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Abstract:

Well deliverability impairment due to liquid dropout inside gas-condensate reservoirs below
dew-point pressure is a common production problem. The operating conditions and the
thermodynamic properties of the condensate govern the production performance of this type
of reservoir. Modeling condensate production using analytical, semi-analytical or empirical
formula for quick assessment of reservoir performance is a complicated method due to the
complex thermodynamic behavior. The objective of this study is to provide a fundamental
understanding of the flow and thermodynamics of gas-condensate fluid to develop tools
for the production prediction. The prior developments of flow modeling of gas-condensate
are briefly reviewed. The multi-phase flow and the depletion stages during production are
discussed. Each component of pseudo-pressure calculations to determine the condensate
flow rate is explained. Thermodynamic properties and laboratory experiment relevant to
the flow of condensate are also explored. Pressure-volume-temperature properties such as
two-phase envelope, constant composition expansion and constant volume depletion are
demonstrated for three different gas-condensate fluids namely lean, intermediate and rich.
This article is also useful for future developments of the production model for a gas-
condensate under various operational and completion scenarios such as horizontal wells
and hydraulic fractures in tight formations.

1. Introduction

Condensate is a water-white to light straw-colored liquid

due to its low mobility compared to gas. The extent of
blockage depends on various factors such as Pressure-volume-
temperature (PVT) properties, absolute permeability of the

hydrocarbon which is produced with a large amount of gas.
The density of condensate in terms of American petroleum
institute (API) gravity is usually above 50 degrees and the
produced gas-to-liquid ratios in the separator usually range
from 10,000 cubic feet to more than 100,000 cubic feet per
barrel (Thornton, 1946). The reservoir is often initially filled
with gas only. Liquid condensate forms inside the reservoir
when the pressure drops below the dew-point pressure and
eventually condensate starts flowing with gas (multi-phase)
after it exceeds the critical condensate saturation. The magni-
tude of the pressure decline below the dew-point is one of
many factors affecting the amount of condensate drop-out.
Therefore, higher condensate drop-out is usually observed near
the wellbore or hydraulic fractures in tight formations due to
a sharp decline in pressure. This impairs the liquid production
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rock, relative permeability and, well operational conditions.
Understanding and modeling of the two-phase flow of gas
and condensate in porous media are challenging tasks due to
the complex interactions among the influencing factors. Nu-
merous production analysis techniques and models have been
developed since the early studies on oil flow in conventional
reservoirs (Millikan, 1926; Coleman et al., 1930). These stud-
ies can be broadly categorized such as empirical formulation
like decline curve and type curve analysis, surrogate models,
material balance methods, numerical simulation, pore network
model (PNM), and semi-analytical methods.

On the other hand, the decline curve analysis (DCA)
method has been used for a long time for its rapid predic-
tive capability. Arps (1945) developed the first mathematical
model including exponential decline, hyperbolic decline, and
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harmonic decline by fitting them with available production
data.

Exponential: g = gje /' )

_1
Hyperbolic: ¢ = g;(1+bD;t) 2, 0<b < 1 @)
Harmonic: ¢ = ¢;(1+ D)~ 3)

where D; is defined as the initial flow rate changed in unit

time:
D=~ (1aq> &)
q ot t—0

After finding the fitted parameters (b and D;) using re-
gression with production history, it is used to predict the flow
rate. It is also used to calculate the estimated ultimate recovery
(EUR) using the cumulative production curve by extending it
until the time where the flow rate reaches the uneconomic limit
of production. Consequently, other new and modified versions
of Arp’s method (Mead, 1956; Mannon, 1965; Fetkovich,
1980) were developed. Most decline curves are constructed
based on the single-phase boundary dominated flow in a
conventional reservoir with high permeability (milli Darcy
range). Therefore, they are not applicable to transient flow
with moving boundaries such as the case of unconventional
reservoirs with ultra-low matrix permeability (micro to nano
Darcy range). A few new techniques have been emerged to
fit the production data from tight formations such as the
Power Law Exponential (PLE) (Ilk et al., 2008), Stretched-
Exponential model (SE) (Valko, 2009), Logistic Growth Anal-
ysis (LGA) (Clark et al., 2011) and Duong Method (Duong,
2010). No reservoir parameters are included in all these DCA
models, therefore, they can not be used for reservoir charac-
terization such as permeability estimation or fracture length
determination in tight formation. Alternatively, type curves
are developed (Fetkovich, 1980; Palacio and Blasingame,
1994; Agarwal et al., 1999; Pratikno et al., 2003) for the
estimation of permeability, skin, drainage radius, and fracture
half-length. However, type curves are also based on the single-
phase Darcy flow with pressure independent permeability.
The effects of stress/pressure on permeability, porosity, and
relative permeability were demonstrated experimentally (Fatt
and Davis, 1952; Fatt, 1953; Vairogs et al., 1971; Thomas
and Ward, 1972; McKee et al., 1988; Kikani and Pedrosa,
1991; Rushing et al., 2007; Dong et al., 2010). Therefore, these
parameters consequently affect the production of hydrocarbon
(Thompson et al., 2010; Okouma Mangha et al., 2011; Clark-
son et al., 2013). Researchers (Johnson and Jamiolahmady,
2018) modified type curves incorporating the effects of pres-
sure on permeability (Raghavan et al., 1972; Ostensen, 1986;
Thompson et al., 2010; Clarkson et al., 2013) and porosity.
Despite all recent development of DCA and type curves to
forecast oil and gas flow rates in tight/shale reservoirs, they
are empirically developed and sometimes predict unrealistic
or infinite EUR.
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Surrogate models (Amorim and Schiozer, 2012; Dahaghi
et al., 2012) such as polynomial functions (Parikh, 2003; Li
and Friedmann, 2005; Carreras et al., 2006; Panja and Deo,
2016) and machine learning algorithms (El-Sebakhy, 2007;
Anifowose et al., 2011; Panja et al., 2016) are useful in
determining the production performance for a set of geologic,
completion, and operational parameters (Panja et al., 2016).
The main drawback of surrogate models is the requirements of
various model parameters along with the availability of high-
performance computers.

