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Abstract:
Shale gas reservoirs have been the subject of intensifying research in recent years. In
particular, gas saturation has received considerable attention as a key parameter reflecting
the gas-bearing properties of reservoirs. However, no mature model exists for calculating
the saturation of shale gas reservoirs due to the difficulty in calculating the gas saturation.
This paper proposes a new gas saturation prediction method that combines model-driven
and data-driven approaches. A multi-mineral petrophysical model is applied to derive the
apparent saturation model. Using the calculated apparent saturation, matrix parameters
and porosity curve as inputs, an intelligent fusion algorithm composed of five regression
algorithms is employed to predict the gas saturation. The gas saturation prediction results
in the Yongchuan block, Sichuan Basin, reveal that the model proposed in this paper
boasts good reliability and a greatly improved prediction accuracy. The proposed model
can greatly assist in calculating the gas saturation of shale gas reservoirs.

1. Introduction
With their continuous exploration and development, shale

gas reservoirs have been the subject of increasing attention
(Dong et al., 2016; He et al., 2017; Kim et al., 2019; Owusu et
al., 2019), particularly as they currently represent fields of new
reserves, especially for countries such as China that already
host large conventional reservoirs. Accordingly, many coun-
tries, including China, the United States, Mexico, Argentina,
South Africa, Australia, Canada, Poland, and France, have
begun to explore and develop shale gas reservoirs (Yin et
al., 2016; Morga and Kamińska, 2018; Jiang et al., 2019a),
and hence, research on shale gas reservoirs is incredibly
extensive.

The gas-bearing properties of shale gas reservoirs are key
parameters for evaluating the quality of those reservoirs (Sang
et al., 2018; Tathed and Misra, 2018; Li et al., 2019). Among
those parameters, gas saturation is especially indispensable for

assessing reservoir quality and calculating other parameters,
such as the free gas content, adsorbed gas content and reserves
(Ji et al., 2017; Josh, 2019; Lai et al., 2019). In the existing
method used to accurately evaluate the gas saturation within
a shale gas reservoir at a certain depth, a core is directly
extracted over a depth interval, and the obtained core is
subjected to an experiment to determine the value of the gas
saturation. However, coring and testing are extremely time-
consuming and laborious tasks; consequently, it is impossible
to core and test each new well. Therefore, core data are
typically applied to establish relationships with log responses,
and log curves are then utilized to calculate the continuous
gas saturation of the entire reservoir.

At present, the gas saturation is calculated mainly by
using the resistivity curve and evaluated by utilizing the
rock resistivity characteristics, although the non-resistivity
curve and the theoretical natural gas response characteristics
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Fig. 1. Gas saturation prediction process.

are also employed (Cai et al., 2017). Eventually, these data
are compared with a small amount of core data. For the
saturation evaluation method based on the resistivity curve
and rock resistivity characteristics, the Archie model is the
most mainstream approach (Li et al., 2017; Nazemi et al.,
2018; Malekimostaghi et al., 2019; Nazemi et al., 2019). At
present, the Archie model is extensively used to evaluate the
gas saturation. Various other saturation models, such as the
Indonesia model (Chai et al., 2010; Zhou et al., 2019), the
Simandoux model (Mashaba et al., 2015; Shedid et al., 2017),
the dual-water model (Li et al., 2012; Wu et al., 2019; Tariq et
al., 2020), and the gulf effect model (Zhang et al., 2009), are
available as alternatives. However, research has indicated that
the accuracy of the shale gas reservoir saturation is not high
even if the current saturation model based on the conductivity
principle is improved. Because the conductivity of a shale gas
reservoir is quite complex, research on this topic is incomplete.
In response, some scholars have proposed saturation models
based on non-resistivity characteristics, such as the density
calculation model based on density characteristics proposed
by Alfred et al. (2013) and Zhu et al. (2019a), and the
uranium content model proposed by Liu et al. (2017). Another
technique is the saturation calculation model; however, few
studies have applied the saturation calculation model to shale
gas reservoirs, and the accuracy of the saturation calculations
cannot be guaranteed (Guo et al., 2019). Moreover, since the
saturation parameter is more microscopic than the parameters,

such as porosity, an algorithm-based version of the saturation
evaluation model has not been reported.

In view of the above problems, this paper proposes a gas
saturation calculation technique based on an intelligent fusion
algorithm and a multi-mineral model. First, using a shale
multi-mineral model, two new equations for calculating the
apparent gas saturation without calculating the porosity are
derived. Then, we propose an intelligent fusion algorithm that
combines multiple algorithms to improve the accuracy and
emphasize that conventional logging curves, the apparent satu-
ration (the theoretical saturation calculated using petrophysical
models), mineral parameters and porosity curves are taken as
the inputs for the model.

