Understanding and modeling of gas-condensate flow in porous media

Palash Panja1,2*, Raul Velasco2, Milind Deo1

1 Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
2 Energy & Geoscience Institute, University of Utah, Salt Lake City, Utah 84108, United States

Keywords:
Gas-condensate flow modeling depletion mechanism pseudo-pressure PVT properties

Abstract:
Well deliverability impairment due to liquid dropout inside gas-condensate reservoirs below dew-point pressure is a common production problem. The operating conditions and the thermodynamic properties of the condensate govern the production performance of this type of reservoir. Modeling condensate production using analytical, semi-analytical or empirical formula for quick assessment of reservoir performance is a complicated method due to the complex thermodynamic behavior. The objective of this study is to provide a fundamental understanding of the flow and thermodynamics of gas-condensate fluid to develop tools for the production prediction. The prior developments of flow modeling of gas-condensate are briefly reviewed. The multi-phase flow and the depletion stages during production are discussed. Each component of pseudo-pressure calculations to determine the condensate flow rate is explained. Thermodynamic properties and laboratory experiment relevant to the flow of condensate are also explored. Pressure-volume-temperature properties such as two-phase envelope, constant composition expansion and constant volume depletion are demonstrated for three different gas-condensate fluids namely lean, intermediate and rich. This article is also useful for future developments of the production model for a gas-condensate under various operational and completion scenarios such as horizontal wells and hydraulic fractures in tight formations.

1. Introduction

Condensate is a water-white to light straw-colored liquid hydrocarbon which is produced with a large amount of gas. The density of condensate in terms of American petroleum institute (API) gravity is usually above 50 degrees and the produced gas-to-liquid ratios in the separator usually range from 10,000 cubic feet to more than 100,000 cubic feet per barrel (Thornton, 1946). The reservoir is often initially filled with gas only. Liquid condensate forms inside the reservoir when the pressure drops below the dew-point pressure and eventually condensate starts flowing with gas (multi-phase) after it exceeds the critical condensate saturation. The magnitude of the pressure decline below the dew-point is one of many factors affecting the amount of condensate drop-out. Therefore, higher condensate drop-out is usually observed near the wellbore or hydraulic fractures in tight formations due to a sharp decline in pressure. This impairs the liquid production due to its low mobility compared to gas. The extent of blockage depends on various factors such as Pressure-volume-temperature (PVT) properties, absolute permeability of the rock, relative permeability and, well operational conditions. Understanding and modeling of the two-phase flow of gas and condensate in porous media are challenging tasks due to the complex interactions among the influencing factors. Numerous production analysis techniques and models have been developed since the early studies on oil flow in conventional reservoirs (Millikan, 1926; Coleman et al., 1930). These studies can be broadly categorized such as empirical formulation like decline curve and type curve analysis, surrogate models, material balance methods, numerical simulation, pore network model (PNM), and semi-analytical methods.

On the other hand, the decline curve analysis (DCA) method has been used for a long time for its rapid predictive capability. Arps (1945) developed the first mathematical model including exponential decline, hyperbolic decline, and...
harmonic decline by fitting them with available production data.

\[
\text{Exponential: } q = q_i e^{-D_i t} \tag{1}
\]

\[
\text{Hyperbolic: } q = q_i (1 + bD_i t)^{-\frac{1}{b}}, \quad 0 < b < 1 \tag{2}
\]

\[
\text{Harmonic: } q = q_i (1 + D_i t)^{-1} \tag{3}
\]

where \(D_i \) is defined as the initial flow rate changed in unit time:

\[
D_i = -\left(\frac{1}{q} \frac{\partial q}{\partial t} \right)_{t \to 0} \tag{4}
\]

After finding the fitted parameters \((b, \ D_i)\) using regression with production history, it is used to predict the flow rate. It is also used to calculate the estimated ultimate recovery (EUR) using the cumulative production curve by extending it until the time where the flow rate reaches the uneconomic limit of production. Consequently, other new and modified versions of Arp’s method (Mead, 1956; Mannon, 1965; Fetkovich, 1980) were developed. Most decline curves are constructed based on the single-phase boundary dominated flow in a conventional reservoir with high permeability (milli Darcy range). Therefore, they are not applicable to transient flow with moving boundaries such as the case of unconventional reservoirs with ultra-low matrix permeability (micro to nano Darcy range). A few new techniques have been emerged to fit the production data from tight formations such as the Power Law Exponential (PLE) (Ilk et al., 2008), Stretched-Exponential model (SE) (Valko, 2009), Logistic Growth Analysis (LGA) (Clark et al., 2011) and Duong Method (Duong, 2010). No reservoir parameters are included in all these DCA models, therefore, they can not be used for reservoir characterization such as permeability estimation or fracture length determination in tight formation. Alternatively, type curves are developed (Fetkovich, 1980; Palacio and Blasingame, 1994; Agarwal et al., 1999; Pratikno et al., 2003) for the estimation of permeability, skin, drainage radius, and fracture half-length. However, type curves are also based on the single-phase Darcy flow with pressure independent permeability. The effects of stress/pressure on permeability, porosity, and relative permeability were demonstrated experimentally (Fatt and Davis, 1952; Fatt, 1953; Vairogs et al., 1971; Thomas and Ward, 1972; McKee et al., 1988; Kikani and Pedrosa, 1991; Rushing et al., 2007; Dong et al., 2010). Therefore, these parameters consequently affect the production of hydrocarbon (Thompson et al., 2010; Okouma Mangha et al., 2011; Clarkson et al., 2013). Researchers (Johnson and Jamialahmady, 2018) modified type curves incorporating the effects of pressure on permeability (Raghavan et al., 1972; Ostensen, 1986; Thompson et al., 2010; Clarkson et al., 2013) and porosity. Despite all recent development of DCA and type curves to forecast oil and gas flow rates in tight/shale reservoirs, they are empirically developed and sometimes predict unrealistic or infinite EUR.

