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Abstract:
Fractured reservoirs are very complicated due to the coexistence of matrix and fractures.
In addition, there are plenty of micro-fractures and a few dissolution pores rather than the
traditional pores in the matrix of buried-hill fractured reservoirs. Thus, the performance
of water flooding is mainly decided by the storage, percolation, and oil displacement
characteristics of both fracture and matrix. However, the distribution and transmissibility
of both macro-fractures and micro-fractures are actually heterogeneous due to the special
origins. Moreover, the mass transfer between matrix and fracture is complicated. Therefore,
it is very difficult to construct an effective development mode to obtain a favorable
development effect. With the objective of effectively developing such reservoirs, JZ25-
1S in Bohai Bay in China was taken as an example in this paper. First, experiments
were conducted to study the stress sensitivity of both matrix and fractures in buried-hill
fractured reservoir, and simulations were performed to optimize the initial development
project of depletion. Then, 3D large-scale experiments and simulations were demonstrated
to study the oil displacement mechanisms and contributions of matrix and fracture for
choosing optimal water flooding mode. Subsequently, the impacts of well pattern, injection-
production ratio, and water flooding modes on development effects were studied by
experiments and production practices in water flooding stage. Ultimately, an effective
development mode was presented and used in the JZ25-1S reservoir.

1. Introduction
Naturally fractured reservoirs (NFRs) play an important

role in petroleum industry in the world (Yu et al., 2009; Salimi
and Bruining, 2010; Chahardowli et al., 2013). In comparison
with the conventional reservoirs, NFRs consist of two systems:
Fracture and matrix systems (Rangel-German and Kovscek,
2002). Generally, fracture system represents the chief paths for
fluid flow and the matrix system represents the major storage
volume of the reservoir fluids, and that the flow of fluids in
fractured porous media is controlled by the interaction between
the matrix and the fracture systems (Pooladi-Darvish and
Firoozabadi, 2000). The fracture system is extremely complex
and consisted of micro-and macro-fractures, the permeability
of which may range from 50 to 20000 mD. In contrast, the
permeability of matrix is generally lower than 10 mD (Mason
and Morrow, 2014). In addition, the matrix system may consist
of many dissolution pores, which reinforce the heterogeneity
of NFRs (Tong et al., 2012; Zou et al., 2013). The buried-

hill fractured account for an amount of oil reserves, such
as Dongshengpu and Xinggu Oilfileds. The most common
method of oil recovery from buried-hill is water flooding and
cyclic water flooding was used to enhanced oil recovery as
well. The dual porosity model was often used to simulate
the fluid flow in buried-hill fractured reservoirs. JZ25-1S is
a buried-hill fractured reservoir located in Bohai Bay, which
has very low apparent permeability and matrix porosity, with
approximate values of 0.5 mD and 2%-9%, respectively. The
macro-fracture density and aperture vary across the JZ25-1S
reservoir. And the reserve ratio between fracture and matrix
system is around 1:2 to 1:3. All the above features make
it more difficult to be developed than conventional fractured
reservoirs (Liu et al., 2009; Chen and Guo, 2011; Amin et al.,
2015; Wang et al., 2018).

Water flooding is one of the most common methods to
improve oil recovery from NFRs, especially when the aquifer
of the reservoirs is relatively weak. However, water flooding
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Fig. 1. Geologic structure and fracture distribution in JZ25-1S resrvoir.

are often very inefficient due to heterogeneity of the fracture
and matrix system (Li et al., 2015; Harimi et al., 2019). High
permeability contrast between the fracture and matrix could
lead to that water mainly flow through the fractures and much
of oil is trapped in the matrix system (Eliana and Norbert,
2003). Generally, capillarity and gravity can be the most
important contributors to oil recovery from matrix system.
When fractures are filled with water, oil in matrix system
could be displaced by spontaneous imbibition if the matrix
block is water-wetted (Cai et al., 2014; Yang et al., 2018;
Meng et al., 2019). Under the action of capillary forces, it
allows the recovery of oil from the interior of the matrix block
that cannot be reached by the externally applied gradients of
water flooding (Abraham, 1978). Oil recovery from matrix
system depends on the many parameters, including block size,
permeability, wettability, boundary conditions (Morrow and
Mason, 2001; Meng et al., 2017; Wang et al., 2017; Gao et al.,
2018). Understanding the fraction of oil recovery from fracture
and matrix makes a contribution to designing and optimizing
the water-flooding projects.

