Q = 2, R2 = 0.1235).

Loss of circulation is a notoriously difficult variable to
predict during drilling, because it depends on a large number of
uncorrelated variables and varies significantly from formation
to formation (as shown for formations A and B) and from
location to location in the same field. Consequently, it is
not surprizing that the prediction performances of the TOB
learning networks are not spectacular. However, the TOB
network for formation A is potentially useable, whereas that
for formation B is unlikely to help much in the prediction of
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Fig. 4. Predicted versus measured loss severity for tuning data set (23 records)
for Dataset 1-Formation B.

loss severity. This suggests that there is scope to apply more
complex neural network methodologies (using the perfor-
mances of the TOB network as benchmarks to assess their
performances) to try and improve prediction of loss severity
in formations A and B. Also, there is scope for sensitivity
analysis to provide more insight to the relationships between
the key variables impacting loss severity in formations A and
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Table 3. Table 3 Bubble point pressure (Pb) prediction performance of TOB learning network applied to Dataset 2.

Transparent Open Box (TOB) Learning Network Results and Variable Weightings in the Prediction of Bubble Point Pressure (Dataset 2)

Variable Description Variable
Number

Pre-
optimi-
zation
Even
Weightings

Best
Solution
Solver
GRG
Multi-
start

Best
Solution
Solver
Evolu-
tionary
Algorithm

Solver
GRG
with no
Multi-
start

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Mul-
tistart
with
Q con-
strained

Q Constained to Integer # 3 2 to 10 2 to 10 2 to 10 6 5 3 2

Q selected for solution Integer # 3 4 4 3 6 5 3 2

Prediction Performance of Optimum Solution

RMSE psi 76.99 44.41 44.41 75.86 50.29 47.20 75.86 73.32

R2 % 0.9703 0.9895 0.9895 0.9711 0.9877 0.9882 0.9711 0.9745

Weightings (0≤ w≤ 1) Applied to solutions

Gas specific gravity 1 0.5 0.000002 0.000002 0.55690 0.85176 0.000001 0.189633 0

Oil specific gravity 2 0.5 0.000011 0.000011 0.60129 0.43459 0 0.204750 0

Oil gravity API 3 0.5 0 0 0 0 0.000001 0 0

Gas-to-oil ratio (GOR) 4 0.5 0 0 0.85277 1.00000 0.017804 0.290383 1.000000

Oil temperature 5 0.5 1.000000 0.999731 0.88380 0 1.000000 0.300946 0

Oil formation volume fac-
tor

6 0.5 0 0 0.07326 0.00863 0 0.024948 0.000504

Bubble point pressure Obj Fn 0 0 0 0 0 0 0 0

B. Moreover, further analysis using different sizes of tuning
data sets could help to improve the prediction performance of
these TOB networks. This additional analysis is not presented
here.

4.2 Dataset 2 (prediction of bubble point pressure
Pb of oil produced from multiple wells drilled into
a single oil field based on a pressure-temperature-
volume (PVT) data analyses).

The objective function is the bubble point pressure (Pb)
measured in pounds per square inch units, an important and
widely predicted oil field metric (Gomaa, 2016). For the
dataset evaluated here, there are 75 (M = 75) data records and
six variables (N = 6) defining the system, with the dependent
variable being the seventh variable.

1. specific gravity of gas (relative to air)
2. specific gravity of oil (relative to water)
3. oil gravity (measured in degrees API units)
4. gas to oil ratio (GOR) (standard cubic feet/stock tank

barrel)
5. oil temperature (degrees Fahrenheit)
6. oil formation volume factor (FVF)
This set of variables is not totally independent as specific

gravity of oil (γg) and oil gravity API have a perfect negative
correlation with each other as they are linked through the
formulaic relationship: γg = 141.5/(API+131.5). Also, there
is a strong positive correlation between Pb and GOR: R2

= 0.8874, increasing to 0.9176 if three outlier data records
are ignored. It is interesting to see how these relationships
influence the behaviour of the TOB learning network.