Surrogate models (Amorim and Schiozer, 2012; Dahaghi et al., 2012) such as polynomial functions (Parikh, 2003; Li and Friedmann, 2005; Carreras et al., 2006; Panja and Deo, 2016) and machine learning algorithms (El-Sebakhy, 2007; Anifowose et al., 2011; Panja et al., 2016) are useful in determining the production performance for a set of geologic, completion, and operational parameters (Panja et al., 2016). The main drawback of surrogate models is the requirements of various model parameters along with the availability of high-performance computers.

The general material balance equations in the oil and gas industry based on hydrocarbon volume balance are initially presented by Schilthuis (1936). The general material balance method has three main unknown namely average reservoir pressure, recovery factor, and cumulative gas oil ratio (GOR). Other parameters can be expressed as the functions of pressure. Many integrated approaches (Turner, 1944; Muskat, 1945; Tracy, 1955) were developed for the prediction of production performance using the material balance equation in the solution-gas-drive reservoir. Havlena and Odeh (1963) first re-arranged the material balance equation as a straight line and fitted it with the field production data. The linear form is useful for calculations of initial oil in place, gas cap size, water influx, and drive mechanisms. The general material balance method works well on the assumption that the reservoir is under uniform average pressure. This is the case for conventional reservoir with boundary dominated flow. However, the unconventional reservoirs such as shales or tight formations have shown different flow behaviors (Orangi et al., 2011; Panja et al., 2016; Panja and Deo, 2016). A semi-analytical method coupled with material balance was developed to predict the production performance in tight formations (Velasco et al., 2016) which is discussed later.

PNM has recently gained interest in studying the effects of nano-pores on PVT properties and multi-transport phenomena like adsorption of gas in organic matter in tight formations. Various pore-network models for two-phase flow of gas-condensate were developed including compositional simulation (Santos and Carvalho, 2020). The effects of condensate saturation on Knudsen flow in kerogen (Labed et al., 2018), flow rate, and interfacial tension on relative permeabilities (Momeni et al., 2017), confinement on phase properties and multi-transport such as free gas transport, gas adsorption, and surface diffusion (Liu et al., 2019; Pan et al., 2019) were also investigated using PNM. Different aspects of PNM can be found in a review article (Xiong et al., 2016). Although the PNM is elegant to capture the multi-physics transports in nano-pores, complex pore networks of real porous media such as microscopic features cannot be represented. The entire workflow of model development and running simulations is complex and time-consuming.

The numerical methods as the alternative to the analytical solution are popular in the oil and gas industry. Fundamental flow equations (partial differential equations) are numerically solved after discretizing using various techniques such as finite difference, finite elements, etc. The control volume finite element (CVFE) method on unstructured grids was developed to simulate gas cycling in a rich retrograde condensate reservoir.
Table 1. Compositions and critical properties of three different condensates, lean, intermediate and rich.

<table>
<thead>
<tr>
<th>Components</th>
<th>Lean (mole %)</th>
<th>Intermediate (mole %)</th>
<th>Rich (mole %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>72.49</td>
<td>67.57</td>
<td>64.52</td>
</tr>
<tr>
<td>C2</td>
<td>7.16</td>
<td>7.01</td>
<td>6.91</td>
</tr>
<tr>
<td>C3</td>
<td>6.01</td>
<td>5.89</td>
<td>5.81</td>
</tr>
<tr>
<td>iC4</td>
<td>1.20</td>
<td>1.07</td>
<td>0.98</td>
</tr>
<tr>
<td>nC4</td>
<td>1.99</td>
<td>1.9</td>
<td>1.84</td>
</tr>
<tr>
<td>iC5</td>
<td>0.93</td>
<td>0.84</td>
<td>0.78</td>
</tr>
<tr>
<td>nC5</td>
<td>0.99</td>
<td>0.89</td>
<td>0.82</td>
</tr>
<tr>
<td>FC6</td>
<td>1.39</td>
<td>1.33</td>
<td>1.29</td>
</tr>
<tr>
<td>C7+</td>
<td>5.56</td>
<td>11.23</td>
<td>14.78</td>
</tr>
<tr>
<td>CO₂</td>
<td>2.14</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>N₂</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>C7+ Mol. Wt.</td>
<td>129</td>
<td>140</td>
<td>148</td>
</tr>
<tr>
<td>C7+ Sp. Gr.</td>
<td>0.775</td>
<td>0.778</td>
<td>0.780</td>
</tr>
</tbody>
</table>