The general material balance equations in the oil and gas
industry based on hydrocarbon volume balance are initially
presented by Schilthuis (1936). The general material balance
method has three main unknown namely average reservoir
pressure, recovery factor, and cumulative gas oil ratio (GOR).
Other parameters can be expressed as the functions of pressure.
Many integrated approaches (Tarner, 1944; Muskat, 1945;
Tracy, 1955) were developed for the prediction of produc-
tion performance using the material balance equation in the
solution-gas-drive reservoir. Havlena and Odeh (1963) first
re-arranged the material balance equation as a straight line
and fitted it with the field production data. The linear form is
useful for calculations of initial oil in place, gas cap size, water
influx, and drive mechanisms. The general material balance
method works well on the assumption that the reservoir is
under uniform average pressure. This is the case for conven-
tional reservoir with boundary dominated flow. However, the
unconventional reservoirs such as shales or tight formations
have shown different flow behaviors (Orangi et al., 2011; Panja
et al., 2016; Panja and Deo, 2016). A semi-analytical method
coupled with material balance was developed to predict the
production performance in tight formations (Velasco et al.,
2016) which is discussed later.

PNM has recently gained interest in studying the effects of
nano-pores on PVT properties and multi-transports phenomena
like adsorption of gas in organic matter in tight formations.
Various pore-network models for two-phase flow of gas-
condensate were developed including compositional simula-
tion (Santos and Carvalho, 2020). The effects of condensate
saturation on Knudsen flow in kerogen (Labed et al., 2018),
flow rate, and interfacial tension on relative permeabilities
(Momeni et al., 2017), confinement on phase properties and
multi-transports such as free gas transport, gas adsorption, and
surface diffusion (Liu et al., 2019; Pan et al., 2019) were
also investigated using PNM. Different aspects of PNM can
be found in a review article (Xiong et al., 2016). Although
the PNM is elegant to capture the multi-physics transports
in nano-pores, complex pore networks of real porous media
such as microscopic features cannot be represented. The entire
workflow of model development and running simulations is
complex and time-consuming.

The numerical methods as the alternative to the analytical
solution are popular in the oil and gas industry. Fundamental
flow equations (partial differential equations) are numerically
solved after discretizing using various techniques such as finite
difference, finite elements, etc. The control volume finite ele-
ment (CVFE) method on unstructured grids was developed to
simulate gas cycling in a rich retrograde condensate reservoir
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Table 1. Compositions and critical properties of three different condensates, lean, intermediate and rich.

Composition (mole %)

Components

Lean Intermediate Rich
Cl 72.49 67.57 64.52
C2 7.16 7.01 6.91
C3 6.01 5.89 5.81
iC4 1.20 1.07 0.98
nC4 1.99 1.9 1.84
iC5 0.93 0.84 0.78
nC5 0.99 0.89 0.82
FC6 1.39 1.33 1.29
C7+ 5.56 11.23 14.78
CO, 2.14 2.14 2.14
N, 0.13 0.13 0.13
C7+ Mol. Wt. 129 140 148
C7+ Sp. Gr. 0.775 0.778 0.780

