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Abstract:
Directional drilling is an excellent option to extend the limited reservoir reach and contact
offered by vertical wells. Pressure transient responses (PTR) of horizontal wells provide
key information about the reservoirs drilled. In this study multilayer perceptron (MLP)
neural networks are used to correctly identify reservoir models from pressure derivative
curves derived from horizontal wells. To this end, 2560 pressure derivative curves for six
distinct reservoir models are generated and used to design a machine-learning classifier. A
single hidden layer MLP network with 5 neurons, trained with a scaled conjugate gradient
algorithm, is selected as the best classifier. This smart classifier provides total classification
accuracy of 98.3%, mean square error of 0.00725, and coefficient of determination of
0.97332 over the whole dataset. Performance accuracy of the proposed classifier is verified
with real field data, synthetically generated noisy PTR, and some signals outside the range
initially assessed by the training plus testing data subsets. The developed network can
correctly identify the reservoir-flow model with a probability of close to 0.9. The novelty
of this work is that it employs a large dataset of horizontal (not vertical) well tests applied
to six reservoir-flow models and includes noisy data to train and verify a neural network
model to reliably achieve a high-level of prediction accuracy.

1. Introduction
Horizontal and vertical wells behave quite differently in

terms of the flow regimes they experience related to the reser-
voirs they drill. Horizontal wells are typically drilled in high-
angle direction (80◦ to 90◦ from vertical) that begin as with
vertical trajectories near the surface but become horizontal at
depth in the target zones. They are drilled to improve reservoir
performance by penetrating producing formations with long
wellbore sections. Furthermore, reducing gas and water coning
in oil reservoirs, reducing the pressure drop and fluid velocity
around the wellbore, minimizing sand/proppant production,
and increasing production rate are some of the advantages
of horizontal wells. These benefits typically lead to higher
recovery from horizontal wells relative to the vertical wells.

Since the 1930’s, bottom-hole pressures have been assessed
in wellbores to enhance petroleum production and recovery
by providing more insight to fluid flow in sub-surface reser-

voirs. At the outset, reservoir pressure values were attained
by simply measuring fluid levels. One-time-reading pres-
sure bombs, maximum-indicating and/or maximum-recording
pressure gauges were gradually introduced over time. The
early pressure gauges lacked desirable reliability and accuracy
compared to the downhole pressure gauges used today. This
made the interpretation of bottom-hole pressures unreliable.
As instrumentation technologies have advanced, and better
production tools developed, it has become possible to conduct
bottom-hole (reservoir) pressure analysis with more confi-
dence. The technology advances in accurate down-hole pres-
sure recording has made well-test interpretation possible and
reliable, focusing on both build-up and drawdown analysis in
complex well trajectories and heterogeneous reservoirs (Meng
et al., 2020; Zhao and Du, 2020).

Pressure transient responses of petroleum reservoirs are
among the most important sources of information for pre-
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dicting well and reservoir properties and likely production
performance (Vaferi and Eslamloueyan, 2018; Zhang et al.,
2019). Interpreting pressure transient information from hori-
zontal wells is more involved than for tests in vertical wells,
as a consequence of the three dimensional flow geometry
impacting horizontal wells that is typically not distributed in
a symmetrically radial pattern. Several distinct flow regimes
are potentially plausible and, therefore, must be considered
when interpreting horizontal pressure transient data (Daviau et
al., 1988; Odeh and Babu, 1989; Kuchuk, 1995; Brown et al.,
2011; Biryukov and Kuchuk, 2012, 2015; Al-Rbeawi and Tiab,
2013; Torcuk et al., 2013; Kuchuk and Biryukov, 2015; Feng et
al., 2017; Duan et al., 2020). Moreover, interpretation models
of horizontal wells must consider more extensive wellbore
storage effects, the impacts of partial reservoir penetration,
and complex end effects.

There are some key differences between well test inter-
pretation applied to horizontal and vertical wells. Whereas,
some variables such as average vertical permeability, vertical
thickness and skin are used in vertical pressure transient
analysis, in horizontal pressure transient analysis some of these
variables related to the horizontal geometry, such as vertical
and horizontal permeability must be known more specifically.
Also, in horizontal wells, there are five potential major and dis-
tinguished regimes that can and do commonly occur (Horne,
1995). However, some of these plausible flow regimes may not
occur because of wellbore geometrical factors, or are obscured
by wellbore storage effects, and other factors. It is therefore
possible to estimate reservoir properties from horizontal pres-
sure transient data by applying five different but potentially
plausible flow regimes. The five recognized flow regimes in
horizontal wells are early radial, hemi-radial, early linear, late
pseudo-radial, and late linear (Goode and Thambynayagam,
1987; Lichtenberger, 1994; Luo et al., 2010).