(Chen et al., 2006). Among the few early studies, numerical simulations were conducted for radial gas condensate well by Eilerts et al. (1965) and Kniazeff and Naville (1965). Gondouin et al. (1967) modified the numerical program developed by Kniazeff and Naville (1965) and compared results with field measurements. Fussel (1973) developed a compositional simulator for 1-D radial flow in gas condensate reservoirs and proved that the steady-state predictions were incorrect especially when the reservoir average pressure is below saturation pressure. The equation of state model for gas-condensate fluid was modified in a numerical simulator to accommodate multilayer adsorption in nano-scale pores in an unconventional reservoir (Dong et al., 2016). Isotherm of capillary condensation is computed considering this effect of adsorption (wetting) film. The effect of geomechanics on the production of condensate can not be ignored. In another numerical model, the effect of adsorption on primary recovery and CO₂ enhanced recovery was investigated using an extended Langmuir model and geomechanics (Yang et al., 2019). However, fine grid, multiphase and compositional simulations require longer run time and high computing power.

Developing an analytical model requires an understanding of the flow mechanism inside porous media. The main focus of this mini-review study is to discuss analytical approaches to model gas and condensate flow rates. First, we have discussed the thermodynamical of gas-condensate, i.e., PVT properties. Then, we have described different depletion stages and multiphase flow that are essential in developing a quick prediction tool for production performance. Finally, different models, their drawbacks, and assumptions are discussed.

2. Pressure-volume-temperature

Low gravity liquids like volatile oils and gas condensates can exist in the gas phase in vaporized form. They often show similar thermodynamics properties despite the different initial conditions and flow performance in the reservoir (Panja et al., 2019). The vaporized liquid in the gas phase is first conceptualized by Cook et al. (1974) for gas injection system and the term volatilized oil (or condensate) to gas ratio \((R_v)\) was applied to conventional material balance equation by Fetkovich et al. (1986). Therefore, modified black oil (MBO) PVT includes the volatilized condensate to gas ratio \((R_v)\) which is used in all the calculations of flow models.

To demonstrate PVT properties, three different gas-condensate fluids with the varying richness of liquid content in the gas are considered. The hydrocarbon compositions are partly taken from Whitson and Sunjerga (2012) as given in Table 1 which represents the plausible compositions of condensate window in Eagle Ford formation, Texas, USA. The components up to carbon number 6, i.e., methane (C₁), ethane (C₂), propane (C₃), iso & normal butane (iC₄ and nC₄), iso & normal pentane (iC₅ and nC₅) and the total fraction of hexane (FC₆) are listed in Table 1. All the hydrocarbons heavier than carbon number 6 are lumped together to create a pseudo component C₇+ which is characterized by its mole fraction, molecular weight and specific gravity.

For rich gas-condensate fluid, the amount of lighter hydrocarbons is less and the amount of heavier hydrocarbons is high. Thus, mole fraction, the molecular weight and specific gravity of C₇+ increase with the richness of the gas-condensate fluids. The two-phase diagram or pressure-temperature (PT) diagram is useful to determine the condensate window for the fluid. The reservoir is ideally considered as an isothermal system of porous media assuming no heat flow using steam or other means. In the PT diagram, when the reservoir temperature is higher than the critical temperature and lower than the cricondentherm (the maximum temperature in the diagram), fluid is characterized as gas condensate. The fluid remains in the gaseous phase when the reservoir pressure is above the dew-point pressure (at reservoir temperature). Liquid condensate forms and drops out from the gaseous phase during production.
when the reservoir pressure drops below dew-point pressure. This phenomenon is counter-intuitive. Usually, liquid forms from the gaseous phase when the system is pressurized at certain temperature conditions. However, in the gas-condensate system, lowering the pressure causes the formation of liquid condensate. For this reason, this fluid is often known as retrograde gas-condensate.

The shape of the PT diagram is dependent on the initial compositions of the reservoir fluid. Two-phase PT boundaries (PT diagram) for lean, intermediate and rich condensate are prepared using Peng-Robinson (1978) equation of state in commercial software Winprop from Computer Modeling Group (CMG), Calgary, Canada as shown in Fig. 1.

Rich condensate has a wider PT diagram with the highest cricondentherm. On the other hand, the lean condensate has a narrower PT diagram with the lowest cricondentherm. Therefore, the rich condensate fluid has a higher dew-point temperature for the same pressure. The amounts of liquid dropout below the dew-point pressure at constant temperature are important to characterize the flow of liquid condensate. This occurs inside the reservoir during various depletion stage. Two laboratory tests among many namely, constant composition expansion (CCE) and constant volume depletion (CVD) are important to measure the amount of liquid dropout in a gas-condensate fluid. The detailed descriptions of these tests can be found in the literature (Ahmed, 2010; McCain, 2017). The schematics of the CVD experiment are shown in Fig. 2.