(Chen et al., 2006). Among the few early studies, numerical
simulations were conducted for radial gas condensate well
by Eilerts et al. (1965) and Kniazeff and Navilee (1965).
Gondouin et al. (1967) modified the numerical program
developed by Khniazeff and Naville (1965) and compared
results with field measurements. Fussel (1973) developed a
compositional simulator for 1-D radial flow in gas condensate
reservoirs and proved that the steady-state predictions were
incorrect especially when the reservoir average pressure is
below saturation pressure. The equation of state model for
gas-condensate fluid was modified in a numerical simulator
to accommodate multilayer adsorption in nano-scale pores
in an unconventional reservoir (Dong et al., 2016). Isotherm
of capillary condensation is computed considering this effect
of adsorption (wetting) film. The effect of geomechanics on
the production of condensate can not be ignored. In another
numerical model, the effect of adsorption on primary recovery
and CO;, enhanced recovery was investigated using an ex-
tended Langmuir model and geomechanics (Yang et al., 2019).
However, fine grid, multiphase and compositional simulations
require longer run time and high computing power.

Developing an analytical model requires an understanding
of the flow mechanism inside porous media. The main focus
of this mini-review study is to discuss analytical approaches to
model gas and condensate flow rates. First, we have discussed
the thermodynamical of gas-condensate, i.e., PVT properties.
Then, we have described different depletion stages and multi-
phase flow that are essential in developing a quick prediction
tool for production performance. Finally, different models,
their drawbacks, and assumptions are discussed.

2. Pressure-volume-temperature

Low gravity liquids like volatile oils and gas condensates
can exist in the gas phase in vaporized form. They often
show similar thermodynamics properties despite the different

initial conditions and flow performance in the reservoir (Panja
et al., 2019). The vaporized liquid in the gas phase is first
conceptualized by Cook et al. (1974) for gas injection system
and the term volatilized oil (or condensate) to gas ratio (R,)
was applied to conventional material balance equation by
Fetkovich et al. (1986). Therefore, modified black oil (MBO)
PVT includes the volatilized condensate to gas ratio (R,) which
is used in all the calculations of flow models.

To demonstrate PVT properties, three different gas-
condensate fluids with the varying richness of liquid content
in the gas are considered. The hydrocarbon compositions are
partly taken from Whitson and Sunjerga (2012) as given
in Table 1 which represents the plausible compositions of
condensate window in Eagle Ford formation, Texas, USA.
The components up to carbon number 6, i.e., methane (C1),
ethane (C2), propane (C3), iso & normal butane (iC4 and nC4),
iso & normal pentane (iC5 and nC5) and, the total fraction
of hexane (FC6) are listed in Table 1. All the hydrocarbons
heavier than carbon number 6 are lumped together to create
a pseudo component C7+ which is characterized by its mole
fraction, molecular weight and specific gravity.

For rich gas-condensate fluid, the amount of lighter hydro-
carbons is less and the amount of heavier hydrocarbons is high.
Thus, mole fraction, the molecular weight and specific gravity
of C7+ increase with the richness of the gas-condensate fluids.
The two-phase diagram or pressure-temperature (PT) diagram
is useful to determine the condensate window for the fluid.
The reservoir is ideally considered as an isothermal system
of porous media assuming no heat flow using steam or other
means. In the PT diagram, when the reservoir temperature is
higher than the critical temperature and lower than the cricon-
dentherm (the maximum temperature in the diagram), fluid
is characterized as gas condensate. The fluid remains in the
gaseous phase when the reservoir pressure is above the dew-
point pressure (at reservoir temperature). Liquid condensate
forms and drops out from the gaseous phase during production
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Fig. 1. Two-phase PT diagram for lean, intermediate and rich gas condensates.
The critical points are shown using triangular markers.

when the reservoir pressure drops below dew-point pressure.
This phenomenon is counter-intuitive. Usually, liquid forms
from the gaseous phase when the system is pressurized at cer-
tain temperature conditions. However, in the gas-condensate
system, lowering the pressure causes the formation of liquid
condensate. For this reason, this fluid is often known as
retrograde gas-condensate.

The shape of the PT diagram is dependent on the initial
compositions of the reservoir fluid. Two-phase PT bound-
aries (PT diagram) for lean, intermediate and rich condensate
are prepared using Peng-Robinson (1978) equation of state
in commercial software Winprop from Computer Modeling
Group (CMG), Calgary, Canada as shown in Fig. 1.

Rich condensate has a wider PT diagram with the high-
est cricondentherm. On the other hand, the lean condensate
has a narrower PT diagram with the lowest cricondentherm.
Therefore, the rich condensate fluid has a higher dew-point
temperature for the same pressure. The amounts of liquid
dropout below the dew-point pressure at constant temperature

Dewpoint
Pressure, Py

Mercury

| ]
X
[ ]

Fig. 2. Different steps of CVD test in a laboratory.
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are important to characterize the flow of liquid condensate.
This occurs inside the reservoir during various depletion
stage. Two laboratory tests among many namely, constant
composition expansion (CCE) and constant volume depletion
(CVD) are important to measure the amount of liquid dropout
in a gas-condensate fluid. The detailed descriptions of these
tests can be found in the literature (Ahmed, 2010; McCain,
2017). The schematics of the CVD experiment are shown in
Fig. 2.