Before the pressure waves pass through the reservoir
volume and sense the reservoir boundaries, reservoir fluids
produced are only dependent on the vertical boundaries of
the reservoir. Following this initial transient flow regime,
hemi-radial flow can occur if the horizontal well trajectory
approaches much closer to one of the vertical boundaries.
Finally, once the portion of the reservoir impacted by fluid
production includes the complete reservoir thickness, a linear
flow pattern typically develops.

The interpretation of pressure derivative plots is a powerful,
and well-stablished tool for analyzing pressure transient data
(Al-Rbeawi, 2019). Pressure derivative plots are more useful
for extracting a distinctive model compared to the original
pressure versus time dataset collected. Such plots are able to
specify the type of fluid flow model operating at the reservoir-
wellbore interface using pattern matching of observed (actual)
pressure derivative curves with type curves. To find the ap-
propriate reservoir flow model, the actual field derivative plot
is matched to the curve produced by a specific flow regime
model, and that enables the correct reservoir properties to be
derived (Bourdet et al., 1989).

Chu et al. (2019) applied a convolutional neural network
(CNN) to develop a model for identifying different types of
well-test curves. They employed some common multi-class

classification techniques such as one-hot encoding, Xavier
normal initialization, plus some regularization techniques, fol-
lowed by an Adam optimizer to identify the best model. They
concluded that CNN are more powerful tools for classification
of well-test pressure curves in comparison with conventional
neural networks of similar structure.

Taibi et al. (2019) proposed a model to detect rock fractures
in petroleum reservoirs automatically from well-log data. They
developed an algorithm including five different stages and
applied them to imaging-log data. Their model commences
by extracting the main image features and ultimately locates
reservoir fractures using the Hough Transform method. Their
developed model performed robustly to detect rock fractures
when tested by imaging log data.

Geng et al. (2019) proposed a recognition model ap-
proach based on a machine-learning classifier, the AdaBoost
algorithm. Their algorithm integrates a model-free Bayesian
classifier and the support vector machine algorithm to find
a reliable way of detecting water-flooded layers in oil and
gas reservoirs. Their classifier model successfully detected the
water-flooded layers in the reservoir they evaluated, suggesting
that it could be usefully applied in oil and gas reservoir
evaluation and aid field development decision making.

An investigation to detect a specified reservoir fluid flow
model using artificial neural networks (ANN) was first con-
ducted by Ershaghi et al. (1993). Subsequently, Sung et al.
(1996) deployed a multilayer perceptron network involving
the Hough transform method to identify various reservoir flow
models. Velez-Langs (2005) applied a genetic optimization
algorithm for oil reservoir flow regime characterization. Other
algorithms such as fuzzy logic, support vector machine, vari-
ous evolutionary optimization algorithms, and hybrid methods
involving several such algorithms, have been applied to detect
petroleum reservoir fluid flow systems. Anifowose and Abdul-
raheem (2011) developed a functional, hybrid network involv-
ing a type-2 fuzzy logic system with a support vector machine
to model petroleum reservoir fluid flow characterization.

Athichanagorn and Horne (1995) used ANN to identify
useful features of pressure derivative curves, including: unit
gradients, specific dips or humps, and constant or declining
gradients. This approach enabled the appropriate reservoir
flow regimes to be identified and matched with reservoir
metrics from pressure transient datasets. May and Dagli (1988)
established a hybrid neural network model for interpretation
which had the benefit of reduced time to train the network.
Kharrat and Razavi (2008) applied an ANN model to a
dataset of fifty pressure derivative actual curves to successfully
identify reservoir flow regimes. The ANN model was trained
in each stage to detect different types of reservoir model. To
do so involves a classification problem. Hence, the output-
ANN layer establishes the probability of each trained model
matching the input model. Consequently, the number of nodes
in the output layer equals the number of trained model types.

Vaferi et al. (2011) used multilayer perceptron (MLP)
networks to automatically identify eight distinct reservoir flow
regimes from vertical pressure transient data. In order to
train and test their ANN model, they employed analytical
solutions of commonly occurring reservoir models to generate
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data. Eight reservoir models including heterogenous reser-
voir conditions such as fractured reservoirs were considered.
Various boundary conditions, for instance, constant-pressure
outer-boundary no-flow rate, single-sealing-fault boundary and
infinite-acting boundary conditions were considered. Ghaffar-
ian et al. (2014) applied MLPs to recognize flow regimes in gas
condensate reservoirs, distinguishing twelve distinct reservoir
flow models and boundary conditions in vertical wells. They
used a radial composite model to reflect gas- condensate
reservoir conditions. This required distinguishing two reservoir
areas: 1) circular region with the well at its center; and, 2) an
infinite outer region. They located an optimal MLP configura-
tion by conducting sensitivity analysis. Each sensitivity case
evaluated accuracy criteria by measuring the mean relative
error (MRE) and mean squared error (MSE) for various MLP
models configured with different hyperparameter values, such
as the number of neurons in each hidden layer and the number
of hidden layers. Here, we develop a single MLP neural
network to recognize and distinguish six different reservoir
flow models and boundary conditions in pressure transient data
from horizontal wells. Since the pressure response is naturally
transient, Vaferi et al. (2015) employed a dynamic ANN model
(i.e., recurrent neural network) for observing the dynamic
behavior of eight different flow models applied to oil reservoirs
with pressure transient data from vertical wellbores. That
work considered closed outer boundary reservoir models for
both homogenous and dual porosity, which are not considered
among the six reservoir models used for this study, although
our technique could be also applied to such outer boundary
models.