A certain amount of representative sample of original reservoir fluid is charged in a visual PVT cell. The temperature of the cell is maintained at reservoir temperature throughout the experiment. At the starting of the experiment, the pressure in the cell is set at dew-point pressure (P_{dew}) and the initial volume of this saturated fluid is considered a reference volume. The pressure inside the cell is reduced below dew-point pressure by removing mercury from the cell as shown in the second schematic in Fig. 2. Therefore, liquid condensate drops out from the gas phase due to the pressure reduction below dew-point pressure. The gas volume (V_g) and the volume of the retrograde liquid (V_L) are visually measured. The cell is brought to the initial total volume by re-injecting mercury and releasing some gas simultaneously to keep the pressure the same. The steps are repeated with reduced pressures. This process is similar to gas production with immobile liquid (due to liquid saturation below the critical liquid saturation) staying in the reservoir below dew-point pressure.

If V_{roCVD} data are not available from experiments but the black-oil PVT properties are available, the following method is followed (Fevang and Whitson, 1996) to calculate the CVD data:

$$ (V_{roCVD})_k = \frac{N_{k-1} - G_{k-1}(R_v)_k (B_o)_k}{1 - (R_v R_s)_k} $$

$$ N_{k-1} = \left(\frac{V_{roCVD}}{B_o} + 1 - \frac{V_{roCVD} R_v}{B_{gd}} \right)_{k-1} $$

Fig. 1. Two-phase PT diagram for lean, intermediate and rich gas condensates. The critical points are shown using triangular markers.

Fig. 2. Different steps of CVD test in a laboratory.
Without any experimental data, a fractional amount of hydrocarbon is recorded. The ratio of total volume and reference volume i.e., volume at dew-point pressure is measured as a function of pressure. Liquid volume fractions near dew-point pressure are the same for CVD and CCE experiments. The dew-point pressure can be altered by changing the temperature of experiments. The liquid fractions decrease in CCE experiments with the lower dew-point pressures. The phase behaviors of lean, intermediate and rich condensate are summarized in Table 2.

3. Depletion mechanism

The reservoir may have one or more co-existing regions of single phase or multi-phase depending on the depletion stage. The characteristics of each region and method to calculate pseudo pressure are discussed here.

3.1 Region 1

This is a multi-phase flow region where both gas and liquid condensate are mobile. This saturated region usually appears near the wellbore with pressure below dew-point and the condensate saturation exceeding the critical saturation (i.e., minimum saturation when condensate starts flowing). The maximum pressure where the condensate saturation exceeds its critical saturation is designated as P_1. Therefore, the region is extended from the inner boundary of the wellbore with flowing bottom hole pressure, P_{wf} to the outer boundary with pressure P_1.

In the pseudo pressure calculation in region 1, another main concern is to calculate the relative permeability of gas (k_{rg}) and condensate (k_{ro}) separately as a function of pressure. Because the relative permeabilities are not directly functions of pressure, they can be expressed in terms of PVT properties which are dependent on pressure. It can easily be shown that for two-phase flow, the ratio of relative permeability can be expressed as (Fetkovich et al., 1986):

$$
\frac{k_{rg}}{k_{ro}}(P) = \frac{(R_p - R_t)}{1 - R_t R_p} \frac{\mu_B}{\mu_o} B_{gd} \mu_o B_{op}
$$

(9)

If produced gas condensate ratio (R_p) is known, the right-hand side of Eq. (9) can be calculated using PVT data. The

Table 2. Theoretical response values for the various algorithms.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Lean</th>
<th>Intermediate</th>
<th>Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical temperature, T_c (°F)</td>
<td>28</td>
<td>205</td>
<td>314</td>
</tr>
<tr>
<td>Critical pressure, P_c (psi)</td>
<td>2826</td>
<td>4203</td>
<td>4161</td>
</tr>
<tr>
<td>Reservoir temperature (°F)</td>
<td>290</td>
<td>360</td>
<td>396</td>
</tr>
<tr>
<td>Dew-point pressure, p_{dew} (psia)</td>
<td>3246</td>
<td>3755</td>
<td>3812</td>
</tr>
<tr>
<td>Initial solution CGR (STB/MMSCF)</td>
<td>63</td>
<td>164</td>
<td>244</td>
</tr>
<tr>
<td>Maximum CVD liquid dropout (%)</td>
<td>4.4</td>
<td>12.8</td>
<td>20.7</td>
</tr>
</tbody>
</table>

Fig. 3. Different steps of CCE test in a laboratory.
Fig. 4. CVD and CCE for (a) lean; (b) intermediate; (c) rich gas condensate fluids.

Fig. 5. Relative permeabilities of gas and condensate and the ratio of relative permeabilities.
flow behavior in region 1 is similar to a CCE system. Therefore, the ratio of relative permeability can alternatively be calculated from the fractional amount of condensate \((V_{roCCE}) \) as follows (Fevang and Whitson, 1996):

\[
\frac{K_{rg}}{K_{ro}}(P) = \left(1 - \frac{V_{roCCE}}{V_{CVD}} \right) \frac{\mu_g}{\mu_o} \tag{10}
\]

Once the ratio is known, the individual values of relative permeability are obtained from mapping the value in relative permeability curves as shown in Fig. 5.

The procedure is shown through the green solid line. The procedure is also used to calculate the condensate saturation in region 1 for a given pressure.