A certain amount of representative sample of original
reservoir fluid is charged in a visual PVT cell. The temperature
of the cell is maintained at reservoir temperature throughout
the experiment. At the starting of the experiment, the pressure
in the cell is set at dew-point pressure (Py,,,) and the initial
volume of this saturated fluid is considered a reference volume.
The pressure inside the cell is reduced below dew-point
pressure by removing mercury from the cell as shown in the
second schematic in Fig. 2. Therefore, liquid condensate drops
out from the gas phase due to the pressure reduction below
dew-point pressure. The gas volume (V) and the volume of
the retrograde liquid (V) are visually measured. The cell is
brought to the initial total volume by re-injecting mercury
and releasing some gas simultaneously to keep the pressure
the same. The steps are repeated with reduced pressures. This
process is similar to gas production with immobile liquid (due
to liquid saturation below the critical liquid saturation) staying
in the reservoir below dew-point pressure.

If V,ocvp data are not available from experiments but the
black-oil PVT properties are available, the following method
is followed (Fevang and Whitson, 1996) to calculate the CVD
data:

Ni—1 — Gi—1(Ry),

T = B)

(ViocvD) g I—(RR)), (Bo)y )
7 1 — Vr

Ne i = <V0CVD i VoCVDRv> ©)
B, Bga k—1

Condensate]

T Gas
x
A
LN
'1

Mercury

Mercury
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Table 2. Theoretical response values for the various algorithms.

Parameters Lean Intermediate Rich
Critical temperature, 7. (°F) 28 205 314
Critical pressure, P. (psi) 2826 4203 4161
Reservoir temperature (°F) 290 360 396
Dew-point pressure, pge,, (psia) 3246 3755 3812
Initial solution CGR (STB/MMSCF) 63 164 244
Maximum CVD liquid dropout (%) 4.4 12.8 20.7
Dewpomt <P Liquid dropouts during CVD and CCE for three different
Pressure, Pq ! Po=Pi <Py gas-condensate fluids are prepared using Winprop from CMG,
Calgary, Canada as shown in Fig. 4.
% % % The amounts of liquid dropout in CVD and CCE increase
with decreasing pressure. However, the liquid dropout reaches
T B Gas Gas a maximum value at a certain pressure and then declines.
; >% L Liquid volume fractions near dew-point pressure are the same
N e for CVD and CCE experiments. The dew-point pressure can
i - A, be altered by changing the temperature of experiments. The
l - liquid fractions decrease in CCE experiments with the lower
---------- dew-point pressures. The phase behaviors of lean, intermediate
Sl and rich condensate are summarized in Table 2.
3. Depletion mechanism
The reservoir may have one or more co-existing regions of
single phase or multi-phase depending on the depletion stage.
The characteristics of each region and method to calculate
Mercury Mercury pseudo pressure are discussed here.
Fig. 3. Different steps of CCE test in a laboratory. 3.1 Region 1
VoocvD 1 —Vecvp . This is a multi-phase ﬂow rggion where bth gas and
Gy = ( B, R+ By >k 1 (7) liquid condensate are mobile. This saturated region usually

The calculation starts from (V,,cvp), =0 at P = P;. Where
k represents the current calculation stage and k — 1 represents
the previous stage. The CCE test procedure is shown in Fig.
3.

The experimental procedure for constant composition ex-
pansion is similar to CVD except no hydrocarbon is removed
from the PVT cell, thus the overall compositions (combining
gas and liquid) are constant during the test. The pressure in the
cell is reduced below dew-point pressure by removing mercury
from the bottom at the isothermal condition. The total volume
of the hydrocarbon is recorded. The ratio of total volume
and reference volume, i.e., volume at dew-point pressure is
measured as a function of pressure.

Without any experimental data, a fractional amount of
condensate (V,,cce) of CCE can be calculated from black oil
PVT properties as follows (Fevang and Whitson, 1996):

R,— Ry \ Byl
v, P)= |14+ L2— )2
roCCE( ) |: + <1 Rva> B,

where, Viocce = Vo/ (Vg +V0)

®)

appears near the wellbore with pressure below dew-point and
the condensate saturation exceeding the critical saturation (i.e.,
minimum saturation when condensate starts flowing). The
maximum pressure where the condensate saturation exceeds its
critical saturation is designated as P;. Therefore, the region is
extended from the inner boundary of the wellbore with flowing
bottom hole pressure, P, to the outer boundary with pressure
P.