Table 3 summarizes the prediction performance of the TOB
learning networks constructed and optimized for Dataset 2.
This presents the analysis of the TOB through to step 12 with
the dataset divided into a training set with 55 records and a
tuning set of 20 records.

The evenly weighted TOB network (involving errors
treated evenly for all six “independent” variables, and for Q =
3) achieves RMSE of 76.99 psi and R2 of 0.9703 (predicted
versus measured Bp). This is quite impressive prediction
accuracy as the range of Bp in the entire data set is min = 2,150
psi and max = 4,250 psi. Optimization of the TOB network
does improve its prediction performance, with the minimum
error achieved by the Solver GRG optimizer applying the
multi-start option and a population of 150 (RMSE of 44.41
psi and R2 of 0.9895). That optimum solution involves Q = 4
and applies non-zero weights to only the following variables
(variable with highest weight listed first):

oil temperature (variable 5) w = 1.0
oil gravity (variable 2) w = 1.08E-05
gas gravity (variable 1) w = 2.179E-06
All other independent variables involve w = 0, so contribute

nothing to the loss severity prediction for the optimized
solution. This is interesting as at first sight it implies that GOR
(which is highly correlated with measured Bp in the dataset)
has contributed nothing to the TOB network’s prediction of
Bp. While it is certainly true that in the optimization sequence
(steps 11 to 12) GOR has been eliminated in the Bp prediction
process for the tuning subset, it has played a significant role
in steps 7 and 8 during the development of the TOB learning
network. The selection of the top-ranking matches in the
training set for each record in the tuning set is made by ident-
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Fig. 5. Predicted versus measured bubble point pressure (Bp) for tuning data
set (20 records) for Dataset 2.

ifying those with the lowest squared error. A close match
between the GOR of the record being tested with those top-
ranking matches is where GOR has had its influence. What is
noteworthy is that once those top-ranking records are selected
for further optimization the differences between their GOR
values is small, making them a less sensitive metric for the
optimizer to focus upon. The optimizer finds oil temperature,
which displays a relatively poor positive correlation with
Bp (R2 = 0.1218) a more sensitive discriminator in those
top-ranked matching records selected for optimizing the B
prediction performance of the tuning subset. These subtleties
of the optimization process are only possible because of the
transparent nature of the TOB learning network and its display
of the intermediate calculations.

Fig. 5 shows a cross plot of predicted versus measured
loss severity for the optimized tuning subset, with very little
dispersion and uncertainty around the linear correlation line
fitted to that data. This optimized network could clearly be
deployed with confidence to predict Bp in this oil field, subject
to the further sensitivity analysis described in step 13.

Constraining the integer value of Q to values other than the
optimizer selection of 4 for the Dataset 2 TOB network during
optimization leads to higher RMSE and lower R2 values for
the minimum solutions found (Table 3). For a Q value of 5 the
optimized result is only slightly worse than for the optimum
Q = 4, and the solution is still dominated by oil temperature,
although GOR also contributes as the second-most-important
variable. When Q is constrained to a value of 6 the optimized
prediction depends on GOR, gas gravity and oil gravity as
highly weighted variables to derive its predictions (with no
contribution from oil temperature). When Q is constrained to a
value of 3 the optimized prediction depends on oil temperature
and GOR (with almost equal weightings) and gas gravity,
oil gravity and FVF all contributing as weighted variables to
derive its predictions. When Q is constrained to a value of 2,
there is little improvement in the optimized solution (RMSE
= 73.32 psi, R2 = 0.9745 compared to the evenly-weighted
TOB networks setup solution. For Q constrained to a value
of 2 the optimized prediction depends almost exclusively on
GOR with a minor weighted contribution from FVF (with no
contribution from oil temperature). These results highlight the
value of conducting sensitivity analysis on the Q value applied
to the TOB learning network.

It can be concluded that there is relatively limited scope for

the less transparent learning networks and machine-learning
algorithms to improve upon the prediction process of the TOB
learning network for dataset 2. Indeed, if such networks are
able to make prediction improvements for this dataset, it will
not be possible to interrogate the relative contributions of the
independent variables to their optimum solutions in the way
described here for the TOB learning network.