Vaferi et al. (2016) developed a coupling MLP network
combined with wavelet transform for detection of reservoir
models in vertical pressure transient datasets. The coupling-
wavelet method reduces the number of pressure signals that
are used as inputs to the network, which was not necessary in
the current study. Here, we further develop these hybrid-MLP
techniques, applying them for the first time to a large well-test
dataset specifically focused on horizontal rather than vertical
wells.

This work is organized to sequentially:
• Generate synthetic pressure transient signals for the

considered reservoir (2560 signals);
• Convert pressure transient signals to the pressure deriva-

tive graphs using Eq. (5);
• Normalize of the pressure derivative graphs using Eq.

(6);
• Develop different MLP models with different numbers

of hidden neurons;
• Compare performance of the developed MLP models to

locate the optimal model;
• Apply the most accurate MLP model to a real reservoir

example.

2. Methods

2.1 Pressure transient test

In a pressure drawdown test the flow rate is held ap-

proximately constant while the well pressure is continuously
measured versus the time elapsed from the beginning of the
flow period. This pressure data versus time curve in drawdown
test can also be obtained using the solution of the governing
equation for the appropriate reservoir fluid flow regime.

Indeed, a range of pressure versus flow period time elapsed
curves can be generated from the solution of the governing
equation for the appropriate flow regime for a defined reservoir
by varying certain reservoir metrics. The pressure response in
different parts of the reservoir formation results in movement
of fluid towards and into the production well under testing
by imposing a constant rate of production. During the early
stages of production in the well test, the pressure response
changes rapidly due to wellbore storage effects. Subsequently,
as time progresses through the test period, the pressure re-
sponse changes more slowly as it expands further and senses a
greater volume of the reservoir formation. Essentially, pressure
transient test interpretation is based on the pressure derivative.
As time through the test progresses, the pressure derivative
value increases, and the pressure response becomes more
obvious. This procedure continues until the pressure signal
becomes distributed throughout the whole of the formation in
communication with the wellbore under test and eventually
touches the boundaries of the permeable reservoir formation.

2.2 Interpretation of reservoir pressure transient
responses (PTR)

Reservoir parameters can be predicted by matching the
well test data with an appropriate reservoir fluid flow model.
Before reservoir parameters can be estimated with confidence,
the appropriate reservoir flow model(s) and boundary con-
ditions need to be selected. Several reservoir flow models
and boundary conditions are well known and mathematically
defined. Here, we consider homogeneous (single) and dual
porosity reservoir flow models (Moosavi et al., 2018a) each
with distinct outer and horizontal boundary conditions are con-
sidered. These represent the type of oil reservoir geometries
into which most horizontal wells are drilled. Infinite acting
and constant pressure reservoir flow models are considered
as an outer boundary condition, while no-flow/no-flow, no-
flow/constant pressure boundary conditions constitute the hori-
zontal boundary of the reservoir systems. Although some other
reservoir boundary conditions could be evaluated, e.g., such as
single fault or closed outer boundary conditions, we elected
not to include them but rather focus upon the more commonly
applied boundary conditions. These six models are chosen
since they are the most common types of reservoir geometry
models that are used to evaluate pressure versus time data in
horizontal wells.

A summary of these reservoir systems, including the reser-
voir flow models applied, outer and horizontal boundaries,
and numbers of synthetic pressure responses generated for
each model are given in Table 1. These datasets (i.e., pressure
signals versus time) are generated using an analytical solution
for fluid flow partial differential equations using the orthogonal
collocation method (Vaferi et al., 2012; Nategh et al. 2019).
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Table 1. Oil reservoir flow models and their specific boundary conditions.

System Reservoir Horizontal boundary Outer boundary N∗

Model 1 Dual porosity No flow - no flow Infinite acting 569

Model 2 Homogeneous No flow - no flow Infinite acting 532

Model 3 Homogeneous No flow - constant pressure Constant pressure 473

Model 4 Homogeneous No flow - constant pressure Infinite acting 255

Model 5 Dual porosity no flow - constant pressure Infinite acting 160

Model 6 Homogeneous No flow - No flow Constant pressure 571

* Number of generated synthetic pressure derivative curves.
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Fig. 1. Typical pressure derivative curves for the considered reservoir models.