The permeability of fracture is highly dependent on the
effective stress. Following the fluid recovered from the reser-
voirs, pressure in fracture decreases, which leads to increasing
effective stress. The aperture of fracture can reduce due to
increasing effective stress, which could result in permeability
loss of fracture (Abass et al., 2007; Lang et al., 2014). The
permeability loss due to the decreasing pore pressure is called
stress sensitivity. This stress sensitivity is most pronounced in
naturally fractured reservoirs where the apertures of natural
fractures are very sensitive to applied closure stress resulted
from reservoir depletion. Permeability loss due to increasing
effective stress as a result of reservoir depletion can result
in substantial cumulative recovery loss (Min et al., 2004;
Tian, 2004). Generally, if the permeability of fracture is too
high, water will flow through fracture system quickly, which
results in the low recovery from matrix system. In contrast,
if the permeability of fracture is too small, the productivity
of well will decline seriously, which results in the low rate
of oil recovery from NFRs (Raghavan and Chin, 2002).

Thus, In order to improve the oil recovery, it is necessary to
correctly deal with the contradiction between water injection
pressure keeping and water production rise and to improve the
proportion of oil recovery from the matrix system.

In this paper, according to the complexity of the fractures
distribution and the difference of water injection effectiveness,
both experiments and simulations were carried out to study
the stress sensitivity and pressure level in depletion stage.
Then, 3D large-scale experiments were used to study the oil
displacement mechanism and the contribution of fracture and
matrix in NFRs. Moreover, both simulations and field practices
were used to study water flooding modes, injection-production
parameters, and well patterns for buried-hill fractured reser-
voirs. Finally, an efficient development mode was proposed
and applied into JZ25-1S Oilfield, which will provide precious
guidance to other reservoirs with similar features.

2. Characteristics of buried-hill fractured
reservoirs

JZ25-1S is a typical buried-hill reservoirs in Archean with
a burial depth of 1600 to 1880 m. The reservoir is mainly
metamorphic rock with the mainly granite of gneiss, which
belongs to the buried-hill fracture reservoir of metamorphic
rock. Only semi-weathered crust was developed for the long-
term weather denudation, as shown in Fig. 1. The fractures
were very developed and filled with weathering products
in the upper part of the semi-weathered crust with strong
heterogeneity. The fractures in the bottom part of the semi-
weathered crust are open with good connectivity, but the
density is obviously lower than that of the upper part. The
total porosity is about 6.8%, with the porosity of 1.08% and
5.72% for fractures and matrix, respectively. The permeability
ranges from 97 to 927 mD for fractures by logging, and that of
matrix is about 1 mD by experimental tests. The main reservoir
spaces are fractures and the dissolved pores distributed along
the fractures, and the micro-fractures were very developed
in matrix. The fracture system generally presents a network
structure, and high-angle fractures is dominant.
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Fig. 2. Stress sensitivity of fracture and matrix.

3. Investigations on the development mode in
buried-hill fractured reservoirs

3.1 Depletion stage

The natural energy of bottom water is very weak in JZ25-
1S Oilfield. Therefore, water flooding is necessary after the
initial depletion drive. Fractures are the main flow channels
in such reservoir. The fracture conductivity will continuously
decrease by sustained depletion due to the strong stress
sensitivity of fractures, which is usually unfavorable to the
subsequent production. Lots of field practices show that the
production capacity gradually decreases for stress sensitivity,
so the reservoir pressure should not be maintained at a low
pressure. But if the pressure level is too high, the fractures
are easy to water breakthrough to shorten the water-free
oil production period and result in water sealing of matrix
blocks. Therefore, it requires a suitable pressure to maintain oil
production (Bai and Tang, 1997; Tong et al., 2015; Pietraszsek-
Mattner et al., 2017). In this part, we first studied the stress
sensitivity of both fracture and matrix by experiments and
production data. Then, simulations were performed to optimize
the pressure maintenance level for depletion.

