Supplementary file

A multi-field coupling model for CO₂ enhanced shale gas recovery integrating chemical dissolution and mechanical weakening effects

Kang Yang¹, Yaobai Sun¹, Junping Zhou^{2*}, Qiao Chen¹, Guangrong Deng³, Dasong Li⁴

¹Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

²State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University,
Chongqing 400044, P. R. China

³Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, P.
R. China

⁴Chongqing River Affairs Center, Chongqing 401147, P. R. China

E-mail address: yangkang@cigit.ac.cn (K. Yang); sunyaobai23@mails.ucas.ac.cn (Y. Sun); zhoujp1982@cqu.edu.cn (J. Zhou); chenqiao@cigit.ac.cn (Q. Chen); guangrong.deng@connect.polyu.hk (G. Deng); lidasongzz@163.com (D. Li).

*Corresponding author (ORCID: 0000-0002-7218-3235 (J. Zhou))

Yang, K., Sun, Y., Zhou, J., Chen, Q., Deng, G., Li, D. A multi-field coupling model for CO2 enhanced shale gas recovery integrating chemical dissolution and mechanical weakening effects. Advances in Geo-Energy Research, 2025, 18(2): 180-194.

The link to this file is: https://doi.org/10.46690/ager.2025.11.07

Appendix A: Supplementary figures and tables

1. List of figures

- Fig.S1. Multi-field coupling mechanism in the reservoir during CO₂-ESGR.
- Fig.S2. Calculation model and definite solution condition of shale sample.
- Fig.S3. Impact of injection pressure on the shale reservoir's (point D).
- Fig.S4. Impact of injection temperature on the shale reservoir's (point D).

2. List of tables

- Table S1 Key parameters used in model validation.
- **Table S2** Key numerical simulation parameters for CO₂-ESGR.

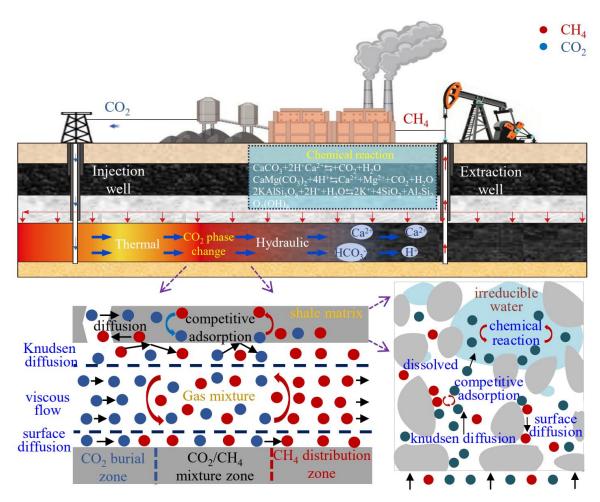


Fig.S1. Multi-field coupling mechanism in the reservoir during CO₂-ESGR.