4.3 Dataset 3 (prediction of liquid flow rate from well
test data from a producing oil field)

The objective function is liquid flow rate (QL) measured in
units of stock tank barrels per day (where liquid involves oil
plus produced water). Artificial intelligence algorithms have
been extensively applied for predicting flow rates through
wellhead chokes (Elhaj et al., 2015; Choubineh et al., 2017).
For the dataset evaluated here, there are 180 (M = 180) data
records and four variables (N = 4) defining the system, with
the dependent variable being the fifth variable.

1. wellhead choke size (in one-sixty-fourths of an inch)
2. wellhead pressure (pounds per square inch)
3. base solids and water (BS&W) (as a percentage of

produced fluids)
4. gas to liquid ratio (GLR) (standard cubic feet/stock tank

barrel)
The independent variables display distinctive individual

relationships with QL for dataset 3: gas to liquid ratio shows a
moderate negative correlation with QL (R2 = -0.5222); BS&W
shows a poor negative correlation with QL (R2 = -0.0656);
Wellhead pressure shows a poor positive correlation with QL
(R2 = 0.0731); and, choke size shows a moderate positive
correlation with QL (R2 = 0.2957). In fact, the correlation
between choke size and QL would be higher were it not for
the fact that the maximum choke size is capped at 64/64
inches for the well tests (112 of the 180 data records involve
a choke size of 64/64 inches). Again, it is interesting to see
how these relationships influence the behaviour of the TOB
learning network.

Table 4 summarizes the prediction performance of the TOB
learning networks constructed and optimized for Dataset 3.
This presents the analysis of the TOB through to step 12 with
the dataset divided into a training set with 180 records and a
tuning set of 23 records.

The evenly weighted TOB network (involving errors
treated evenly for all four independent variables, and for Q
= 3) achieves RMSE of 752.61 psi and R2 of 0.9812 (pre-
dicted versus measured QL). This is an impressive prediction
accuracy as the range of QL in the entire data set is min =
200 stb/day and max = 35,000 stb/day. Optimization of the
TOB network does improve its prediction performance, with
the minimum error achieved by the Solver GRG optimizer
applying the multi-start option and a population of 150 (RMSE
of 434.97 stb/day and R2 of 0.9936). That optimum is also
achieved using Solver’s evolutionary optimization algorithm.
The optimum solution involves Q = 4 and applies non-zero
weights to only the following variables (variable with highest
weight listed first):
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Table 4. Oil flow rate (QL) prediction performance of TOB learning network applied to Dataset 3.

Transparent Open Box (TOB) Learning Network Results and Variable Weightings in the Prediction of Liquid Flow Rate (Dataset 3)

Variable Description Variable
Number

Pre-
optimi-
zation
Even
Weightings

Best
Solution
Solver
GRG
Multi-
start

Best
Solution
Solver
Evolu-
tionary
Algorithm

Solver
GRG
with no
Multi-
start

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Multi-
start
with Q
constrained

GRG
Mul-
tistart
with
Q con-
strained

Q Constained to Integer # 3 2 to 10 2 to 10 2 to 10 6 5 3 2

Q selected for solution Integer # 3 4 4 4 6 5 3 2

Prediction Performance of Optimum Solution

RMSE stb/day 752.61 434.97 434.97 721.01 508.71 499.57 664.39 721.01

R2 % 0.9812 0.9936 0.9936 0.9835 0.9931 0.9926 0.9854 0.9835

Weightings (0≤ w≤ 1) Applied to solutions

Wellhead choke size 1 0.5 0.94926 0.96947 1.00000 1.00000 1.00000 1.0000000 0.74428

Wellhead pressure 2 0.5 0 0 0.00316 0 0 0 0.00235

BS&W 3 0.5 0 0 0.00063 0 0 0 0.00047

Gas-to-liquid ratio (GLR) 4 0.5 0.00145 0.00147 0.07705 0.00020 0.00056 0.0002869 0.05735