The dual porosity reservoir evaluated is a fractured reservoir
with two distinct component parts: 1) a fractured section with
high fluid transmissibility and low storage capacity; and, 2)
the matrix section having low fluid transmissibility and a
high storage capacity. Since fluid flow in horizontal wells
has three dimensional flow geometry, distinct from a vertical
well, the fluid flow model requires two no-flow and no-
flow/constant pressure boundaries. A horizontal well drilled
into a rectangular reservoir with no-flow boundaries at the
top and bottom of the reservoir is considered as a two no-flow
model. A no-flow/constant pressure boundary model considers
a rectangular reservoir with a no-flow boundary at the top
or bottom and a constant pressure condition for the other
boundary.

The reservoir flow models evaluated in this study assume
that the pressure derivative curve is mainly influenced by
reservoir geometry factors. The fluid, rock property and well-
bore geometry assumptions made in the analysis presented
are listed in Table 2. These assumptions imply that several oil
composition, rock property, and layer thickness metrics have
negligible impacts on pressure derivative curves. Ultimately,
such assumptions need to be evaluated and verified, but the
objective here is to demonstrate the viability of distinguish-
ing between the most common reservoir flow models using
pressure derivative data applying an MLP network technique.

Although the shape of the pressure change curve versus
time for all these reservoir systems is similar, their pressure

Table 2. Characteristics of fluid, rock, producing layer, and wellbore.

Parameter Value Unit

Well radius 0.3 ft

Formation thickness 50 ft

Porosity 0.17 -

Viscosity 1.2 cP

Total compressibility 5×10−5 psi−1

Oil formation volume factor 1.3 Rb/STB

Initial pressure 5000 psi

Production time 1300 hr

Oil flow rate 650 STB/day

derivative curves are quite distinct. Indeed, the MLP approach
discriminates among these reservoir systems based on the
difference in the characteristic shapes of their pressure deriva-
tive curves. Fig. 1 illustrates the characteristic shapes of the
pressure derivative curves of the considered reservoir systems
described in Table 1.

2.3 Flow regimes typically encountered in
horizontal wells

Different flow regimes in horizontal wells can occur due to
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Fig. 2. Schematic of the MLP classifier for reservoir model detection from pressure-derivative curves.

various reservoir geometries. Generally, five main fluid flow
regimes are observed (some of them may be absent in some
reservoir) in horizontal flowing wells. These include: early
radial; hemi-radial; early linear; late pseudo-radial; and, late
linear.

Early-radial flow prevails in the early flow period before the
pressure transient signal meets any of the vertical boundaries
impacting the reservoir. Hemi-radial flow occurs when the well
is not located exactly in center of reservoir in the vertical
dimension, i.e., the well is closer to one of the vertical
boundaries. An early-linear flow pattern may develop when the
pressure signal encounters both vertical boundaries. Some fluid
flow typically enters a horizontal wellbore from the reservoir
zone beyond the end of the drilled section. As such end effects
exist in horizontal wells, early-linear flow tends to continue for
some time. Eventually, the end effects become negligible, and
then a transition period evolves into a later pseudo-radial flow
regime. Finally, late-linear flow materializes when the pressure
signals expands throughout the entire reservoir and encounters
the outer reservoir boundaries (i.e., the infinite acting and
constant pressure boundaries assumed by this study) which can
be seen in pressure derivative curves (Dikken, 1990; Raghavan
et al., 1997).

2.4 Artificial neural networks

ANNs are nonlinear, mathematical learning networks based
on analogies to human brain neural systems. The networks
have several layers with a number of interacting nodes i.e.,
neurons. These artificial neurons are connected together in a
particular way that is specified based on the network architec-
ture. The output neurons can be calculated using Eq. (1).

net = ∑(W ×X)+b (1)

where W is the weight matrix between neurons in each layer,
b refers to the bias vector, and, net represents entry signal to

the transfer function ( f ).
Indeed, the results of Eq. (1) are entered into the transfer

function to calculate the value of neuron output (out). This
can be simply expressed as Eq. (2).

out = f
(
∑(W ×X)+b

)
(2)

There are various types of transfer functions that are
commonly applied to ANN. Examples of the activation or
transfer functions applied include tangent sigmoid, logarithm
sigmoid, linear and radial basis functions are. In this work, we
use tangent sigmoid, Eq. (3), and logarithm sigmoid, Eq. (4),
as the activation function between the input and hidden layers
and hidden and output layers, respectively.

f (net) =
enet − e−net

enet + e−net (3)

f (net) =
1

1+ e−net (4)

where f (net) is the output of the neuron, which becomes the
input for the neuron it is connected to in the next layer or
provides the network output. Fig. 2 illustrates the architecture
of the ANN model developed highlighting the input of data
from forty eight segments of the pressure derivative curves
into the network.