2. Methodology
The saturation prediction model proposed in this paper

consists of multiple steps, and the corresponding prediction
flow chart is illustrated in Fig. 1. Overall, the forecasting
method is divided into two phases: a model-driven phase
and a data-driven phase. In the model-driven phase, the
shale multi-mineral petrophysical model, matrix parameters
and corresponding apparent saturation are derived (Jin et al.,
2019). Then, in the data-driven phase, the conventional logging
curves, matrix parameters, and apparent saturation are used
as inputs, whereas the output is the actual saturation (the
actual saturation of the shale gas reservoir, different from the
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Fig. 2. Location of the research area.

apparent saturation), which is used to establish an intelligent
fusion algorithm. The final actual saturation prediction model
is obtained by combining the prediction results from a plurality
of machine learning algorithms suitable for small samples.
This procedure provides the saturation prediction algorithm
with a theoretical basis, thereby improving the reliability of the
model; furthermore, the proposed algorithm can significantly
improve the prediction accuracy. The detailed model derivation
and the corresponding different algorithms are explained in the
appendix.

3. Research area and data
We selected the Longmaxi Formation-Wufeng Formation

shale gas reservoir from the Yongchuan block of the Sichuan
Basin for verification (Chen et al., 2018). The Yongchuan area
is located in Yongchuan District, Chongqing. The Longmaxi
Formation-Wufeng Formation shale gas reservoir is a typical
ultra-deep, over-expanded, over-pressured shale gas reservoir
with a depth of 3500-4500 m that was deposited in a deep-
sea shelf-type environment. The reservoir is characterized
by a broad distribution, considerable thickness, high total
organic carbon (TOC) content, high vitrinite reflectance (Ro),
brittleness, and good pore-fracture development. Evidently,
the conditions under which the whole shale gas reservoir
was formed and enriched were excellent. The main reservoir
section is the first member of the Longmaxi Formation-
Wufeng Formation and consists of shale rich in black carbon,
silica, and carbonate with a thickness of 80-120 m. The TOC

content of the Longmaxi section of the reservoir is in the range
of 0%-7.83%, the Gas Research Institute (GRI) total porosity
range is 1.05%-6.82%, the Ro range is 2%-3%, and the clay
content is 9.2%-65.8%. A map depicting the location of the
study area is shown in Fig. 2.

We applied the data from two wells, namely, wells YA and
YB, in the Yongchuan block to test the model proposed in this
paper. A total of 18 rock samples were drilled in well YA, and
a total of 9 rock samples were drilled in well YB. Experiments
were conducted to determine the TOC, GRI porosity, GRI
saturation, and bulk density; in addition, X-ray diffraction was
also performed to determine the clay content. Furthermore, we
extracted the logging responses corresponding to the experi-
mental depth interval. The GRI experimental methodology is
as follows. 1) Extract a full-diameter core (approximately 300
g), weigh the core, use the core mercury injection technique
to measure the total sample volume, and calculate the sample
bulk density. 2) Crush the sample to a certain degree, then
take the crushed sample and weigh it (approximately 100 g);
subsequently, extract the toluene from the sample for 1 to 2
weeks, dry the sample at 110 ◦C for another 1-2 weeks until
the weight is stable, and then calculate the weight difference.
3) Using a helium medium to measure the volume of the
particles after drying and calculate both the particle density
and the total porosity. Based on this experiment, the water
saturation can be calculated. The ranges of the parameters
determined from the corresponding experiments are shown in
Fig. 3.

We used well YA as the modelling well and well YB
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Fig. 3. Ranges of the parameters obtained from the core experiments. (a) Core TOC content range (0.74%-5.11%); (b) Core total porosity range (0%-6.351%);
(c) Core gas saturation range (20.43%-72.31%); (d) Core bulk density range (2.66-2.82 g/cm3); (e) Distribution of each average mineral content in the shale
samples involved in the experiment; (f) Distribution of each average clay content in the shale samples involved in the experiment.
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Table 1. Theoretical response values for various rock components.

∆t (us/ft) ρb (g/cm3) N
Quartz 55.5 2.65 -0.02

Feldspar 51 2.68 -0.5

Calcite 46.5 2.71 0

Dolomite 41.5 2.87 0.03

Pyrite 39.2 4.997 -0.03

Natural gas 265 0.25 0.2

Water 189 1.05 1

Smectite 120 2.12 0.44

Illite 90 2.53 0.3

Chlorite 80 2.77 0.52

as the prediction well to analyse the proposed algorithm.
Since the exact petrophysical meaning of the entire prediction
process is included in the model, the sample size required to
participate in the modelling is greatly reduced. This reduced
sample size is also consistent with the method proposed in
this paper because it is unrealistic to perform various types of
experiments on large quantities of rock samples and because
the significance of the model for practical applications will
diminish with a large sample size.

4. Modelling and experimental results
Before training the model and calculating the apparent

saturation, we first assessed the relationships between the log
responses and the GRI water saturation measured by the core
experiment. Fig. 4 shows the relationships between the density
log response, neutron log response, acoustic time difference
(∆t) log response and core gas saturation/porosity/clay (be-
cause shale gas reservoirs contain only natural gas and water,
1 minus the water saturation gives the gas saturation).