Liquid flow rate Obj Fn 0 0 0 0 0 0 0 0

y = -0.0166x + 413.63
R² = 0.5222
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Fig. 6. Relationships between the two key independent variables and measured liquid flow rate (QL) (the objective function) for all records (180 records) in
Dataset 3.

wellhead choke size (variable 1) w = 0.9493
gas to liquid ratio (variable 4) w = 0.0015
The other independent variables involve w = 0, so con-

tribute nothing to the loss severity prediction for the optimized
solution. This is logical as choke size and GLR display
moderate correlations with QL that complement each other.
GLR shows a wide dispersion at low QL values (Fig. 6(a)),
so is not much use as a discriminator in that region of the
data set. On the other hand, Choke size being capped at 64/64
inches shows little variation across the higher flow rate data
records in the data set (Fig. 6(b)). The fact that the optimum
TOB learning network solution uses both of these variables
highlights its ability to select and identify the most useful
variables in optimizing its prediction of liquid flow rate. These
subtleties of the optimization process are revealed due to the
transparent nature of the TOB learning network and its display
of the intermediate calculations.

Fig. 7 shows a cross plot of predicted versus measured
liquid flow rate for the optimized tuning subset, with almost
no dispersion and uncertainty around the linear correlation line
fitted to that data. This optimized network could clearly be de-
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Fig. 7. Predicted versus measured liquid flow rate (QL) for tuning data set
(23 records) selected for Dataset 3.

ployed with confidence to predict liquid flow rate (QL) in this
oil field, subject to the further sensitivity analysis described in
step 13.

Constraining the integer value of Q to values other than
the optimizer selection of 4 for the Dataset 3 TOB network
during optimization leads to higher RMSE and lower R2 values
for the minimum solutions found (Table 4). For a Q value
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of 5 the optimized result is only slightly worse (RMSE =
499.57 stb/day; R2 = 0.9926) than for the optimum Q =
4, and the solution remains controlled by choke size and a
minor contribution from GLR (wGLR = 0.0006). When Q is
constrained to a value of 6 the optimized QL prediction is
slightly worse than for Q = 5 (RMSE = 508.71 stb/day; R2 =
0.9931) with GLR making an even smaller contribution (wGLR
= 0.0002). When Q is constrained to a value of 3 the optimized
prediction deteriorates further (RMSE = 664.39 stb/day; R2 =
0.9854), but with choke size and GLR still the only variables
selected to contribute to the optimized prediction. When Q
is constrained to a value of 2, there is little improvement
in the optimized solution (RMSE = 721.00 stb/day; R2 =
0.9835) compared to the evenly-weighted TOB network’s
setup solution. For Q constrained to a value of 2 the optimized
prediction remains dominated by choke size followed by GLR,
but with contributions from wellhead pressure and BS&W.
These results highlight the value of conducting sensitivity
analysis on the Q value applied to the TOB learning network
to provide insight to how the variables are contributing to the
optimum solutions.

It can be concluded that there is relatively limited scope for
the less transparent learning networks and machine-learning
algorithms to improve upon the prediction process of the
TOB learning network for dataset 3. Indeed, if such networks
are able to make prediction improvements for this dataset,
it will not be possible to interrogate the relative contribu-
tions of the independent variables to their optimum solutions
in the way described here for the TOB learning network.
Equations/formulas linking the independent variables to liquid
flow rate that have been established using well tests from
many oil fields or across regions are traditionally used for
predicting QL. The problem with the formulaic approach is
that in detail the relationships between independent variables
and the dependent variable vary for each field/reservoir. Hence,
trying to apply a single formulaic relationship universally is
likely to lead to errors and sub-optimal R2 (prediction versus
measured QL). The TOB learning network offers a middle
ground between formulaic solutions and opaque networks and
machine learning algorithms; it can provide high degrees of
precision, but it can also identify the relative contributions of
the independent variables in determining those predictions.