3.2 Region 2

Like region 1, this is also a two-phase region but only gas flows and the liquid remains immobile due to the low condensate saturation below the critical saturation. The pressure in this region varies from \(P_1 \) to the dew-point pressure \((P_{dew}) \). In the regions 1 and 2, the gas contains less volatilized condensate as some of the condensates drop out as liquid phase. To calculate the gas relative permeability \(K_{rg} \), condensate saturation \((S_c) \) must be known as a function of pressure. Because region 2 behaves like a CVD system, condensate saturation as a function of pressure can be obtained from CVD data (Fevang and Whitson, 1996):

\[
S_c(p) = V_{roCVD}(1 - S_w) \tag{11}
\]

where, \(V_{roCVD} = V_o(p) / V_d \).

Once condensate saturation is known at a particular pressure, gas relative permeability \((K_{rg}) \) is determined from Fig. 5.

3.3 Region 3

Single-phase gas exists and flows in this region because the pressure is higher than the dew-point pressure. This is an undersaturated region thus no liquid condensates are generated. The pressure ranges from dew-point pressure \((P_{dew}) \) to the outer boundary pressure of the reservoir i.e., the initial reservoir pressure \((P_{initial}) \) for transient state flow. Because the gas saturation is constant in this region and gas relative permeability is also constant and is calculated from gas-water relative permeability curves at the connate water saturation.

3.4 Region 4

In the case of a tight formation, the outer portion of the reservoir commonly exists in transient state conditions when all parts of the reservoir are not exploited. The boundary of this zone starts when the initial reservoir pressure is first detected to the external boundary of the reservoir. The entire region holds the initial reservoir conditions and is unproductive. Region 4 usually doesn’t exist in a conventional reservoir.

Fig. 6. A typical operating condition of a gas-condensate well with a constant plateau of the gas rate at the starting and the constant minimum flowing bottom hole pressure at the end.

Operating a well in a gas-condensate reservoir is a challenge to engineers. Production optimization is a difficult task due to complicated phase and flow behaviors. Operating well at higher pressure above dew-point pressure seems advantageous because of the single-phase flow of gas without losing any liquid inside the reservoir. However, higher bottom hole pressure means lower drawdown and thus the gas flow rate is low. On the contrary, to increase flow rate drawdown is increased by decreasing bottom hole pressure often below dew-point pressure which leads to liquid dropout. As a result, the remaining gaseous phase holds a lesser amount of volatilized liquid. Due to higher mobility, gas dominates the two-phase flow suppressing the production of liquid condensate. Therefore, the productivity of liquid condensate is reduced in either way. This reduction is dependent on the compositions of the gas-condensate fluid, relative permeabilities, and operating conditions.

Ideally, well can be operated as constant flowing bottom hole pressure \((P_{w,f}) \) or constant flow rate. However, a typical operating condition in the real field is shown in Fig. 6. In the case of constant flow rate operation, the flowing bottom hole pressure \((P_{w,f}) \) changes with time. Due to the production of fluids, reservoir pressure drops, therefore, the flowing bottom hole pressure \((P_{w,f}) \) is reduced slowly to keep a constant flow rate maintaining constant drawdown. When the flowing bottom hole pressure reaches minimum allowable flowing bottom hole pressure as shown in Fig. 6, production starts decreasing.

The coexistence of various regions is determined by the relative locations of dew-point pressure \((P_{dew}) \), outer boundary pressure of region 1 \((P_1) \) and the flowing bottom hole pressure \((P_{w,f}) \). The depletion conditions can be broadly identified into three stages. The co-existence of different regions in each stage is illustrated in Fig. 7.

The flowing bottom hole pressure starts generally above the dew-point pressure \((P_{w,f} > P_{dew}) \) and it eventually drops below the dew-point pressure \((P_{w,f} < P_{dew}) \). If the initial flowing bottom hole pressure is above the dew-point pressure, the
Depletion conditions can be broadly identified into three stages. The coexistence of different regions in each stage is illustrated in Figure 7.

Figure 7: Appearance of flow regions 1, 2 and 3 in various depletion stages during production.

- **Depletion Stage 1:** The flowing bottom hole pressure starts generally above the dew point pressure ($P_{wf} > P_{dew}$) and it eventually drops below the dew point pressure ($P_{wf} < P_{dew}$). Region 3 contains flowing gas, and region 4 contains stagnant gas.

- **Depletion Stage 2:** The flowing bottom hole pressure (P_{wf}) drops below the dew point pressure (P_{dew}) but stays above P_1. Region 2 appears along with region 3 in the outer portion of the reservoir. Since the P_{wf} is higher than P_1, condensate is immobile, and region 1 doesn't exist.

- **Depletion Stage 3:** The flowing bottom hole pressure (P_{wf}) is less than P_1 and the pressure is enough low to generate sufficient liquid condensate to flow, therefore all four flow regions (1, 2, 3 and 4) appear as illustrated in Fig. 8.

![Depletion Stages Diagram](image-url)

It is a primary concern to determine the depletion stage at any time step to calculate the pseudo pressure in Eq. (13) in the next section. This depletion mechanism is simplified considering the idealistic situation. One stage may exist for the entire life of production.