Fig. 4 shows the relationships between the gas saturation,
porosity, clay content, and porosity curve responses. Among
them, the gas saturation, the density curve, the neutron porosity
curve have relatively consistent relationships. In contrast, the
relationship between the core porosity and porosity curve
response is poor; this has been shown before because complex
minerals affect the logging curve response, and thus, porosity
logging cannot reflect the core porosity well. The clay content
has the best relationship with the density curve, but this
relationship is indirect because the clay content decreases as
the organic matter content increases and because the organic
matter density is much smaller than the density of other
minerals, which causes the density curve response to decrease.
Fig. 4 demonstrates that the correlation between ∆t and the
gas saturation is the worst with a coefficient of determination
of 0.3856; hence, it is difficult to evaluate the gas saturation
with ∆t. In addition, the density log and neutron log responses
are well correlated with the gas saturation because both
density logging and neutron logging can reflect changes in
the TOC content, which is indirectly related to gas saturation.
However, since this relationship is indirect, the reliability of

calculating the saturation directly using either density logging
or neutron logging is insufficient. Therefore, these correlations
are insufficient for evaluating gas saturation. Moreover, we
did not choose to predict the reservoir gas saturation with
the resistivity curve because the relationship between the
resistivity curve and shale gas saturation is very complicated.
Consequently, at present, no popular method exists for predict-
ing shale gas saturation using resistivity curves. Furthermore,
in addition to formation water (which is highly conductive)
within the pore system, wet clay and pyrite minerals will also
conduct electricity, further enhancing the difficult of applying
the resistivity curve, particularly as the mineral contents and
rock resistivity are not linear. Therefore, this paper does not
consider using the resistivity characteristics of the reservoir.

We first calculated the apparent saturation, for which the
theoretical responses of many components are needed. The
responses for identifying the various mineral components,
natural gas and formation water are shown in Table 1. The
response values are determined by a common parameter table.

Table 1 shows the theoretical response values for the
components commonly found in shale gas reservoirs. Among
them, the response values of the different density logs are the
most accurate. In addition, most of the values are accurate
to two decimal places, although those of some components
are accurate to three decimal places given the availability of
density logging measurements. In contrast, the measurement
accuracy of the neutron log and acoustic log response values
is relatively limited, especially for the acoustic log responses;
as a result, the acoustic responses of the clay minerals are
obviously not accurate enough. This will affect the calculation
of the saturation.

The density of organic matter changes with varying matu-
rity. As the maturity increases, the density of organic matter
also increases. Based on the findings of previous research, the
density of organic matter was taken as 1.93 g/cm3. In addition,
the reference values of the organic matter neutron response
and the acoustic wave time difference response given by
Schlumberger are 0.65 pu and 120 us/ft, respectively. Using the
above parameters, the matrix parameters are calculated, and
the above results are used to calculate the apparent saturation.
Fig. 5 depicts the relationships between the calculated matrix
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Fig. 4. Relationships between the logging responses and gas saturation. (a) Sg-∆t; (b) Sg-ρb; (c) Sg-N; (d) POR-∆t; (e) POR-ρb; (f) POR-N; (g) Clay-∆t;
(h) Clay-ρb; (i) Clay-N.

y = -0.0194x + 1.7383

R² = 0.5236
0

0.2

0.4

0.6

0.8

1

40 50 60 70 80

S
g

ACma (us/ft)

(a)

y = 1.9536x - 4.8407

R² = 0.2795

0

0.2

0.4

0.6

0.8

1

2.6 2.65 2.7 2.75 2.8 2.85

S
g

ρma (g/cm3)

(b)

y = -2.5468x + 0.7517

R² = 0.6584
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

S
g

Nma (pu.)

(c)

Fig. 5. Relationships between the matrix parameters and gas saturation.
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(a) (b)

Fig. 6. Relationships between the apparent saturation and gas saturation.

parameters and gas saturation, whereas Fig. 6 illustrates the
relationships between the calculated apparent saturation and
the gas saturation determined by core testing.

Fig. 5 demonstrates that the matrix parameters, namely, the
acoustic wave time difference, neutron and density responses,
are correlated with the gas saturation. Among them, the
acoustic wave time difference and neutron responses have
the best correlations with the gas saturation because the
matrix minerals of the high-quality marine shale reservoir are
composed primarily of biosilica; in addition, the corresponding
clay content is reduced. The differences between the neutron
and acoustic time difference responses of the clay content
and biosilica are the largest, so these two matrix parameters
(the acoustic wave time difference and the neutron responses)
have good relationships with the gas saturation. This indirect
relationship helps the saturation prediction and indicates that
the measured logs are comprehensive responses to the entire
rock system, while the matrix parameters exclude many other
responses. The mineral information and measured logs also ex-
hibit differences. The correlation between the density response
and gas saturation is relatively poor because there is no infor-
mation regarding the density of organic matter in the matrix.
Only the density response of organic matter has a more direct
relationship with the gas saturation. Nevertheless, the matrix
density still prominently reflects the information regarding the
clay content, so the matrix density parameter is still correlated
with the gas saturation. Therefore, we added this curve to
retain more information and improve the prediction effect.