5. Discussion
The detailed description provided here of the novel TOB

learning network demonstrates that it can be constructed in a
systematic and simple sequence of steps, and it can be applied
easily to wide range of small and mid-sized datasets using
spreadsheets, coded algorithms or a hybridized combination
of the two. The TOB networks applied to example data sets
to derive useful predictions illustrate that not only can the
TOB prediction capability be significantly improved using
optimizers, it can also provide significant and useful insight
to the key variables contributing to the optimized solutions.
In this sense the TOB learning networks can provide more
useful information about the datasets they are applied to than
many of the less transparent neural networks and machine

learning algorithms (ANN, RBF, ANFIS, LSSVM) that are
now commonly deployed to perform such predictions.

The main improvements and/or benefits of the TOB al-
gorithm proposed are that it provides transparency and quan-
tifies the contributions made by the underlying variables to
the predictions that it generates. Neural networks and other
machine learning algorithms typically fail to do this or must
be coupled with complex simulation algorithms to do so.
Also, by monitoring through sensitivity analysis the predic-
tion performance of TOB networks in terms of the Q-factor
during optimization, insight to the under-fitting and over-fitting
tendencies of specific solutions can be gained.

Future work is planned to apply the TOB learning network
to various datasets and compare its prediction performance
with that of ANN, RBF, ANFIS and LSSVM. It is not the
intention here to propose that the TOB network should be
used instead of these less transparent networks, but rather
that it should be used as a benchmark to measure the relative
prediction improvements and performance that such learning
networks can provide.

Petroleum-industry-related datasets that are potentially at-
tractive to work on with the TOB network approach include: 1)
potentially improving the prediction of source rock character-
istics (quality, quantity and maturity, identification of sweet
spots) from wireline and measurement while drilling data
through specific formations, for which there is some geochem-
istry and thermal maturity measured data to work with; 2)
predicting other shale characteristics from logged information;
and 3) predicting wellbore cleaning performance in complex
wellbore designs from drilling datasets. In addition, to many
other potential surface and sub-surface oil and gas industry
applications, the TOB learning network methodology also has
many potential applications in other industrial sectors that need
to predict behaviours of variables dependant on a range of
poorly correlated variables and non-linear relationships.

6. Conclusions
The transparent open box (TOB) learning network as

described and implemented offers a novel tool with several
advantages over established machine-learning approaches to
predicting system behaviours that are dependent on a number
of variables related in a non-linear and/or a poorly correlated
manner involving much uncertainty. These include its ability
to:

• readily reveal the intermediate calculations involved in its
predictions;

• clearly display the relative contributions of independent
variables in predicting dependent variable values;

• achieve significant learning and prediction improvements
through the application of standard optimizers, gradient
descent and/or evolutionary (including Excel’s Solver
options);

• provide insight to under-fitting and over-fitting tendencies
based on sensitivity analysis of its Q factor;

• be effectively implemented on spreadsheets, by stand-
alone code or a combination of the two;

• act as an intermediate step towards deploying more com-
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plex machine learning and soft computing algorithms to
predict outcomes of more complex systems.

The information gained, and performance observed, from
optimized TOB learning networks can act as a useful bench-
mark for less transparent and more complex neural networks
and machine learning algorithms applied to the same datasets.

There are many surface and sub-surface datasets in the
petroleum industry that lend themselves to the benefits pro-
vided by learning networks. Systems in which a range of
variables can be measured quickly and relatively cheaply (e.g.,
from wireline and other down-hole logs), but for which certain
key associated variables are expensive and time-consuming
to measure directly, requiring laboratory analysis (e.g., PVT
analysis; geochemistry/thermal maturity; several geomechani-
cal attributes of prospective formations; wellbore fluid perfor-
mance), if they can be measured reliably at all (e.g., drilling
fluid loss of circulation severity). The TOB learning network
offers a powerful and auditable soft computing algorithm that
can be deployed at the field/reservoir level to provide useful
prediction and insight to such systems. The TOB methodology
also offers potential benefits that can be deployed in many
industries and data analysis/prediction applications.
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