3.1.1 Stress sensitivity of fracture and matrix

Fractures and the matrix have a strong fluid-solid coupling
effect for JZ25-1S Oilfield. Stress sensitivity experiments of
both fractures and matrix were performed using the cores from
wells #5 and #7. The variations of residual permeability factors
with the effective stress for fracture and matrix are shown in
Fig. 2(a) and Fig. 2(b), respectively. It was clear that when the
effective stress increased to 12 MPa, the fracture permeability
sharply decreased to 10%-40% of the initial value, and that of
the matrix decreased to 75%-85% of the initial value. Since
fractures may be the main flow channels for fluids, the stress
sensitivity may have significant effect on oil production from
fractured reservoirs. If the bottom hole pressure is too high,
oil production may be low due to the small pressure gradient.
However, if the bottom hole pressure is too low, oil production
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Fig. 3. Production capacity variation during production.

may be low as well due to the stress sensitivity of the fractures.
The stress sensitivity can be clearly found from production
data. Fig. 3 shows the production capacity of wells A18H,
A30 and A31. We can see that the production capacity of
these wells gradually reduces with the decrease of bottom hole
pressure, which indicates the permeability decreases during
production. After a period of production, the capacity of well
A30 resumed in some extent as the bottom hole pressure
increases, but wells A31 and A18H resumed a little. What
means that the stress deformation on the fractured reservoir
caused by pressure drop is irreversible. Therefore, the pressure
maintenance level should be kept at a certain level, otherwise,
the stress sensitivity of fracture and matrix will seriously affect
the production capacity.

3.1.2 Optimal pressure level for depletion drive

It is a key question to solve the contradiction between
pressure maintenance level and the fast-rising of water-cut
in buried-hill fractured reservoirs. According to lots of re-
searches, the optimal pressure level should maintain from 65%
to 85% of the initial reservoir pressure (Liu et al., 2009; Chen
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Fig. 4. The core samples used in the experiments.
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Fig. 5. Variations of oil recovery with reservoir pressure level.

et al., 2011). Based on the above stress sensitivity results,
numerical models of a dual-porosity reservoir considering frac-
ture deformation and spontaneous imbibition were established,
and the pressure level to maintain was studied. Ultimately, the
optimal reservoir pressure should be maintained 70% of the
initial reservoir pressure by comparing the oil recovery in Fig.
4. Thus, at the depletion stage, initial depressurization and
later maintenance should be applied.

3.2 Water-flooding stage

More than 70% of the crude oil reserves are stored in
the matrix of buried-hill fractured reservoirs. It is of great
importance to displace out the oil from the matrix for such
fractured reservoirs. However, the matrix permeability is ex-
tremely low and the heterogeneity of micro-fractures is very
strong. Therefore, it is very important to understand the dis-
placement mechanisms and find efficient water flooding mode
for achieving good effect. As the description in Section 2, the
density of the fractures is higher at the top of the reservoir,
and high-angle fracture is very developed. But the distribution
of fractures usually depends on the production test in most
cases. Therefore, the initial period of water flooding named
injection test is employed to judge the fractures connectivity
in the reservoir and find suitable injection-production ratio.
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After that, comprehensive water injection will be conducted.