Fig. 6 demonstrates that the apparent saturation calculated
by the shale multi-mineral petrophysical model is well cor-
related with the measured saturation (with a coefficient of
determination of 0.79 for both panels). Evidently, Sg ρb-N
and Sg have an approximately linear relationship, while S ρb-
∆t and Sg have a very nonlinear relationship. The effect of
using a nonlinear fitting is better than that achieved using a
linear fitting. Hence, if a nonlinear machine learning algorithm
is used, the accuracy will definitely improve. On the basis of
Fig. 6, adding the above information as inputs and employing a

machine learning model for training, the prediction effect will
also improve. Consequently, we used the back-propagation
neural network (BPNN), extreme learning machine (ELM),
random forest (RF), Adaboost, and bagging algorithms for
simultaneous predictions. Several of these algorithms possess
hyperparameters, and the determination of hyperparameters is
very important; inappropriate hyperparameters can reduce the
prediction accuracy of the model compared with the training
accuracy. Therefore, we employed the training set-verification
set method to determine the hyperparameters. To determine a
certain hyperparameter combination, 20% of all samples are
randomly extracted; then, the remaining 80% of the samples
are used for training, and the 20% of extracted samples are
predicted. The above three operations are repeated, and the
sampling is re-randomized each time. The average of the three
results is the prediction effect under the given hyperparameter,
and the optimal hyperparameter is determined by traversing
different combinations of hyperparameters.

BPNN and ELM are suitable for determining hyperparam-
eters by distinguishing the validation set from the number
of hidden layer neurons. The hyperparameters in the RF,
Adaboost, and bagging algorithms that need to be determined
consist mainly of the number of integrated base learners. The
corresponding determination results are shown in Fig. 7. The
formulas used to calculate the absolute error (AE), relative
error (RE), and mean square error (MSE) are as follows:

AE =
1
n

n

∑
i=1

∣∣Predictedi−Targeti
∣∣ (1)

RE =
1
n

n

∑
i=1

∣∣Predictedi−Targeti
∣∣

Targeti
(2)

MSE =
1
n

n

∑
i=1

(
Predictedi−Targeti

)2
(3)

Fig. 7 shows the resulting hyperparameters determined by
different algorithms. The RF, bagging and Adaboost algo-
rithms based on tree structures are significantly less affected
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Fig. 7. Hyperparameter prediction results of the 5 algorithms. (a) RF; (b) Bagging; (c) Adaboost; (d) BPNN; (e) ELM.

Fig. 8. Prediction error distribution for all 8 models.

by hyperparameters than BPNN and ELM. This finding is
attributed to the fact that the ELM algorithm is more stable
because it integrates multiple identical models, increasing its
stability and reducing the risk of overfitting. The stability of
the decision tree itself is higher than that of the neural network.
Simultaneously, we can also see that the approximation ability
of BPNN and ELM may be stronger than those of the other
algorithms, especially that of the ELM, which achieves the
best accuracy in the hyperparameter determination. Finally, the
hyperparameter results are as follows: the optimal numbers of
base learners for the RF, bagging and Adaboost algorithms are
all 30; further, the optimal parameter for BPNN, the number
of neurons in the hidden layer, is 5, and the number of neurons
in the optimal hidden layer of ELM is 11.

We applied the model and the abovementioned hyperpa-
rameters to train the core data from well YA. After the training

is completed, we predict the core data from well YB, which
is a test well that does not participate in the modelling. If the
proposed algorithm can perform better on the test well than
the original algorithm, the attempt is deemed successful. The
above five basic algorithms are compared with the intelligent
fusion algorithm proposed in this paper. BPNN combines only
three inputs, namely, density, neutron, and acoustic logging
curves (model 7), and the saturation result is calculated by
using the resistivity model (model 8). We use these 8 results
to comprehensively analyse the proposed model and highlight
its superiority. Among these algorithms, the number of hidden
layer neurons in model 7 is set to 5, and model 8 uses the
Archie formula to calculate the saturation. The corresponding
formula is derived as follows:

Sg = 1−Sw = 1− n

√
abRw

ϕmRt
(4)

where a, b, m, and n are the Archie parameters. Considering
the experimental results, a, b, m, and n are 1.3069, 1.0647,
1.446, and 1.549, respectively. The prediction error distribution
among the eight models is shown in Fig. 8, and Fig. 9 shows
the final core calculation results for the training well. The
algorithm proposed in this paper has the highest accuracy,
whereas the accuracy of using the data-driven method is
relatively low but still better than that of the model-driven
method. The intelligent fusion algorithm proposed in this paper
and the prediction effect of model 7 are shown in Fig. 10, and
the error statistics for each model are shown in Table 2. In Fig.
10 and Table 2, IFA refers to the intelligent fusion algorithm.

Fig. 9 confirms that the algorithm proposed in this paper
can improve the prediction accuracy, and the prediction effect
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Table 2. Theoretical response values for the various algorithms.

BPNN ELM RF Adaboost bagging IFA BPNNori Archie
AE 0.065 0.073 0.076 0.075 0.067 0.045 0.095 0.128

RE 0.125 0.124 0.13 0.142 0.124 0.094 0.178 0.398

MSE 0.007 0.008 0.007 0.007 0.006 0.004 0.012 0.025
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Fig. 9. Back-propagation results of the core data from the training well.
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Fig. 10. Back-propagation results of the core data from the training well.

on the training data is significantly better than the effects

achieved with the model-based and data-only methods. These
findings show that the proposed intelligent fusion algorithm
inherits both the reliability of the petrophysical model and the
high precision of the data model.