4. Flow Modeling

Several studies have been conducted in the modeling of saturated conventional reservoirs in primary production. The...
gas flow rate \((q_g) \) is calculated from the productivity index \((\gamma_g) \) and pseudo pressure \((\Delta m(P)) \) as:

\[
q_g = \gamma_g \Delta m(P)
\]

The concept of pseudo pressure is not new; it is generally used for gas flow performance where actual pressure is replaced by pseudo pressure. Mathematically pseudo pressure is expressed as:

\[
m(P) = 2 \int_{P_{ref}}^{P} \frac{PdP}{\mu Z}
\]

It can be easily realized during solving flow equations that it is advantageous to express all flow equations in terms of pseudo pressure. Mathematically pseudo pressure is expressed as:

\[
m(P) = 2 \int_{P_{ref}}^{P} \frac{PdP}{\mu Z}
\]

The productivity index \((\gamma_g) \) for pseudo-steady state flow is dependent on the choice of the upper limit of integration. Reservoir average pressure \((P_r) \) and external boundary pressure \((P_e) \) are the two most commonly used pressure terms. For pseudo-steady state flow in a radial reservoir, if average pressure \((P_e) \) is used as the upper limit of integration, \(\gamma_g = 2\pi a_1 h/k/\{\log (r_e/r_w) - 0.75 + s\} \); if external boundary pressure \((P_e) \) is used as the upper limit of integration, \(\gamma_g = 2\pi a_1 h/k/\{\log (r_e/r_w) - 0.5 + s\} \). Where, \(a_1 \) is unit correction factor, for filed unit, \(a_1 = 1/(2\pi 141.2) \), for SI unit, \(a_1 = 1 \).

Fevang and Whitson (1996) modified CVDMB and divided the reservoir into three regions and accordingly, they split the pseudo pressure Eq. (15) into three parts as shown in Eq. (16).

\[
\Delta m(P) = \int_{P_{ref}}^{P_r} \left(\frac{K_{ro}}{B_o \mu_o} R_s + \frac{K_{rg}}{B_g \mu_g} \right) dP
\]

\[
= \int_{P_{ref}}^{P_1} \left(\frac{K_{ro}}{B_o \mu_o} R_s + \frac{K_{rg}}{B_g \mu_g} \right) dP + \int_{P_1}^{P_{dw}} \frac{K_{ro}}{B_g \mu_g} dP
\]

As described earlier that gas and condensate both flow in the first region near the wellbore. Gas and condensate both exist in the second zone but only gas flows. In the third zone, only gas exists and flows. This method is applicable in pseudo-steady state conditions for both vertical well and horizontal well with the vertical fracture. The limits of the integration change with the depletion stage. Limits are summarized in Table 3.

The reservoir boundary pressure \((P_e) \) declines with time as reservoir fluid is extracted for a depleted reservoir. Otherwise, the boundary of initial pressure \((P_i) \) moves outward away from the wellbore in the case of an infinite reservoir. Dew-point pressure \((P_{dw}) \) of the reservoir is considered constant to its initial dew-point pressure. Reservoir pressure at any point at any time is bounded by the flowing bottom hole pressure \((P_{wf}) \) which is minimum pressure) and the reservoir boundary pressure \((P_e) \).

The upper limit of the integration in region 1 (or lower limit in region 2), i.e., \(P_1 \) is not known in the pseudo pressure calculation. \(P_1 \) can be evaluated through the estimation of flowing condensate to gas ration (CGR) at the wellbore and in region 1. Fevang and Whitson (1996) considered constant flowing CGR \((R_{cf}) \) in region 1 which is equal to the condensate to gas ratio \((R_v) \) in the deep reservoir at the pressure \(P_1 \). Therefore, the produced CGR (the inverse of produced GOR, \(1/R_p \)) in the well stream is equal to the flowing gas condensate ratio \((R_v) \) at pressure \(P_1 \) which is determined from PVT table as:

\[
R_v(P_1) = \frac{1}{R_p}
\]

Different methods were developed to calculate producing GOR. Fevang and Whitson (1996) obtained the producing GOR \((R_p) \) using a commercial simulator. Guehria (2000) followed the same method except that producing GOR \((R_p) \) is calculated from Muskat (1945) material balance method modified for gas condensate system as shown in Eq. (18).

Table 3. Limits of integration for pseudo pressure calculations for different stages.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Region 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Lower</td>
</tr>
<tr>
<td>1</td>
<td>Doesn’t exist</td>
<td>Doesn’t exist</td>
<td>Doesn’t exist</td>
</tr>
<tr>
<td>2</td>
<td>Doesn’t exist</td>
<td>Doesn’t exist</td>
<td>(P_{1})</td>
</tr>
<tr>
<td>3</td>
<td>(P_{wf})</td>
<td>(P_1)</td>
<td>(P_1)</td>
</tr>
</tbody>
</table>
The Eqs. (9) and (18) can be solved simultaneously for two unknowns (R_p and condensate saturation, S_c). The derivative term of PVT properties is determined from the slope. The saturation derivative is discretized for two pressure steps. The condensate saturation starts with zero value at dew-point pressure. Subsequently, the GOR and condensate saturation are calculated for a given pressure.