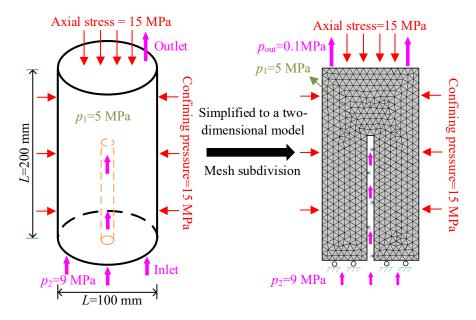
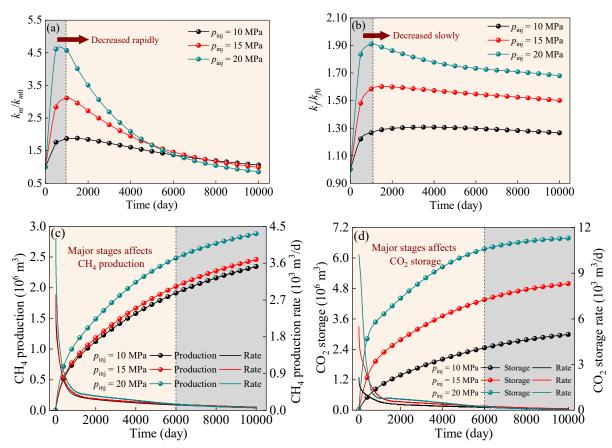
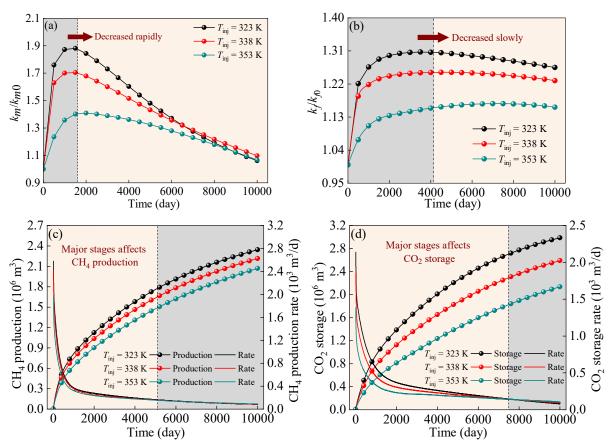




Fig.S2. Calculation model and definite solution condition of shale sample.

Fig.S3. Impact of injection pressure on the shale reservoir's (point D) (a) matrix, (b) fracture permeability, (c) CH₄ production, and (d) CO₂ storage.

Fig.S4. Impact of injection temperature on the shale reservoir's (point D) (a) matrix and (b) fracture permeability, (c) CH₄ production, and (d) CO₂ storage.

Table S1 Key parameters used in model validation.

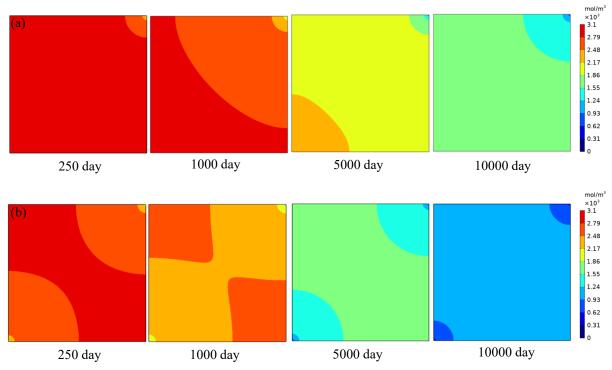

Parameter	Unit	Value	Parameter	Unit	Value
M_1, M_2	g/mol	16, 44	$ ho_c$	kg/m^3	2520
$\phi_{ m m0}$	%	4.75	$ ho_{s1}$	kg/m^3	0.60
ϕ_{f0}	%	1.64	$ ho_{s2}$	kg/m^3	1.64
E	GPa	13.62	μ_1	Pa·s	1.26e-5
ν	-	0.1147	μ_2	Pa·s	1.962e-5
K_f	GPa	4.28	Dv_1	m^2/s	2.11e-11
k_{f0}	mD	0.00435	Dv_2	m^2/s	2.32e-11
k_{m0}	mD	0.000367	$K_{ m v1}$	1/d	4.54
$\mathcal{E}L$, 1, $\mathcal{E}L$, 2	-	0.00054,0.00126	$K_{ m v2}$	1/d	2.99
$V_{L,1}, V_{L,2}$	m^3/kg	0.00210, 0.00695	λ_{s}	$W/(m \cdot K)$	0.2
b_1, b_2	MPa ⁻¹	0.309, 0.246	λ_{g1}	$W/(m \cdot K)$	0.0409
$C_{ m c}$	$J/(kg \cdot K)$	1380	λ_{g2}	$W/(m \cdot K)$	0.0227
C_{gl}	$J/(kg \cdot K)$	1809	α_T	K^{-1}	0.000024
$C_{ m g2}$	$J/(kg \cdot K)$	792	r_0	nm	22.78

Table S2 Key numerical simulation parameters for CO₂-ESGR.