Each of the 48 input samples from the pressure derivative
curve is taken at a specific time elapsed point during the
synthetic well test operation. The time elapsed points are the
same for each input curve, making the time intervals for the
derivatives fixed and avoiding the need to consider time as a
dependent variable for model detection.

Similar simulation time, and time elapsed intervals are
used to generate the synthetic pressure transient data for each
case. Each pressure versus time curve generated has 50 data
points. During transformation of the pressure data into pressure
derivative data (applying Eq. (5)), the first and the last pressure
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data-point in the pressure curve are diminished (they contribute
to the first and last derivative with their adjacent data points).
Therefore 48 pressure derivative data-points are calculated and
fed into the MLP network (see Fig. 2) for detection of reservoir
models. Since the absolute times and the time intervals of each
derivative point are the same for each pressure derivative curve
generated, time has no influences on the network’s ability to
detect the underlying reservoir flow model determining each
pressure derivative curve. Therefore, it is only the 48 pressure
derivative data values for each curve evaluated that need to
be input to the MLP network; absolute time elapsed or time
interval values are not required.

It is clear that the MLP neural network approach recog-
nizes the actual reservoir model based on differences in the
shape of the pressure derivative curves considered. Therefore,
by increasing the number of data points for each pressure
derivative curve, it is possible to improve the resolution of
the curves of each reservoir flow model introduced to the
MLP network. This helps the network achieve better pattern
recognition. On the other hand, by increasing the numbers
of data points constituting each pressure derivative curve, the
size of the MLP neural network (i.e., the number of weights
and biases), computational effort and its complexity sharply
increases. By performing trial and error sensitivities on the
number of data points associated with each pressure derivative
curve, we conclude that 50 pressure versus time data points
(resulting in 48 pressure derivative data points per curve) is
the optimum value effectively trading-off curve resolution and
computational complexity.

2.4.1 Pre-processing requirements for synthetic pressure
transient responses

A large number of pressure transient signals for drawdown
tests for the considered reservoir flow systems are initially
simulated by solving their diffusivity equations. A range of
values for key properties relating to the wellbore, the reservoir,

and the boundaries (Table 3) are selected as inputs to the
simulation to generate synthetic pressure responses for each
of the considered reservoir flow systems.

Bottom-hole pressure transient curves are not unique in
shape and form for each reservoir flow and boundary system
studied. As pressure derivative curves are regarded as one
of the best reservoir flow model discrimination tools, in
this study, it is the pressure derivative curves that are em-
ployed to distinguish between the reservoir flow systems under
consideration. The method of Bourdet is used to transform
the synthetic pressure transient data into pressure derivative
curves. Bourdet’s algorithm is expressed as Eq. (5).

dP =


(p)k − (p)k−1

ln(t)k − ln(t)k−1
[ln(t)k+1 − ln(t)k]

+
(p)k+1 − (p)k

ln(t)k+1 − ln(t)k
[ln(t)k − ln(t)k−1]


ln(t)k+1 − ln(t)k−1

(5)

where dP is the pressure derivative, p is pressure drop, t is
time, and, k is the sample number in the time sequence.

Pressure derivative data (to be used for both MLP training
and testing subsets) are then normalized to values within
the interval [0 1] using Eq. (6). This helps the network to
convergence more easily, prevents saturation of its parameters
and biases due to metrics with values of significantly different
value ranges.

dP =
dP−dPmin

dPmax −dPmin
(6)

2.4.2 Training stage of the MLP classifier

The ANN model developed here to recognize and dis-
tinguish reservoir flow systems is an MLP network with a
feedforward structure. Its evaluation algorithm evaluates 2560
synthetic pressure derivative curves. 90% of the full dataset

Table 3. Ranges of key parameters used to generate pressure transient signals

Reservoir model Parameters Unit Minimum Maximum

K md 2 180

S - -1 2

Homogenous reservoir Wsc bbl/psi 0.001 0.1

Kv md 2 50

Lw ft 400 1200

K md 10 320

S - -1 2

Wsc bbl/psi 0.001 0.01

Dual porosity reservoir ω - 0.001 0.1

λ - 1×10−8 1×10−5

Kv md 2 50

Lw ft 400 1200

Note: K = permeability, S = Skin factor, Wsc = wellbore storage coefficient, Kv = vertical permeability, Lw = well length,
ω = Storativity ratio, λ = Interporosity flow coefficient.
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Table 4. Sensitivity analyses results used to select the optimum MLP network structure.