3.2.1 Displacement mechanisms

The production data in oilfield indicated that part of the
oil could be produced from matrix. In order to directly verify
this opinion, and understand the contribution of matrix, three-
dimensional dual-porosity models were designed in combina-
tion with mathematical model and similarity criteria (Tong et
al., 2015), and water-flooding experiments were carried out.
In the 3D model, the outcrop cores of metamorphic were used
and there are many natural fracture in the cores (Fig. 5). The
matrix in the first model was saturated with crude oil, and
that was unsaturated in the second model. The viscosity of oil
is 3 mPa·s and density of oil is 0.9 g/cm3. In the saturated
matrix experiments, all cores were saturated with oil under 40
MPa for 10 hours. Then, cores were put in the model and the
confining pressure with 10 MPa were loaded. The rate of water
flooding is 2 ml/min. The experimental results are shown in
Fig. 6, respectively. In order to clearly analyze the contribution
of matrix, the recovery degree is defined as the ratio of oil
output to the oil volume in fractures. The oil recovery could
be divided into three stage, i.e., stage of oil production without
water, stage of rapidly rising water production and stage of
steady rising water production. We can see that the water-free
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recovery in the first model was 4% higher than that of the
second model, which was the contribution of matrix. After
water breakthrough, the water-cut increased sharply, which
was the typical characteristics of fractured reservoir. For the
experiments with saturated matrix, the water-cut kept around
60%-80% for a long time, which was the contribution of
matrix as well. As a result, the ultimate oil recovery was 15%
higher than that of the matrix blocks without crude oil, which
meant the contribution of matrix is about 25%. Moreover,
about 45% of the oil in fractures and 7% of the crude oil in
matrix were displaced out, respectively. Because the injected
pressure was low and stable, so the contribution of matrix was
mainly from spontaneous imbibition. Thus, it is significantly
necessary to improve the development effect of matrix.

3.2.2 Reservoir connectivity judgement

Fracture heterogeneity is very strong in such reservoir, so it
is necessary to confirm the connectivity before water flooding.
In order to judge the fracture connectivity, injection tests were
performed by pressure responding and tracer monitor in this
oilfield. Fig. 7 shows the variations of pressure in different
wells. It can be seen that the initial pressure in the north wells
(A17H, A18H, A25H) is the same with the wells in the south
(A30, A31, A35S). As the oil produced, the pressure decreased
in all the wells. But after a long period of production, the
pressures were very close in different wells. Fig. 8 shows the
variation of tracer concentration in different wells. The tracers
were injected from A21H, which is in the northern part of
the oilfield. The tracer were produced from the wells A30 and
A31, which located in the south of the oilfield. Which further
indicated the whole reservoir has good connection. Therefore,
comprehensive water injection and water injection control can
be implemented.

3.2.3 Optimal injection-production ratio

One of the objectives of water injection is to recover the
reservoir pressure. As the above investigation, the pressure
should be kept above 70% of the initial pressure. In addition,
a larger injection-production ratio may result in water chan-
neling. Fig. 9 shows the production performances for different
injection-production ratios. It can be seen that the water-
cut increases more slowly as the injection-production ratio
decreases. Fig. 10 shows the variations of reservoir pressure
as oil produced with different injection-production ratios. We
can see that if the injection-production ratio was too low, the
reservoir pressure may decrease lower than 70%. Therefore,
the optimal injection-production ratio should be a littler larger
than unit.

Reasonably control and adjust the injection water con-
ditions can also improve development effect. For JZ25-1S
reservoirs, the northeast zone is higher than southwest zone.
Oil was initially recovered from the northeast zone. More
fractures were developed in the northeast location. In the
southeast, as the thickness of southeast zone is thinner, oil pro-
duction decreases rapidly. Under the condition of maintaining
the pressure level, the key region of water flooding gradually
transferred from north to south by decreasing the injection
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地质油藏特征

锦州25-1南油气田太古宇潜山油藏埋深在-1600～-1880m之间，储层主要为变质岩，以花岗片麻岩为主，属

于变质岩潜山裂缝性油藏。由于受长期风化剥蚀，仅发育半风化壳， 半风化壳上段发育裂缝经风化产物充

填，非均质性强；半风化壳下段多为开启裂缝，连通性较好。测井解释总孔隙度6.8%，裂缝孔隙度1.08，

基质孔隙度6.72%，裂缝渗透率试井解释为97～927mD，基质渗透率岩心实验为1mD。从储集空间来说，该

潜山油藏孔、缝发育，以裂缝及沿裂缝分布的溶蚀孔隙为主，微裂缝十分发育，裂缝系统总体呈网状结
构，储集空间类型为孔隙-裂缝型。该油藏类型为块状底水油藏。采用水平井顶底交错注采模式开发。

0

20

40

60

80

100

0

40

80

120

160

200

2013/1/1 2013/4/1 2013/7/1 2013/10/1 2014/1/1

W
a

te
r
 c

u
t 

(%
)