Parameter	Unit	Value	Parameter	Unit	Value
M_1, M_2	g/mol	16,44	$C_{ m g2}$	$J/(kg \cdot K)$	844
$\phi_{ m m0}$	%	5.54	$ ho_c$	kg/m^3	2470
ϕ_{f0}	%	0.66	$ ho_{s1}$	kg/m^3	0.60
E	GPa	61.3	$ ho_{s2}$	kg/m^3	1.64
v	-	0.217	μ_1	Pa·s	1.34e-5
K_f	GPa	10.0	μ_2	Pa·s	1.842e-5
k_{f0}	mD	0.0081	D_{v1}	m^2/s	3.66e-12
k_{m0}	mD	0.000217	D_{v2}	m^2/s	5.80e-12
<i>EL</i> ,1, <i>EL</i> ,2	-	0.00081,0.0036	K_{v}	1/s	5.24e-5
$V_{L,1}, V_{L,2}$	m^3/kg	0.00249,0.01009	λ_s	$W/(m \cdot K)$	0.191
b_1, b_2	MPa ⁻¹	0.311,0.099	λ_{g1}	$W/(m \cdot K)$	0.0301
$C_{ m c}$	$J/(kg \cdot K)$	1380	λ_{g2}	$W/(m \cdot K)$	0.0137
C_{g1}	$J/(kg \cdot K)$	2220	a_c, d_c, g_c	MPa ⁻¹	2.27e-4, 0.0104, -0.0240
r_0	nm	22.78	b_c , e_c , h_c	K^{-1}	-2.98e-5, -0.0015, 0.0034
α_T	K ⁻¹	0.000024	c_c, f_c, i_c	-	0.0493, 0.0809, -0.1623

Appendix B: CH₄ and CO₂ concentration distribution during conventional recovery and CO₂ enhanced recovery

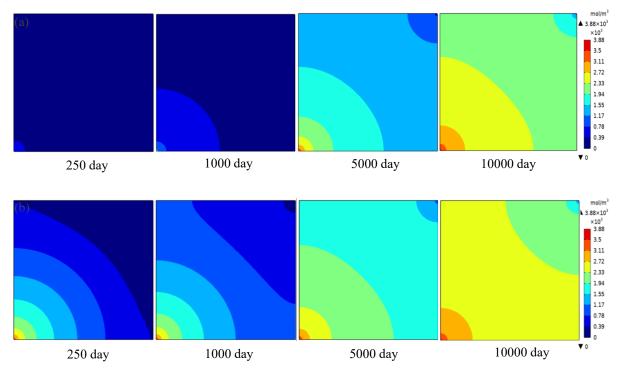

A comparative analysis of CH₄ concentration distribution was conducted to evaluate the performance of conventional and CO₂-enhanced recovery methods. As shown in Fig. S5, the overall CH₄ concentration within the shale reservoir exhibits a decreasing trend over time, and the rate of CH₄ concentration decline is faster when utilizing CO₂ enhanced recovery methods. For conventional recovery without CO₂ injection, the CH₄ concentration near the production well in the shale reservoir decreases rapidly, while it increases with distance from the production well. After 250, 1,000, 5,000, and 10,000 days of production, the CH₄ concentration distribution within the shale reservoir ranges from 1,397 to 3,028 mol/m³, 1,045 to 2,822 mol/m³, 356 to 2,181 mol/m³, and 156 to 1,678 mol/m³, respectively. For CO₂ enhanced recovery, the CH₄ concentration within the shale reservoir at various time displays a pattern of low concentration near the wells, with higher concentrations in the intermediate section. After 250, 1,000, 5,000, and 10,000 days of production, the CH₄ concentration distribution within the shale reservoir ranges from 1,325 to 2,839 mol/m³, 804 to 2,505 mol/m³, 11.84 to 1,605 mol/m³, and 7.01 to 1,053 mol/m³, respectively.