Number of hidden neurons TCA (%) Database MSE R2

Training 0.65989 0.51832

1 70.5 Testing 0.69145 0.48718

Overall 0.66305 0.51517

Training 0.29417 0.79682

2 82.4 Testing 0.30241 0.79066

Overall 0.29499 0.79619

Training 0.15347 0.89904

3 90.8 Testing 0.18418 0.87755

Overall 0.15653 0.89690

Training 0.09419 0.93953

4 96.1 Testing 0.10153 0.93458

Overall 0.09492 0.93904

Training 0.00721 0.97330

5 98.3 Testing 0.00737 0.97349

Overall 0.00725 0.97332
Training 0.06039 0.96183

6 97.2 Testing 0.11762 0.92462

Overall 0.06610 0.95811

Training 0.08232 0.94727

7 95.4 Testing 0.10180 0.93442

Overall 0.08426 0.94599

Training 0.06782 0.95709

8 98.0 Testing 0.07056 0.95538

Overall 0.06809 0.95692

Training 0.06798 0.95687

9 97.3 Testing 0.06060 0.96158

Overall 0.06724 0.95734

of pressure derivative curves are utilized for training the MLP,
and the remaining 10% are used for independently testing the
performance of the trained MLP neural network.

As the dataset includes six distinct reservoir flow models,
the MLP needs to distinguish those, and to do so the number
of outputs neurons for the MLP set to six. During network
training, each output neurons takes an integer value of 0 or
1 to indicate the possibility of it owning each input pressure
derivative curve, i.e., assigning each input curve to a particular
reservoir flow system. The topology of the MLP is assessed by
trial and error to establish the appropriate number of neurons
in its single hidden layer. Cybenko (1989) found out that
MLPs with just a single hidden layer can predict most types
of nonlinear systems. Therefore, the MLP design employed
here for detecting reservoir flow models involves a single
hidden layer, which the results obtained suggest is appropriate.
Computational time required for training the MLP is one of
the factors considered in selecting the best training algorithm.
Additionally, three statistical prediction performance measures
are used to select the optimum number of neurons in the
hidden layer of the MLP network. These are: the mean squared
error, the regression coefficient, and the total classification

accuracy (TCA) defined by Eq. (7):

TCA =

(
Total number of correct detections

of reservoir flow model

)
(

Total number of pressure
derivative curves tested

) ×100 (7)

where TCA determines the fraction of all the synthetic pressure
derivative curves for all the reservoir systems studied that
are identified accurately. The statistical accuracy of the MLP
network is affected by the initial random values of bias and
weight coefficients. Consequently, exact values for W and b
for correct detection of reservoir model are evaluated during
the training stage of the MLP network.

3. Results and discussion

3.1 Selecting the optimum configuration for the
MLP classifier

The statistical measures of accuracy for different MLP
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Table 5. Performance comparison of applying ten different training algorithms to the developed MLP neural network with 5 hidden neurons.

Training algorithm TCA (%) MSE R2 Training speeda

Conjugate gradient back propagation with Powell–Beale restarts 83.3 0.22273 0.85110 0.0128

Conjugate gradient back propagation with Polak–Ribiere updates 85.8 0.18923 0.87502 0.0088

Gradient descent with momentum back propagation 23 0.86446 0.24815 0.0035

Gradient descent with adaptive learning rate 51.8 0.38413 0.72364 0.003

Scaled conjugate gradient back propagation 98.3 0.00725 0.97332 0.0042

Gradient descent with momentum and adaptive learning rate back
propagation 45.5 0.36050 0.74274 0.0028

Levenberg-Marquardt back propagation 100 0.00280 0.99831 0.3886

BFGS quasi-Newton back propagation 89.8 0.11864 0.92494 0.0967

Bayesian regulation back propagation 99.4 0.00695 0.99578 0.3669

One-step secant back propagation 68.3 0.25164 0.82970 0.0104

aIn second/epoch by installed memory (RAM) = 4.00 GB, and 3.3 GHz Intel (R) Pentium (R) CPU

Table 6. The confusion matrix for the MLP classifier over whole datasets.

Desired/Output Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 569 0 0 0 0 0

Model 2 0 532 0 0 0 0

Model 3 0 0 467 6 0 0

Model 4 0 0 8 241 0 1

Model 5 0 2 0 0 154 0

Model 6 0 0 0 0 0 571

network structures with various numbers of neurons in the
hidden layer are reported in Table 4. The configuration with
5 neurons has the smallest MSE and the highest TCA and R2

value, i.e., the network with the best topology.
The MLP with just five neurons in the hidden layer

was able to detect correctly to which reservoir flow system
belonged 2516 (from 2560) of the pressure derivative curves
for horizontal wells evaluated. It achieved this with TCA =
98.3%, R2 = 0.97332, and MSE = 0.00725.