In the pseudo pressure calculation in region 1, another
main concern is to calculate the relative permeability of gas
(kr¢) and condensate (k;,) separately as a function of pressure.
Because the relative permeabilities are not directly functions
of pressure, they can be expressed in terms of PVT properties
which are dependent on pressure. It can easily be shown that
for two-phase flow, the ratio of relative permeability can be
expressed as (Fetkovich et al., 1986):

kﬁ (P) _ Rp —R; “ngd
1—R,R,) w,B,

€))

If produced gas condensate ratio (R)) is known, the right-
hand side of Eq. (9) can be calculated using PVT data. The
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flow behavior in region 1 is similar to a CCE system. There-
fore, the ratio of relative permeability can alternatively be
calculated from the fractional amount of condensate (V,,cck)
as follows (Fevang and Whitson, 1996):

K py = ( r 1) He

Kro VroCCE Uo

Once the ratio is known, the individual values of relative

permeability are obtained from mapping the value in relative
permeability curves as shown in Fig. 5.

The procedure is shown through the green solid line. The

procedure is also used to calculate the condensate saturation
in region 1 for a given pressure.

(10)

3.2 Region 2

Like region 1, this is also a two-phase region but only gas
flows and the liquid remains immobile due to the low conden-
sate saturation below the critical saturation. The pressure in
this region varies from P; to the dew-point pressure (Py,,,). In
the regions 1 and 2, the gas contains less volatilized condensate
as some of the condensates drop out as liquid phase. To cal-
culate the gas relative permeability K., condensate saturation
(S¢) must be known as a function of pressure. Because region
2 behaves like a CVD system, condensate saturation as a
function of pressure can be obtained from CVD data (Fevang
and Whitson, 1996):

Sc (P) :Vr()CVD(l 7SW) (11)
where, Viocvp = Vo(p)/Va-
Once condensate saturation is known at a particular pres-

sure, gas relative permeability (K,,) is determined from Fig.
5.

3.3 Region 3

Single-phase gas exists and flows in this region because
the pressure is higher than the dew-point pressure. This
is an undersaturated region thus no liquid condensates are
generated. The pressure ranges from dew-point pressure (Pye,,)
to the outer boundary pressure of the reservoir i.e., the initial
reservoir pressure (Py;,) for transient state flow. Because
the gas saturation is constant in this region and gas relative
permeability is also constant and is calculated from gas-water
relative permeability curves at the connate water saturation.

3.4 Region 4

In the case of a tight formation, the outer portion of the
reservoir commonly exists in transient state conditions when
all parts of the reservoir are not exploited. The boundary of this
zone starts when the initial reservoir pressure is first detected
to the external boundary of the reservoir. The entire region
holds the initial reservoir conditions and is unproductive.
Region 4 usually doesn’t exist in a conventional reservoir.
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plateau of the gas rate at the starting and the constant minimum flowing bottom
hole pressure at the end.

Operating a well in a gas-condensate reservoir is a chal-
lenge to engineers. Production optimization is a difficult task
due to complicated phase and flow behaviors. Operating well
at higher pressure above dew-point pressure seems advanta-
geous because of the single-phase flow of gas without losing
any liquid inside the reservoir. However, higher bottom hole
pressure means lower drawdown and thus the gas flow rate is
low. On the contrary, to increase flow rate drawdown is in-
creased by decreasing bottom hole pressure often below dew-
point pressure which leads to liquid dropout. As a result, the
remaining gaseous phase holds a lesser amount of volatilized
liquid. Due to higher mobility, gas dominates the two-phase
flow suppressing the production of liquid condensate. There-
fore, the productivity of liquid condensate is reduced in either
way. This reduction is dependent on the compositions of
the gas-condensate fluid, relative permeabilities, and operating
conditions.

Ideally, well can be operated as constant flowing bottom
hole pressure (P, ) or constant flow rate. However, a typical
operating condition in the real field is shown in Fig. 6.

In the case of constant flow rate operation, the flowing
bottom hole pressure (P,r) changes with time. Due to the
production of fluids, reservoir pressure drops, therefore, the
flowing bottom hole pressure (P, ) is reduced slowly to keep
a constant flow rate maintaining constant drawdown. When
the flowing bottom hole pressure reaches minimum allowable
flowing bottom hole pressure as shown in Fig. 6, production
starts decreasing.

The coexistence of various regions is determined by the
relative locations of dew-point pressure (P, ), outer boundary
pressure of region 1 (P;) and the flowing bottom hole pressure
(Pyr). The depletion conditions can be broadly identified into
three stages. The co-existence of different regions in each stage
is illustrated in Fig. 7.