In Fig. 10, BPNNoriSg refers to the result predicted by
model 7, and the results predicted by the model proposed
in this paper are denoted by “Intelligent fusion algorithm
Sg”. These results indicate that the prediction effect of the
Archie formula based on resistivity is the worst: the AE of
the prediction of most samples is greater than 0.12, and the
RE and MSE are more than double those obtained for the
gas saturation with the other prediction methods. Hence, the
Archie model does not meet the requirements for accurate sat-
uration calculations, and the gas saturation calculations using
the Archie formula are not reliable for shale gas reservoirs. It
is therefore necessary to study new conductivity models for the
actual conditions of shale gas reservoirs. Using model 7, which
is exclusively based on the data-driven model for predicting
gas saturation, the prediction effect for the prediction well is
insufficient. The calculated parameters cannot be applied to the
calculation of reserves because the data-driven model cannot
easily learn the true input-output intrinsic relationship in the
case of poor processing, especially for problems with complex
functional relationships and small sample sizes. In contrast to
research on image and speech recognition, very few studies
have been performed on targeted machine learning models
for geoscience data, and thus, these models are difficult to
control. The prediction system that combines a multi-mineral
petrophysical model with the algorithm proposed in this paper
is more accurate than the data-driven model. Consequently,
the prediction results of the five benchmark algorithms reveal
that the intelligent fusion algorithm provides a slightly better
prediction effect than the BPNN algorithm. This finding is
attributed to the fact that BPNN models are often somewhat
sensitive and are not easily controlled in the case of small
sample sizes, whereas integrated learning is more suitable for
small sample prediction problems.

The intelligent fusion algorithm achieves the best results
in predicting the gas saturation of the well, and the reliability
of the prediction effect of the proposed method is much better
than that of the other methods. Fig. 9 demonstrates that the
model prediction results are highly accurate, and there is no
deviation from the 45 ◦ line, indicating that the prediction is
unbiased, which represents the role of the petrophysical model
in the intelligent fusion algorithm. We believe that with the
increased use of artificial intelligence and machine learning
in professional settings, the integration of these methods
can improve the prediction accuracy of reservoir parameters.
However, it is important either to combine model-driven and
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Fig. 11. Calculation results of gas saturation in the whole prediction well.

data-driven models or to propose a targeted machine learning
model for specific problems. In summary, the model proposed
in this paper considers the actual principles of petrophysics
and fuses different algorithms to improve the accuracy of the
model, which can provide significant help in calculating the
gas saturation of shale gas reservoirs.

Fig. 11 characterizes the calculation results for the entire
well. The penultimate track (on the far left) presents the
evaluated gas saturation, where Sg is the core gas saturation
value and IFA Sg refers to the gas saturation calculated by the
method proposed in this paper. First, the calculation accuracy
of the proposed model is obviously very accurate for the core
data points. Table 2 further indicates that the RE with the core
logging calculation is less than 10%. Second, by observing
the changes in the curve, even if well YB is a prediction well,
the curve is very stable, and there are no severe fluctuations,
yet there is no case where the curve predicts a fixed value.
These results demonstrate that the proposed model is reliable
and has strong generalization ability. This method can thus be
applied to the calculation of gas saturation and can improve
the gas saturation prediction accuracy. In the absence of a
reliable shale gas resistivity saturation model, the intelligent
fusion algorithm can be used for calculating the saturation of

a shale gas reservoir.

5. Conclusions
In this paper, a high-precision method for calculating

the gas saturation in organic shale pores with an intelligent
fusion algorithm and a multi-mineral petrophysical model is
proposed that combines two models of two different saturation
calculation systems. The problem of inaccurate calculations
of gas saturation in shale gas reservoirs is resolved, and the
AE is reduced by more than 40% compared with the original
prediction method. Based on the work presented in this article,
we can summarize the following conclusions:

1) When calculating the parameters of shale gas reservoirs,
regardless of the model used, we recommend considering
the complex mineral composition and organic matter
of the shale gas reservoir. It is particularly difficult to
employ simple statistical models to accurately calculate
shale gas reservoir parameters.

2) The shale gas reservoir saturation calculation method
used at present is based mainly on the porosity curve.
Moreover, the resistivity curve-based calculation satura-
tion method is not ideal in shale gas reservoirs.
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3) The intelligent fusion algorithm proposed in this paper
combines the prediction results of multiple machine
learning models. Because the mathematical principles
of different machine learning models are not consistent,
the focus varies with the machine learning model. This
fusion of multiple algorithms improves the gas saturation
prediction effect.

4) Combining the principles of petrophysics with the intel-
ligent fusion algorithm and changing the inputs of the
algorithm greatly improves the prediction effect of the
model. For the problem of logging interpretation, the
combination of model-driven and data-driven approaches
can fully exploit the advantages of both methods.
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Appendix A: Calculation of apparent saturation based on a shale multi-mineral petrophysical
model

The calculation of reservoir parameters in a shale gas reservoir is more difficult than in a conventional reservoir given the
diversity of pore types, complex pore structure, presence of organic matter and matrix mineral composition of the former, all
of which impact the physical properties of shale rocks. In particular, variations in the skeletal mineral composition of shale
and the differences in the organic matter properties of different shale gas blocks have led to significant discrepancies in the
relationships between reservoir parameters and the logging responses of different shale gas blocks. Therefore, the reliability
of the saturation calculation directly using a statistical model will be considerably reduced because the influences of other
factors are not considered. In this paper, a theoretical model for calculating the apparent saturation is proposed for a shale
multi-mineral petrophysical model to improve the theoretical nature of the saturation calculation and ultimately enhance the
reliability of the model.