3.2 Selection of the best training algorithm

During the training stage the weights and biases of the
optimum MLP network are selected that achieve high pre-
diction accuracy with the minimum of computational efforts.
This was established by considering the taken time by the
computer central processing unit (CPU), together with the
defined statistical measures of prediction accuracy, to select
the most efficient MLP training algorithm. The average CPU
time and the statistical accuracy measures (i.e., TCA, MSE,
and R2) achieved by ten of the most widely used MLP training
algorithms are compared in Table 5.

Although the Levenberg-Marquardt back propagation
achieved perfect prediction accuracy for the dataset evaluated,
the method of scaled conjugate gradient back propagation is
chosen as the most efficient MLP training algorithm from
the results presented in Table 5. This is because it is able

to provide acceptable accuracy with very small computational
effort. Although the obtained TCA by the scaled conjugate
gradient is 1.7% lower than the TCA of the Levenberg-
Marquardt, it compensates for that small error by requiring
much less computational effort. The CPU time required by
the Levenberg-Marquardt algorithm is about 93 times higher
than the CPU time required by the scaled conjugate gradient
algorithm. Training starts with random values selected for the
weights and biases and therefore the first stage has the highest
errors. By adjusting these parameters, the training algorithm
manages to progressively reduce MSE to very low values,
indicative of high prediction accuracy. The scaled conjugate
gradient algorithm has adjusted the W and b parameter of
the MLP network after 3000 iterations to reduce the MSE to
7.21×10−3 for the training data subset.

3.3 Accuracy of the MLP classifier for reservoir
detection from smooth PTRs

The recognition response of trained MLP network for test
data is provided in Table 6, by identifying the number of
correct diagnosis for each pressure derivative curve tested. The
trained MLP network is clearly able to recognize pressure
derivative curves and allocate them accurately to the appro-
priate reservoir flow models for all the reservoir geometries
considered. For a specified pressure derivative curve as an
input, the MLP network could select more than one reservoir
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Table 7. Classification accuracy for the developed MLP over whole databank.

Performance (%) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Sensitivity 100 100 98.7 94.5 96.1 100

TCA 98.3

Table 8. Used parameters for investigation of extrapolation ability of the MLP classifier.

Reservoir system K S Wsc Kv Lw ω λ

Model 1 380 -2 0.0008 60 1300 0.0001 1×10−9

Model 2 400 2.3 0.0005 58 350 - -

Model 3 75 -1.4 0.0007 1.6 1340 - -

Model 4 360 -1.8 0.0009 62 380 -

Model 5 355 1400 0.00085 53 390 0.0005 1×10−4.5

Model 6 60 400 0.0006 1.8 1400 - -

flow model, because some pressure versus time data patterns
can be similar and not easily allocated to a single specific
reservoir flow model.

The number of synthetic pressure-derivative curves gener-
ated for reservoir flow model 4 and model 5 are 255 and 160,
respectively (See Table 1). Table 5 reveals that for model 4
and model 5 the outputs of (241+8+1 = 250) and (154+2 =
156) patterns are displayed, respectively. This occurs because
we set the objective selection probability to be above 60%.
Hence, Table 6 does not include the pressure derivative curves
which have an assignment accuracy below 60% (i.e., 5 curves
for reservoir flow model 4; 4 curves for reservoir flow model
5).

Network detection sensitivity and TCA are two statistical
indices which are used here to quantify the identification
efficiency of the developed MLP network. Table 7 reports
ratios the number of correctly identified reservoir flow models
relating to a particular reservoir flow model to the number of
all the pressure derivative curves tested for that model. The
sensitivity index is defined by Eq. (8).

Sensitivity(%)=

(
Total correct detections of
given reservoir-flow system

)
(

Total derivative-pressure curves
for a given reservoir-flow system

)×100

(8)

3.4 The MLP classifier for reservoir model detection
from extrapolated signals

An additional range of reservoir system metric values are
employed for generating synthetic pressure time data for each
specified reservoir model (Table 8). This additional data (six
data sets for each of the six reservoir flow models) is used to
evaluate the ability of the MLP network to identify reservoir
system types beyond the training and testing data.

Table 9 presents the output of the trained MLP network

10-3 10-2 10-1 100 101 102 103

Time (hr)

100

101

102

103
Smooth signal
Noisy signal

Fig. 3. Pressure derivative curve for a noisy and a smooth pressure signal.

response to additional synthetic pressure transient data (six
data sets/reservoir flow model). These results indicate that
the correct reservoir flow models for each of the six models
evaluated can be successfully recognized using the trained
MLP network with acceptable levels of accuracy. The MLP
network output values listed in Table 9 represent the proba-
bilities of specific pressure derivative curves being assigned
to one or other of the six reservoir flow models. The trained
MLP network recognizes the additionally generated pressure
derivative curves and assigns them correctly to the appropriate
reservoir flow model. It does so with probabilities of 88% or
higher for each of the six reservoir flow models studied.