The flowing bottom hole pressure starts generally above the
dew-point pressure (P, s > FPye,) and it eventually drops below
the dew-point pressure (P,r < Pyg.). If the initial flowing
bottom hole pressure is above the dew-point pressure, the
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pressure below dew-point pressure.

reservoir only contains gas (regions 3 and 4), this depletion
state is designated as stage 1. In the 2nd depletion stage,
flowing bottom hole pressure (B, y) drops below dew-point
pressure (Py,,,) but stays above P;. Region 2 appears along
with region 3 in the outer portion of the reservoir. Since the
P, is higher than P, condensate is immobile, and region 1
doesn’t exist. In depletion stages 3, the B,r is less than P
and the pressure is enough low to generate sufficient liquid
condensate to flow, therefore all four flow regions (1, 2, 3 and
4) appear as illustrated in Fig. 8.

It is a primary concern to determine the depletion stage
at any time step to calculate the pseudo pressure in Eq. (13)
in the next section. This depletion mechanism is simplified
considering the idealistic situation. One stage may exist for
the entire life of production.

4. Flow Modeling

Several studies have been conducted in the modeling of
saturated conventional reservoirs in primary production. The
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Table 3. Limits of integration for pseudo pressure calculations for different stages.

Stage Region 1 Region 2 Region 3
Lower Upper Lower Upper Lower Upper

1 Doesn’t exist Doesn’t exist Doesn’t exist Doesn’t exist P, P,

2 Doesn’t exist Doesn’t exist Py Piew Fiew P

3 ow Py Py Pdew Pdew P,

gas flow rate (gg) is calculated from the productivity index
(¥) and pseudo pressure (Am(P)) as:

qg = YeAm (P) (12)

The concept of pseudo pressure is not new; it is gener-
ally used for gas flow performance where actual pressure is
replaced by pseudo pressure. Mathematically pseudo pressure
is expressed as:

m(P):2/P pdP (13)

Pref ou“Z

It can easily be realized during solving flow equations that
it is advantageous to express all flow equations in terms of
these pseudo pressures. Evinger and Muskat (1942) introduced
the concept of theoretical productivity factor using pseudo-
pressure for solution gas drive reservoirs in steady-state con-
ditions. They proposed an equation for steady-state liquid flow
rate from a vertical well with the radial flow using pseudo-
pressure as following:

_ 27hk, /Peff ke JP
log (%) /p uB

This is the constant volume depletion material balance
method (CVDMB) (Evinger and Muskat, 1942) where the
entire reservoir is considered as homogeneous at any time and
the reservoir is characterized by its average pressure. O’Dell
(1967) first introduced a pseudo-pressure function to calculate
the gas rate in gas-condensate reservoirs in undersaturated
conditions. Jones and Raghavan (1988) also presented the
concept of the pseudo pressure integral to capture the effect
of multiphase flow by modifying the gas pseudo pressure. The
gas flow rate in the multiphase flow system of gas-condensate
is presented in Eq. (15).

Fe Km K T, >
= Ry+—=2—)dP
s Yg /ow (Bouo ' Bgle'g

The productivity index (7,) for pseudo-steady state flow
is dependent on the choice of the upper limit of integra-
tion. Reservoir average pressure (Pg) and external boundary
pressure (P,) are the two most commonly used pressure.
For pseudo-steady state flow in a radial reservoir, if average
pressure (Pg) is used as the upper limit of integration, ¥, =
2mayhk/ [log (re/rw) —0.75+s]; if external boundary pres-
sure (F,) is used as the upper limit of integration, ¥, =
2mayhk/ [log(re/rw) —0.5+5]. Where, a; is unit correction
factor, for filed unit, a; = 1/ (2x141.2), for SI unit, a; = 1.

q (14)

15)

Fevang and Whitson (1996) modified CVDMB and divided
the reservoir into three regions and accordingly, they split the
pseudo pressure Eq. (15) into three parts as shown in Eq. (16).

e (K, K
Am(P):/ ( 0 Ryt "8 )dP
Pyr \ Bollo Bgallg

:/ ) ( Ko g,y K )dP+ / o Ko gp
Pyr \ Bollo Bga, P Bgallg
Paew 1
+ KigSue dpP
P Bgallg

(16)

As described earlier that gas and condensate both flow in
the first region near the wellbore. Gas and condensate both
exist in the second zone but only gas flows. In the third zone,
only gas exists and flows. This method is applicable in pseudo-
steady state conditions for both vertical well and horizontal
well with the vertical fracture. The limits of the integration
change with the depletion stage. Limits are summarized in
Table 3.

The reservoir boundary pressure (P,) declines with time as
reservoir fluid is extracted for a depleted reservoir. Otherwise,
the boundary of initial pressure (P;) moves outward away from
the wellbore in the case of an infinite reservoir. Dew-point
pressure (Py,,) of the reservoir is considered constant to its
initial dew-point pressure. Reservoir pressure at any point at
any time is bounded by the flowing bottom hole pressure
(Pyr which is minimum pressure) and the reservoir boundary
pressure (P).