First, a multi-mineral petrophysical model of the shale reservoir is determined. To date, many scholars have proposed various
shale petrophysical volume models to address different needs. For example, Wang et al. (2009) and Kang et al. (2020) suggested
that a shale gas reservoir can be divided into three parts: a brittle mineral part, a clay mineral part, and an organic part. Among
them, the brittle mineral part develops brittle mineral pores, the clay mineral part develops clay mineral pores, and the organic
matter part develops organic pores. Similarly, Zhao et al. (2014) suggested that shale gas reservoirs can be divided into organic
and inorganic fractions. Tan et al. (2015) proposed that a shale gas reservoir should be divided into five parts: the matrix part,
the kerogen part, the adsorbed gas part, the free gas part and the bound water part. More recently, Li et al. (2016) suggested that
shale rocks can be divided into solid kerogen and non-organic minerals.The common matrix components of shale gas reservoirs
are quartz, feldspar, pyrite, calcite, dolomite, illite, chlorite. The density, hydrogen index and longitudinal wave time response
vary for the above minerals, especially for clay minerals such as illite, chlorite, and illite-smectite mixed layers. Therefore,
the matrix part needs to be divided among a plurality of mineral components. In addition, shale gas reservoirs contain organic
matter (Ge et al., 2016; Zhao et al., 2017; Zhu et al., 2019b; Zhu et al., 2020), and the various physical responses of the
organic matter interposed between the matrix and fluid must be distinguished. We did not separately determine the volume
of bound water from that of adsorbed gas because the difference between adsorbed gas and natural gas is not substantial; in
addition, a suitable method for measuring the volume of adsorbed gas by logging is currently not available. The response of
bound water is also the same as that of movable water. The resulting shale multi-mineral petrophysical model is shown in Fig.
A-1.

Fig. A-1. Multi-mineral petrophysical model (taking the shale rock in the article as an example).

It is worth mentioning that the parameter used to characterize the organic matter content is the TOC content, which has a
conversion relationship with the organic matter content:

VOM = k
(

TOC
ρOM

)
ρb (A-1)

where VOM is the volume fraction of organic matter, TOC is the mass fraction of the total organic carbon content, ρOM is the
density of organic matter, ρb is the density of rock, and k is the conversion coefficient of organic carbon related to the type
of kerogen, etc., whose value can be taken as 1.2 or 1.25. Using the multi-mineral petrophysical model of Fig. A-1 combined
with the log responses, we can list the theoretical formulas with the gas saturation term:

ρb = ρma (1−ϕ−VOM)+ρOMVOM +ρwϕ (1−Sh)+ρhϕSh (A-2)

N = Nma (1−ϕ−VOM)+NOMVOM +Nwϕ (1−Sh)+NhϕSh (A-3)
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∆t = ∆tma (1−ϕ−VOM)+∆tOMVOM +∆twϕ (1−Sh)+∆thϕSh (A-4)

where N is the rock neutron value, which is the neutron log response value; ∆t is the rock acoustic wave time difference,
which is the acoustic wave time difference log response value; ρma is the skeletal density; Nma is the matrix neutron value;
∆tma is the difference between the matrix acoustic waves; ϕ is the porosity; ρOM is the density of organic matter; NOM is the
neutron value of organic matter; ∆tOM is the acoustic time difference of organic matter; ρw is the density value of the formation
water; Nw is the neutron value of the formation water; ∆tw is the acoustic time difference of the formation water; Sh is the gas
saturation; ρh is the density of natural gas; Nh is the neutron value of natural gas; and ∆th is the acoustic time difference of
natural gas. Among them, ρma, Nma, and ∆tma vary greatly; this variation is related to the mineral composition and thus needs
to be calculated in a targeted manner. Assuming that the shale rock matrix is composed of M mineral components, then the
corresponding calculation formulas for the three parameters ρma, Nma, and ∆tma are determined as follows:

ρma = ρ1V1 +ρ2V2 + · · ·+ρMVM (A-5)

Nma = N1V1 +ρ2V2 + · · ·+NMVM (A-6)

∆tma = ∆t1V1 +∆t2V2 + · · ·+∆tMVM (A-7)

where ρi, i =1, 2, 3, · · · M, is the density value of the i-th mineral; Ni, i =1, 2, 3, · · · M, is the neutron value of the i-th
mineral; ∆t i, i =1, 2, 3, · · · M, is the acoustic time difference of the i-th mineral; Vi, i =1, 2, 3, · · · M, is the volume fraction
of the matrix occupied by the i-th mineral; and the cumulative volume of all M minerals is 1.