Mott (2003) showed that the above method overestimated the flowing CGR. A new method was developed to estimate flowing GOR based on the growth of the region 1 using a material balance as shown in Eq. (19).

$$
\Delta PV \left(S_{o,1} - S_{o,2} \right) \left[\frac{1}{B_o(P_1)} - \frac{R_c(P_1)}{B_g(P_1)} \right] = \left[q_{o,\text{max}} - q_{W,R}(P_1) \left[1 - \frac{PV(P_1)}{PV_{\text{tot}}} \right] \right] \Delta t
$$

(19)

The condensate saturation, $S_{o,1}$ inside region 1 is calculated using Eq. (9). Condensate saturation in region 2, i.e., $S_{o,2}$ is calculated from CVD data, i.e., Eq. (11). The pressure P_1 can be calculated from Eq. (18) if the pore volume inside a given pressure contour is known. Mott (2003) defined a fractional pseudo pressure drawdown as:

$$\alpha = \frac{m(p) - m(p_w)}{m(p_R) - m(p_w)}$$

(20)

Tables of pore volume versus α inside a given pressure contour for different well types, geometry and reservoir geometry were set up. Using this table, the PV and ΔPV are calculated at any pressure that is used in Eq. (19).

Many combinations of the existing methods can be developed to obtain better results. Existing methods can be converted to iterative too. All other steps are the same as Fevang’s Method. Xiao and Al-Muraikhi (2004) adopted Mott’s method (Mott, 2003) with the modification of the material balance method to calculate the growth of the first region.

$$
S_o = \frac{1}{\gamma} \left[1 - \frac{PV(P_1)}{PV_{\text{tot}}} \right] \int_0^t \left\{ \left[\frac{1}{B_o(P_1)} - \frac{R_c(P_1)}{B_g(P_1)} \right] \right.
\times \frac{\mu_c(P_1)B_g(P_1)}{K_g} \left[\frac{\partial \alpha}{\partial (PV)} \right] dP \right\} dt
$$

(21)

The gradient $\partial \alpha / \partial (PV)$ is calculated using Mott’s (Mott, 2003) method. Therefore, pressure P_1 is obtained from Eqs. (9) and (21).

Gerami et al. (2010) introduced an iterative method coupled with general material balance calculation to avoid the necessity of production data in the original method of Fevang and Whitson (1996). For a given bottom hole pressure and time step, the average reservoir pressure and the pressure P_1 are guessed first. The gas and condensate flow rates are calculated independently. The flowing gas condensate ratio (R_c) is then determined by dividing the condensate flow rate by gas flow rate. Pressure P_1 is obtained from PVT table using this flowing CGR to compare with the guessed value. If the error is in accepted range, average reservoir pressure is calculated from general material balance equation and compared to the guessed value. This iterative method is difficult to converge and very sensitive to PVT data.

Bonyadi et al. (2012) developed an iterative method that combined Mott’s (Mott, 2003) and Xiao and Al-Muraikhi’s methods (Xiao and Al-Muraikhi, 2004). The material balance used in all existing methods is only applicable to the depleted reservoir where average reservoir pressure is the characteristics feature.

A rate transient model considering a new linear flow is proposed to hydraulically fractured tight/shale systems with multiphase flow (of gas and condensate) and pressure-dependent rock/ fluid properties with the combination of the dynamic drainage area (DDA), material balance, and decoupling of saturation and pressure (Qanbari and Clarkson, 2016) as shown in Eq. (22).

$$q_o = \frac{A_c \sqrt{\frac{k}{57.16 B_o \mu_c}}}{\mu_o \left[\frac{r_e}{r_w} - \frac{3}{4} \right] \frac{1 - (1 - S_c) t_{ca}}{G_{Bi} \mu_c C_i}}$$

(22)

The pseudo-pressure in this study is defined in terms of dimensionless permeability, condensate viscosity, condensate formation volume factor as given in Eq. (23).

$$m_o(p) = \int_{p_0}^p \left(\frac{1}{\mu_t} \right) \frac{dP}{k_{to}}$$

(23)

An iterative semi-analytical method (Behmanesh et al., 2017) for rate-transient analysis of gas condensate reservoirs coupled with the material balance is developed to calculate gas flow rate as shown in Eq. (24).

$$\frac{m(P_1) - m(P_{w,f})}{q_g} = \frac{18.66}{k h} \ln \left(\frac{r_e}{r_w} - \frac{3}{4} \right) \frac{1 - (1 - S_c) t_{ca}}{G_{Bi} \mu_c C_i}$$

(24)

Eq. (24) can also be utilized to estimate original gas in place. Two-phase material balance pseudotime is given by Eq. (25).

$$t_{ca} = \frac{\mu_c C_i}{\mu_g C_i} \int_0^t \left[\frac{q_g}{\mu_c C_{i,\text{two-phase}}} \right] dt$$

(25)

These empirical methods are based on simplified reservoir model such as isothermal, homogeneous and isotropic reservoir with constant formation thickness or vertical fracture height with linear and boundary dominated flow. Therefore, it is not applicable for moving boundary flow with a long transient flow in most tight formations. One way to improve the model is to divide the reservoir into saturated and undersaturated segments (Velasco et al., 2016). In this semi-analytical model, the changes in the volume of these two segments were calculated using corresponding flow and phase properties coupled with the material balance method.