The upper limit of the integration in region 1 (or lower limit
in region 2), i.e., P; is not known in the pseudo pressure calcu-
lation. P; can be evaluated through the estimation of flowing
condensate to gas ration (CGR) at the wellbore and in region 1.
Fevang and Whitson (1996) considered constant flowing CGR
(Ryy) in region 1 which is equal to the condensate to gas ratio
(Ry) in the deep reservoir at the pressure P;. Therefore, the
produced CGR (the inverse of produced GOR, 1/R;) in the
well stream is equal to the flowing gas condensate ratio (R,)
at pressure P; which is determined from PVT table as:

Ru(P)= ¢
v 1 Rp

Different methods were developed to calculate producing
GOR. Fevang and Whitson (1996) obtained the producing
GOR (Rp) using a commercial simulator. Guehria (2000)
followed the same method except that producing GOR (R))
is calculated from Muskat (1945) material balance method
modified for gas condensate system as shown in Eq. (18).

A7)
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(18)

The Egs. (9) and (18) can be solved simultaneously for two
unknowns (R, and condensate saturation, S,). The derivative
term of PVT properties is determined from the slope. The
saturation derivative is discretized for two pressure steps.
The condensate saturation starts with zero value at dew-point
pressure. Subsequently, the GOR and condensate saturation
are calculated for a given pressure.

Mott (2003) showed that the above method overestimated
the flowing CGR. A new method was developed to estimate
flowing GOR based on the growth of the region 1 using a
material balance as shown in Eq. (19).

1 R, (Pl)
APV(Sml-Sm2)[Bo(fq)__Bg(PO]

PV (P
= {Q().max - quRv (Pl) |:1 - P‘Etot ):| }At

The condensate saturation, S, ; inside region 1 is calculated
using Eq. (9). Condensate saturation in region 2, i.e., S, is
calculated from CVD data, i.e., Eq. (11). The pressure P can
be calculated from Eq. (18) if the pore volume inside a given
pressure contour is known. Mott (2003) defined a fractional
pseudo pressure drawdown as:

19)

_ m(p)—m(pw)
m(pr) —m(pw)

Tables of pore volume versus ¢ inside a given pressure
contour for different well types, geometry and reservoir ge-
ometry were set up. Using this table, the PV and APV are
calculated at any pressure that is used in Eq. (19).

Many combinations of the existing methods can be de-
veloped to obtain better results. Existing methods can be con-
verted to iterative too. All other steps are the same as Fevang’s
Method. Xiao and Al-Muraikhi (2004) adopted Mott’s method
(Mott, 2003) with the modification of the material balance
method to calculate the growth of the first region.

sy =T L e
X.ug(Pl)Bg(Pl)qz do de}
Ky $9(PV) dP

The gradient da/d (PV) is calculated using Mott’s (Mott,
2003) method. Therefore, pressure P; is obtained from Egs.
(9) and (21).

Gerami et al. (2010) introduced an iterative method cou-
pled with general material balance calculation to avoid the
necessity of production data in the original method of Fevang
and Whitson (1996). For a given bottom hole pressure and time
step, the average reservoir pressure and the pressure P are
guessed first. The gas and condensate flow rates are calculated
independently. The flowing gas condensate ratio (R,) is then
determined by dividing the condensate flow rate by gas flow

(20)
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rate. Pressure Pj is obtained from PVT table using this flowing
CGR to compare with the guessed value. If the error is in
accepted range, average reservoir pressure is calculated from
general material balance equation and compared to the guessed
value. This iterative method is difficult to converge and very
sensitive to PVT data.

Bonyadi et al. (2012) developed an iterative method that
combined Mott’s (Mott, 2003) and Xiao and Al-Muraikhi’s
methods (Xiao and Al-Muraikhi, 2004). The material balance
used in all existing methods is only applicable to the depleted
reservoir where average reservoir pressure is the characteristics
feature.

A rate transient model considering a new linear flow is pro-
posed to hydraulically fractured tight/shale systems with multi-
phase flow (of gas and condensate) and pressure-dependent
rock/fluid properties with the combination of the dynamic
drainage area (DDA), material balance, and decoupling of
saturation and pressure (Qanbari and Clarkson, 2016) as shown
in Eq. (22).

®icti
Hoit

The pseudo-pressure in this study is defined in terms of
dimensionless permeability, condensate viscosity, condensate
formation volume factor as given in Eq. (23).

()%
4 ki ro
m()(p)_/po (&) (&,)dp
Hoi Boi
An iterative semi-analytical method (Behmanesh et al.,
2017) for rate-transient analysis of gas condensate reservoirs

coupled with the material balance is developed to calculate
gas flow rate as shown in Eq. (24).