O
il

 r
a

te
 (

m
3
/d

a
y

)

(a) JZ25-1S-A30

0

20

40

60

80

100

0

40

80

120

160

200

2013/1/1 2013/4/1 2013/7/1 2013/10/1 2014/1/1

W
a

te
r
 c

u
t 

(%
)

O
il

 r
a

te
 (

m
3
/d

a
y

)

(b) JZ25-1S-A33H

0

20

40

60

80

100

0

40

80

120

160

200

2013/1/1 2013/4/1 2013/7/1 2013/10/1 2014/1/1

W
a

te
r
 c

u
t 

(%
)

O
il

 r
a

te
 (

m
3
/d

a
y

)

(c) JZ25-1S-A35S

0

200

400

600

800

1000

2013/1/1 2013/4/1 2013/7/1 2013/10/1 2014/1/1

W
a

te
r 

in
je

c
ti

o
n

 

ra
te

 (
m

3
/d

a
y

)

(d) JZ25-1S-A41H

Fig. 11. Comparison of the effect of water injection regulation in the north and south of buried hill.

rate of A21H and increasing that of A41H. The oil production
rates of the well group A41H are shown in Fig. 11. As the
water injection rate increased, the oil production rates of this
well group increased by more than 100 m3/day.

3.3 Comprehensive water injection stage

With the understanding of the reservoir at the injection
test stage, comprehensive water injection can be applied. In
order to fully play a role of both fracture and matrix, we first
performed numerical simulation to discover the source of oil at
different stages. The results are shown in Fig. 12. We can see
that when the water-cut was lower than 40%, the fracture was
the main source of oil production, but when the water-cut was
higher than 20%, the proportion of oil production from matrix
rapidly increased. In this stage, it needed to control water
breakthrough and increase the oil production by elasticity, so
variable intensity of water injection should be implemented. In
addition, it is necessary to control the water breakthrough from
large fractures and improve flow of water in small fracture.
The increasing water in the small fracture not only recover
more oil from fracture system, but also improve the contacted
area between matrix blocks and water, and then to enhance oil
recovery from matrix system. When the water-cut was between
40% and 85%, the proportions of oil production from matrix
and fractures were proportionable. Oil production from matrix
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became the dominant action. Cyclic waterflooding should be
continued to increase fluid exchange between the matrix and
fractures by imbibition. When the water-cut was higher than
85%, most of the matrix was sealed by water. Oil production
from matrix decreased rapidly, and most of the micro-fractures
were filled with water. In this stage, asynchronous water in-
jection should be used to strength gravitational differentiation
and produce more oil from relatively small fractures.

Based on the above understanding of oil production from
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Fig. 13. Three modes of well arrangement.
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the matrix and fractures and combining the development of the
similar oil field and the main contradiction in JZ25-1S Oilfield,
a set of unstable water injection technology were gradually
formed (Chen, 1989; Huang et al., 1995; Zhang et al., 2004),
which mainly included pulse water injection at low water-cut
stage, cyclic water injection at intermediate water-cut stage
and asynchronous water injection at high water-cut stage. The
different types of water injection were implemented in order to
maintain the formation pressure, control the rise in water-cut
and improve oil production from matrix.

3.4 Three-dimensional horizontal well pattern

Based on the distribution characteristics of fractures and
energy characteristics in such reservoir, horizontal wells are
usually used in this reservoir (Luo et al., 2016). In order
to effectively play the role of horizontal well pattern, three-
dimensional quantitative geology and reservoir model were
used to study the well spacing strategy in both vertical and
horizontal directions. Finally, the stereoscopic development
mode was put forward.