3.5 Performance of the MLP classifier for reservoir
detection from noisy PTRs

Since real field pressure transient data records are often
noisy (unlike the synthetic pressure transient data which is
smoothed), the ability and performance of the developed MLP
network to detect and correctly assign noisy pressure transient
data needs to be established. For this purpose, artificial normal
noise was added to one of the data sets of each of the
six reservoir flow models evaluated (Moosavi et al., 2018b).
Gaussian noise with zero mean and unit variance is added to
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Table 9. Performance of the MLP classifier for detection of reservoir model from extrapolated pressure transient signals.

Predict/Actual Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 99.32 0.38 0.00 0.18 0.15 0.01

Model 2 0.10 99.23 0.03 0.17 0.35 0.01

Model 3 0.01 0.00 99.83 0.00 0.14 0.02

Model 4 0.00 0.00 8.62 88.86 2.53 0.00

Model 5 7.38 0.00 0.10 1.07 92.98 0.00

Model 6 0.14 0.60 0.00 0.00 0.00 99.26

Table 10. Response of the MLP classifier to the noisy signals of all six reservoir models.

Input/Output Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 92.68 2.21 0.03 5.03 0.01 0.04

Model 2 1.45 93.10 2.03 0.43 5.35 0.02

Model 3 2.09 1.32 89.13 0.00 3.14 6.42

Model 4 0.87 4.30 7.24 81.86 2.53 11.72

Model 5 9.20 1.94 3.50 1.25 87.64 1.98

Model 6 6.41 1.82 0.87 0.00 3.34 91.96
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Fig. 4. Response of the MLP classifier to the smooth pressure derivative
curve of reservoir model 1.

the synthetic data sets. To achieve noise at a realistic level, we
added random noise in small fractions of 0.5% to the original
pressure signal.

Fig. 3 illustrates a smooth and a noisy pressure derivative
curve for model 1 (2% noise). The probability of each of the
six reservoir flow models being selected for smooth and noisy
data for a reservoir flow model 1 pressure derivative curve is
also shown in Figs. 4 and 5, respectively. The results suggest
that data noise within the pressure transient data does not affect
the prediction accuracy of the trained MLP network, at least
in the case of those pressure derivative curves belonging to
reservoir flow model 1.

The results of detection performance for noisy pressure
derivative signals are presented for each reservoir flow model
studied in Table 10. The results show that the detection
performance of the MLP network is not affected by data noise
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Fig. 5. Output of the MLP classifier to the noisy pressure derivative curve
of reservoir model 1.

and the true reservoir flow model is identified in each case
with probabilities of between 81% and 93%.

3.6 Capability of the MLP classifier in real field
conditions

The efficiency of the developed MLP network in detecting
the correct reservoir model is examined for horizontal pressure
transient data derived from a real oil field. The real field
data selected for this evaluation is that reported by Suzuki
and Nanba (1990) for a drawdown test in a single porosity
limestone oil reservoir with two no-flow boundaries drilled by
a horizontal well. The reservoir fluid is oil during production
time since the observed minimum bottom-hole pressure ob-
served is far above the bubble point pressure and negligible
production of formation water is observed.
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Fig. 6. Response of the classifier to the real field pressure derivative curve
(Suzuki and Nanba, 1990).

The normalized data of this case study is then analyzed
using the trained MLP. Fig. 6 illustrates that the trained MLP
network recognizes and selects the appropriate reservoir flow
model with a probability of 88%.

An alternative way to model pressure transient analysis in
horizontal wells in fractured reservoirs is to consider pressure
build-up analysis rather than pressure drawdown analysis.
Future research is planned to adapt the proposed models to
focus on pressure build-up data.

4. Conclusions
• An automated machine-learning model based on a MLP

network for classification of the governing flow models in
horizontal wells is developed and successfully applied to
synthetic, noisy, and real field pressure-transient signals.

• This smart model is designed to discriminate among
homogeneous and dual porosity reservoirs with different outer
and horizontal boundary conditions (constant pressure, infinite
acting, and no flow).

• Optimum architecture of the MLP network and an appro-
priate training algorithm are selected based upon classification
accuracy and computational time, respectively.

• Based on these criteria, an MLP network was selected
with one hidden layer containing five neurons trained using
a scaled conjugate gradient feedforward algorithm which was
identified as the most efficient classifier.

• This proposed MLP configuration correctly detected
2560 synthetic pressure derivative curves with a total clas-
sification accuracy of 98.3%.

• The scaled conjugate gradient back propagation algo-
rithm only required 0.0042 second per epoch for training the
MLP classifier.

• The reliability of predictions achieved using the trained
MLP network is impressive when applied to noisy pressure
transient data sets and well test data from real reservoirs of
known reservoir flow conditions drilled by horizontal wells.

• In both cases the trained MLP network identified the
correct reservoir flow model with almost a 90% probability.
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