Te 3 +
Y .
wa 4

Eq. (24) can also be utilized to estimate original gas in
place. Two-phase material balance pseudotime is given by Eq.
(25).

_ Ak
~ 57.16B,;

9o [mo (ﬁinv) — My (Pw )] (22)

(23)
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two-phase

These empirical methods are based on simplified reser-
voir model such as isothermal, homogeneous and isotropic
reservoir with constant formation thickness or vertical fracture
height with linear and boundary dominated flow. Therefore,
it is not applicable for moving boundary flow with a long
transient flow in most tight formations. One way to improve
the model is to divide the reservoir into saturated and un-
dersaturated segments (Velasco et al., 2016). In this semi-
analytical model, the changes in the volume of these two
segments were calculated using corresponding flow and phase
properties coupled with the material balance method.

In most cases of empirical formulations, Darcy’s law is
assumed to be applicable and the impacts of capillary pressure,
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gravity, high velocity of fluid, interfacial tensions, multi-
physics transports are ignored. The existence of kerogen in
shale plays a significant role in altering the PVT and flow
properties (Pathak et al., 2015). Multi-physics models such
as adsorption, the effect of confinement, and the presence of
kerogen are also important for the modeling condensate flow
in nanopores. There is considerable evidence that the known
laws of adsorption, phase transitions, and flow are affected by
nanometer-sized pores and the presence of kerogen. Therefore,
the key challenge for future studies in developing an analytical
or a semi-analytical model for condensate flow is to incorpo-
rate the multi-physics and geomechanics.

5. Summary

A vast amount of research efforts has been made for mod-
eling gas-condensate flow. Understanding the thermodynamic
and depletion natures are the key factors in developing a
rigorous model. The division of pseudo pressure depending on
the fluid phase is the key step in calculating the flow rate. It is
advantageous to determine the modified black oil properties of
gas-condensate fluid for model development. The calculations
are very sensitive to PVT data. A detailed discussion of the
model of gas-condensate flow is represented here including all
the depletion states inside the reservoir.

The efficient model can replace the reservoir simulation for
a rapid production forecast. Quick sensitivity study of param-
eters like matrix permeability, relative permeability, flowing
bottom hole pressure, initial pressure, fluid properties can be
conducted using this model. Methods can be developed using
a combination of transient and pseudo-steady state conditions.
This method is also useful for well inflow performance and
material balance methods in unconventional reservoirs. This
study provides a detailed discussion on PVT properties of
gas-condensate, depletion mechanism in porous media, and
analytical approaches in modeling flow in steady-state and
pseudo steady-state conditions. The future research is to de-
velop transient state flow models of gas-condensate in a tight
formation such as shale with hydraulic fractures and horizontal
well considering multiphysics and geomechanics.

Nomenclature

¥, = Productivity index of gas, (RB/Day)(cp/psi)
Am(P) ¢ = Pseudopressure for gas, (SCF/RB)(psi/cp)
Piny = Averagepressure in investigated volume, psi
U = Viscosity, cp

U = Gas viscosity, cp

U, = Oil or condensate viscosity, cp

Ui = Initial oil or condensate viscosity, cp

A, = Total fracture area, ft?

B = Formation volume factor, RB/SCF or RB/STB
B,y = Dry gas formation volume factor, RB/SCF
B, = 0Oil formation volume factor, RB/STB

B,; = Initial oil formation volume factor, RB/STB
¢;; = Initial total compressibility, 1/psi

h = Formation thickness, ft

k = Absolute permeability, mD
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k; = Initial absolute permeability, mD

K,, = Gas relative permeability, mD

K, = Oil relative permeability, mD

P = Pressure, psi

P, = Region 1 boundary pressure, psi

Pye,, = Dew-point pressure, psi

P, = Pressure at reservoir’s outer boundary, psi

P,.; = Effective reservoir pressure, psi

P, = Initial reservoir pressure, psi

Pr = Average reservoir pressure, psi

P, = Flowing bottom hole pressure, psi

qe = Gas rate at well, SCF/day

qgw = Gas flow rate at wellbore, SCF/day

¢, = Condensate rate at well, STB/day

qo,max = Maximum condensate rate, STB/day

R, = Produced gas/condensate ratio, SCF/STB

R, = Solution gas/condensate ratio, SCF/STB

R;; = Initial solution gas/condensate ratio, SCF/STB

R, = Volatilized condensate/gas ratio, STB/MMSCF

R,y = Flowing volatilized condensate/gas ratio, STB/MM-
SCF

R,; = Initial volatilized condensate/gas ratio, STB/MMSCF

S, = Condensate saturation

S,,1 = Condensate saturation in region 1

S, = Condensate saturation in region 2

Sye = Irreducible water saturation

V, = Gas volume in CVD and CCE tests, RB

Vi = Liquid volume in CVD and CCE tests, RB
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