In most cases of empirical formulations, Darcy’s law is assumed to be applicable and the impacts of capillary pressure,
gravity, high velocity of fluid, interfacial tensions, multiphysics transports are ignored. The existence of kerogen in shale plays a significant role in altering the PVT and flow properties (Pathak et al., 2015). Multi-physics models such as adsorption, the effect of confinement, and the presence of kerogen are also important for the modeling condensate flow in nanopores. There is considerable evidence that the known laws of adsorption, phase transitions, and flow are affected by nanometer-sized pores and the presence of kerogen. Therefore, the key challenge for future studies in developing an analytical or a semi-analytical model for condensate flow is to incorporate the multi-physics and geomechanics.

5. Summary

A vast amount of research efforts has been made for modeling gas-condensate flow. Understanding the thermodynamic and depletion natures are the key factors in developing a rigorous model. The division of pseudo pressure depending on the fluid phase is the key step in calculating the flow rate. It is advantageous to determine the modified black oil properties of gas-condensate fluid for model development. The calculations are very sensitive to PVT data. A detailed discussion of the model of gas-condensate flow is represented here including all the depletion states inside the reservoir.

The efficient model can replace the reservoir simulation for a rapid production forecast. Quick sensitivity study of parameters like matrix permeability, relative permeability, flowing bottom hole pressure, initial pressure, fluid properties can be conducted using this model. Methods can be developed using a combination of transient and pseudo-steady state conditions. This method is also useful for well inflow performance and material balance methods in unconventional reservoirs. This study provides a detailed discussion on PVT properties of gas-condensate, depletion mechanism in porous media, and analytical approaches in modeling flow in steady-state and pseudo steady-state conditions. The future research is to develop transient state flow models of gas-condensate in a tight formation such as shale with hydraulic fractures and horizontal well considering multiphysics and geomechanics.

Nomenclature

\(\gamma_g \) = Productivity index of gas, (RB/Day)(cp/psi)
\(\Delta m(P)_{g} \) = Pseudopressure for gas, (SCF/RB)(psi/cp)
\(\tau_{inv} \) = Average pressure in investigated volume, psi
\(\mu \) = Viscosity, cp
\(\mu_{g} \) = Gas viscosity, cp
\(\mu_{o} \) = Oil or condensate viscosity, cp
\(\mu_{oi} \) = Initial oil or condensate viscosity, cp
\(\Lambda_{c} \) = Total fracture area, ft²
\(B \) = Formation volume factor, RB/SCF or RB/STB
\(B_{gd} \) = Dry gas formation volume factor, RB/SCF
\(B_{o} \) = Oil formation volume factor, RB/STB
\(B_{oi} \) = Initial oil formation volume factor, RB/STB
\(c_{ti} \) = Initial total compressibility, 1/psi
\(h \) = Formation thickness, ft
\(k \) = Absolute permeability, mD
\(k_i \) = Initial absolute permeability, mD
\(K_{rg} \) = Gas relative permeability, mD
\(K_{ro} \) = Oil relative permeability, mD
\(P \) = Pressure, psi
\(P_{1} \) = Region 1 boundary pressure, psi
\(P_{dew} \) = Dew-point pressure, psi
\(P_{e} \) = Pressure at reservoir’s outer boundary, psi
\(P_{eff} \) = Effective reservoir pressure, psi
\(P_{i} \) = Initial reservoir pressure, psi
\(P_{R} \) = Average reservoir pressure, psi
\(P_{wf} \) = Flowing bottom hole pressure, psi
\(q_{g} \) = Gas rate at well, SCF/day
\(q_{gw} \) = Gas flow rate at wellbore, SCF/day
\(q_{o} \) = Condensate rate at well, STB/day
\(q_{o,max} \) = Maximum condensate rate, STB/day
\(R_{p} \) = Produced gas/condensate ratio, SCF/STB
\(R_{s} \) = Solution gas/condensate ratio, SCF/STB
\(R_{s,i} \) = Initial solution gas/condensate ratio, SCF/STB
\(R_{v} \) = Volatilized condensate/gas ratio, STB/MMSCF
\(R_{v,i} \) = Initial volatilized condensate/gas ratio, STB/MMSCF
\(S_{o} \) = Condensate saturation
\(S_{o,1} \) = Condensate saturation in region 1
\(S_{o,2} \) = Condensate saturation in region 2
\(S_{wv} \) = Irreducible water saturation
\(V_{g} \) = Gas volume in CVD and CCE tests, RB
\(V_{L} \) = Liquid volume in CVD and CCE tests, RB

Acknowledgement

The authors gratefully acknowledge the academic license from Computer Modeling Group, Calgary, Canada.

Conflict of interest

The authors declare no competing interest.

Open Access This article, published at Asia Science and Technology Press on behalf of the Division of Porous Flow, Hubei Province Society of Rock Mechanics and Engineering, is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Anifowose, F.A., Ewenla, A.O., Eludiora, S.I. Prediction of oil and gas reservoir properties using support vector ma-

Palacio, J.C., Blasingame, T.A. Decline-curve analysis with type curves-Analysis of gas well production data.
Tarner, J. How different size gas caps and pressure maintenance programs affect amount of recoverable oil. Oil