Here, we combine Eqs. (A-5), (A-6), and (A-7), perform a large number of equation transformations, eliminate the porosity
parameter from the equations, and obtain a new saturation evaluation model as follows:

Sh ρb−N =
(ρb−ρma (1−VOM)−ρOMVOM)(Nw−Nma)− (N−Nma (1−VOM)−NOMVOM)(ρw−ρma)

(N−Nma (1−VOM)−NOMVOM)(ρh−ρw)− (ρb−ρma (1−VOM)−ρOMVOM)(Nh−Nw)
(A-8)

Sh ∆t−ρb =
(∆t−∆tma (1−VOM)−∆tOMVOM)(ρw−ρma)− (ρb−ρma (1−VOM)−ρOMVOM)(∆tw−∆tma)

(ρb−ρma (1−VOM)−ρOMVOM)(∆th−∆tw)− (∆t−∆tma (1−VOM)−∆tOMVOM)(ρh−ρw)
(A-9)

In this manner, two models for evaluating the gas saturation are obtained. Among them, Sh ρb−N is the saturation calculated
from the combination of density logging and neutron logging responses, whereas Sh ∆t−ρb is the saturation calculated from the
combination of acoustic and density log responses. Eqs. (A-8)-(A-9) demonstrate that theoretically, if each parameter in the
formula can be accurately determined, the gas saturation can be accurately calculated.

Although we have derived a model for calculating the gas saturation, the calculation formulas show that the accurate gas
saturation values calculated by Eqs. (A-8)-(A-9) require the very accurate determination of a large number of parameters. This
requirement makes the calculation very difficult, and numerous experiments are needed. Typically, we use only the theoretical
values of each parameter in the formula, such as the response value of each matrix component and the response value of organic
matter. This approach can greatly affect the prediction accuracy for shale gas reservoirs because the shale gas reservoir model
contains an excessive number of parameters. Therefore, we assert that the gas saturation calculated by Eqs. (A-8)-(A-9) is only
the apparent gas saturation. The calculated value has a certain theoretical significance and should exhibit a correlation with the
measured saturation; this correlation is stronger than the correlations between the conventional logging curves and saturation.
However, the calculated result still cannot represent the actual saturation, and thus, it is necessary to use the algorithm to
approximate the measured saturation to improve the prediction accuracy.

Appendix B: Evaluation method based on intelligent multi-model fusion
Here, we introduce an evaluation method based on intelligent multi-model fusion. The prediction results of multiple models

are considered together because this method requires a sample to perform various experiments when the model is determined.
This type of sample is usually small, so it is necessary to use a variety of algorithms to improve the generalization ability
of the total model and enhance the stability during prediction. We choose two neural network-based algorithms, namely, the
error back-propagation neural network algorithm and extreme learning machine algorithm, and three integrated learning-based
algorithms: the random forest algorithm, Adaboost regression algorithm and bagging regression algorithm. The final result will
be obtained by averaging the above five methods. This process can effectively improve the predictive ability of the model, and
there is no overfitting of the model. Below, we will introduce the training processes and principles of these algorithms.
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Error back-propagation neural network
The error BPNN model is one of the most widely used algorithms in oil and gas exploration. BPNN, a function approximation

algorithm, was originally proposed by Rumellhart in 1986 (Zhu et al., 2017). Structurally, BPNN consists of three parts: the
input layer, the hidden layer, and the output layer. Each layer of the network is connected by a transfer function. The learning
process of BPNN can be divided into two steps: signal forward propagation and error back propagation. In the first step, the
signal is input by the input layer, and the calculated value of the neural network is output from the output layer by the weight
between the neurons and the activation function in the neuron. In the second step, the error is back propagated, and the error
between the output value of the output layer and the expected value, the comparison error, and the set learning precision are
calculated. If the error is greater than the learning precision, the calculation error is used to obtain the partial derivative of
the weight and the threshold in the neural network; furthermore, the weights between the neurons and the thresholds in the
neurons are adjusted according to the gradient descent method. These two processes continue to run iteratively. If the number
of iterations is greater than the set maximum number of iterations or if the error is less than the set learning accuracy, the
BPNN training phase ceases.
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Fig. B-1. BPNN structure.

The BPNN network structure is depicted in Fig. B-1. In Fig. B-1, X1, X2, · · · , Xh, · · · , Xn are the input signals of the neural
network, and Wh,i represents the weights between the input-layer neurons and the hidden layer neurons. In addition, α1, α2,
· · · , αh, · · · , αp are the inputs to the neurons in the hidden layer, Wh represents the weights of the neurons in the hidden layer
and the neurons in the output layer, and y is the output value of the neural network.

Extreme learning machine
The ELM algorithm, which was initially proposed by Guangbin Huang in 2004 (Christou et al., 2018), is characterized by

randomly or artificially assigned weights of the hidden layer nodes and very fast training and prediction phases. The hidden
layer weights do not need to be updated, and the random weights and learning process calculate only the output weight. A
schematic diagram of the ELM structure is shown in Fig. B-2.
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For a training sample (x, t), the output function of the single hidden layer forward neural network with L hidden layer
neurons is determined as follows:
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fL (x) =
L

∑
i=1

βiG(ai,bi,x) (B-1)

where ai and bi are hidden layer node parameters, βi represents the weight between the i-th hidden layer and the network
output, and G(ai,ai,x) denotes the hidden layer node output of the i-th hidden layer corresponding to the sample x. For the
additive hidden layer node, G(ai,ai,x) is expressed as follows:

G(ai,bi,x) = g(aix+bi) (B-2)

where g is the activation function and aix represents the inner product of the weight vector ai and the sample x. Assuming
that the connection function of the hidden layer uses a Gaussian function, G(ai,bi,x) is calculated as follows:

G(ai,bi,x) = g(bi ‖x−ai‖) (B-3)

where ai and bi (bi>0) represent the centre of the i-th Gaussian function node and the influence factor, respectively. Then, the
entire prediction equation can be expressed as follows:

Hβ = T (B-4)

where H is the hidden layer output matrix and T is the training target.
The error function of ELM uses the L2 mean square error function: after introducing the L2 regularization term, the error

function is:

min
β∈RL×m

1
2
‖β‖2 +

C
2
‖Hβ −T‖2 (B-5)

C is a regularization coefficient, and its solution is expressed as follows:

β
∗ =

(
HT H +

1
C

)−1

HT H (B-6)

Random forest algorithm
The RF algorithm, which was proposed by Breiman and Cutler in 2001, is a predictor containing multiple decision trees

(Mercadier and Lardy, 2019; Cai et al., 2020). If the decision tree is a classification tree, the RF algorithm can be used for
classification; if the decision tree is a regression tree, the RF algorithm can be used for regression. RF is an extended variant of
bagging. RF uses a decision tree to build the bagging integration for the base learner and further introduces random attribute
selection into the training process of the decision tree (Fig. B-3).

Fig. B-3. RF structure.

RFs are built in a random manner. There are many decision trees in the forest, and there is no correlation between each pair
of decision trees in the RF. After obtaining the forest, when a new sample is input, each decision tree in the forest is predicted
separately, and the result is a synthesis of all decision tree results.

In the process of establishing each decision tree, there are two points that should be considered: sampling and complete
splitting. The former is the process of two random samplings, where the RF algorithm samples the rows and columns of
the input data. To sample the rows, there is a method to return the data back to the data set. Specifically, in the sample set
obtained by sampling, there may be duplicate samples. Assuming that there are N input samples, then there are also N sampled
samples. As a result, not all of the input samples of each tree are samples during training, making it relatively easy to lead to



Zhu, L., et al. Advances in Geo-Energy Research 2020, 4(2): 135-151 151

overfitting. Then, column sampling is performed. From M features, m features (m�M) are selected. This process is followed
by a decision tree that completely splits the sampled data. The final result is obtained from the predicted average given by each
decision tree. The principle of RF is very simple, and the algorithm is easy to implement and works well on most problems,
which is why this algorithm is applied herein.

Adaboost algorithm
The Adaboost algorithm is an integrated learning algorithm proposed by Freund and Schapire (Jiang et al., 2019b). The

corresponding structure is shown in Fig. B-4.
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Fig. B-4. Adaboost structure.

The key property of the Adaboost algorithm is to transform a weak learning algorithm into a strong learning algorithm. This
feature provides an effective new concept and design for learning algorithms when it is very difficult to construct a strong
learner. Unlike the RF algorithm and the bagging algorithm, the Adaboost algorithm applies all samples when training each
learner. The model structure of Adaboost is shown in Fig. B-4. Adaboost trains the training model in serial mode. After each
training step, each sample is assigned a weight, where the weights of samples with lower prediction accuracy are increased.
Thus, in the next training, the samples with lower prediction accuracy can be targeted. After several models are trained, the
prediction errors of the samples outside the bag are assigned different weights for different learners. Fig. B-4 illustrates the
Adaboost structure during training. The initial weight of the i-th sample, the weight of each base learner, and the weight of
the different samples when updating the next iteration are calculated as follows:

Set the initial weight of the ith sample as D1 (i) , which is defined as follows:

D1 (i) =
1
N

(B-7)

Under D1, the base predictor h1(x) is trained, and the Bayesian regularization error function is used to calculate each sample
error εi and the average error εt . The weight of the current base predictor is calculated using the sample error εi and the
average error εt obtained for each training, and the weights of different samples at the next iteration are updated.

Wt =
1
2 ln
(

εt
1−εt

)
Dt+1 (i) =

Dt (i)
(

εt
1−εt

)−εi

n
∑

i=1

(
Dt (i)

(
εt

1−εt

)−εi
) (B-8)

where Wt is the weight of the t-th classifier and Dt+1 (i) is the weight of the t+1-th BPNN sample.

Bagging regression algorithm
The bagging algorithm is the most famous representation of the parallel integrated learning method (Danie et al., 2011). The

RF algorithm mentioned above is adjusted on the basis of bagging. Given a data set containing m samples, we first randomly
take a sample into the sample set and return the sample back to the original data set. Thus, the sample may be selected the
next time the data set is sampled. After m random sampling operations, we obtain a sample set with m samples. Some samples
in the initial training set appear in the sample set multiple times, whereas others never appear.

Thus, we can sample T samples with m training samples. Then, we train a base learner based on each sample set and
combine these base learners. This is the basic flow of bagging. When combining the predicted outputs, bagging uses a simple
averaging method for regression tasks.

The main difference between bagging and boosting is that bagging focuses predominantly on reducing the variance, while
boosting focuses mainly on reducing the deviation. The focus of each algorithm is different. In theory, the larger the model
difference, the better the fusion effect. When the actual prediction is made, the prediction results of the above five models will
be averaged to obtain the final prediction result and improve the stability of the prediction.