3.4.1 Distribution of injection and production wells in vertical
direction

Because most of the fractures develop with high-angle,
the oil and water wells are usually arranged based on the
ancient landform. Considering the action of gravity, oil wells
located on the top, and water wells on the bottom. Then,

three different modes of well arrangement were presented to
compare the development effect as shown in Fig. 13. In these
models, water wells locate near the water-oil contact (WOC),
and the elevation difference between injector and producer is
larger than 40 meters. The permeability of fractures in vertical
direction is larger than that in the horizontal direction. The
comparisons of oil recovery for different arrangement modes
are shown in Fig. 14. It is clear that the development effect of
staggered injection-production is the best and that of parallel
injection-production mode is the worst. The reason is that the
stereoscopic mode can well play the role of gravity. In addi-
tion, the sweep efficiency for parallel model is smallest and
that for the staggered mode is best. The fracture orientation
may be another important factor as well. The overlay injection-
production mode is much easier to occur water channeling for
the high-angle fractures.

3.4.2 Distribution of injection and production wells in
horizontal direction

Enlarge the sweep volume is the objective of adjusting
the distribution of injection and production wells in horizontal
direction. One way is to adjust the operation rules of injection
wells, another way is to control the production wells of high-
water in high permeable regions. Based on the above ways,
more injected water will flow to the low permeable regions.
Fig. 15 shows the adjustment in A41H well group. Because
the position of A36H is relatively low, larger proportion of
injected water channels into this well. The reason is that water
the WOC raised during water injection, and part segment of
A36H is lower than WOC. Accordingly, on one hand, the
water injection rate was decreased. On the other hand, the
production section of A36H was transferred to the top section.
The production performance after adjustment shows that oil
production increased from 9 to 53 m3/d, and the water-cut of
A35S decreased with oil production increasing as well.

4. Pilot test and effect in JZ25-1S Oilfield
Based on the above investigations, an efficient develop-

ment mode of “initial depressurization and later maintenance
for depletion and multi-staged water flooding with three-
dimensional horizontal well pattern of staggered injection-
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Fig. 15. Effectiveness of flow direction change of injection and production well in test well groups.
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(b) JZ25-1S-A17H
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Fig. 16. Pilot test and effect of the development mode in group A21H.
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Fig. 17. Pilot test and effect of the development mode in group A41H.

production” was presented. Then, it was used in the pilot
of JZ25-1S Oilfield. The well groups A21H and A41H were
employed, and different water injection modes were chosen
based on the water-cut. In well group A21H, variable-intensity
water flooding was used with the half-life is 3-6 months with
the injection-production ratio of 0.8-1.2. The water-cut of
well A18H and A17H decreased by 10%-20%, and the oil
production rate increased by 20 m3/d as shown in Fig. 16.
In well group A41H, cyclic water flooding was used with the
half-life is 3-6 months with the injection-production ratio of
1.0-2.0. The water-cut of well A31 and A35H decreased by
50%, and the oil production rate increased by 30-40 m3/d as
shown in Fig. 17.

5. Conclusions
With the objective of constructing an efficient development

mode for buried-hill fractured reservoirs, all of the experi-
ments, simulations, and oilfield practices were performed to
study the oil displacement mechanisms, water flooding mode,
and injection-production parameters in such reservoir, several
insights have been founded:

1) The stress sensitivity of fracture system is stronger than
matrix, and the optimal reservoir pressure maintenance
level is about 70% of original pressure in buried-hill
fractured reservoirs.

2) Although there are 70% of OOIP stored in matrix,
only 7% of OOIP were displaced out by conventional
water flooding. During water flooding, the contribution

of matrix is around 25%, and that of fractures is 75%.
3) The connectivity of JZ25-1S reservoir is good, and the

optimal injection-production ratio is close to unit. When
the water-cut is lower than 40%, oil mainly produces from
fractures, and variable-intensity waterflooding should be
implemented; when the water-cut is between 40% and
85%, the contributions of matrix and fractures are approx-
imate, and cyclic waterflooding should be applied; when
the water-cut is higher than 85%, most of the matrix was
sealed by water, and asynchronous waterflooding should
be used.

4) The best well arrangement mode is staggered injection-
production mode, and parallel injection-production mode
is the worst in buried-hill fractured reservoirs.

5) An efficient development mode of “initial depressuriza-
tion and later maintenance for depletion, multi-staged
waterflooding with three-dimensional well pattern of stag-
gered injection-production” was presented and applied in
the JZ25-1S reservoir. Good results were obtained for
decreasing water-cut and increasing oil production.
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