Fig.S5. CH₄ concentration distribution: (a) conventional recovery and (b) CO₂ enhanced recovery.

The CO₂ concentration distribution across the shale reservoir during CO₂ enhanced recovery is illustrated in Fig. S6. As CO₂ injection continues, the CO₂ concentration gradually increases as the gas migrates toward the production well. CO₂ exhibits a greater flow rate within the fractures compared to the matrix. After 250, 1,000, 5,000, and 10,000 days of production, the CO₂ stored within the fractures constitutes 97.21%, 80.10%, 56.20%, and 51.45% of the total CO₂ storage, respectively. The observation implies that the gas is

primarily distributed as a free phase within the shale fractures during the initial CO₂ injection period. With prolonged injection, CO₂ concentration increases gradually within the matrix, primarily in the adsorbed state (Kuang et al., 2024).

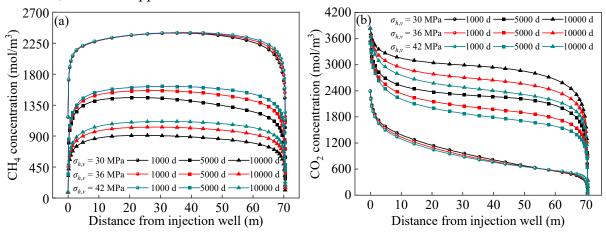


Fig.S6. CO₂ concentration distribution of shale during CO₂ enhanced recovery: (a) shale matrix and (b) fracture.

Appendix C: Impact of different influencing factors on gas concentration distribution

1. Reservoir stress

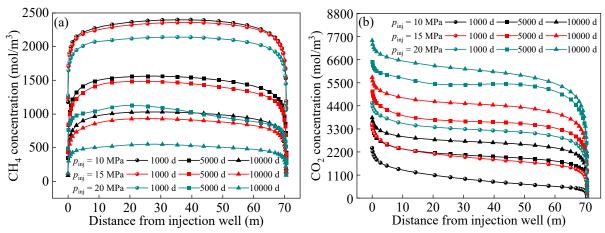

The distribution of gas within the shale reservoir is fundamentally controlled by reservoir stress conditions. Fig. S7 shows the impact of reservoir stress on the gas concentration within the shale reservoir (line AB). It can be found that the concentration curves of CH₄ consistently decline as time increases, while those of CO₂ steadily rise, and the change of the curve is more obvious during the initial period of CO₂ injection. Additionally, the overall CH₄ concentration curve rises as reservoir stress increasing, whereas the CO₂ concentration curve declines, which indicates that the increase of stress inhibits the flow of binary gas. Furthermore, it is observed that the impact of stress on CH₄ concentration varies with both spatial location and time. During the initial period of CO₂ injection, Stress has a limited impact on CH₄ and CO₂ concentration changes, primarily influencing CH₄ near the production well and CO₂ near the injection well. The location where stress affects CH₄ concentration gradually shifts from the production well towards the injection well as time increases, while the opposite trend is observed for CO₂.

Fig.S7. Impact of reservoir stress on gas concentration in shale reservoir (Line AB): (a) CH₄ and (b) CO₂.

2. Injection pressure

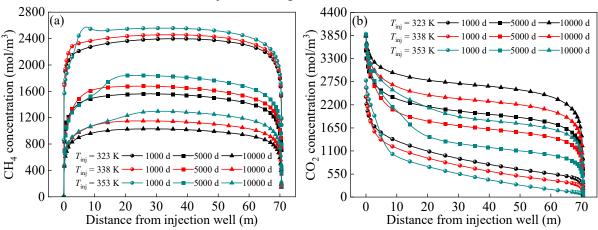

The distribution of gas within the shale reservoir is fundamentally controlled by CO₂ injection pressure conditions during CO₂-ESGR. Fig. S8 shows the impact of CO₂ injection pressure on gas concentration within the shale reservoirs (line AB). It can be found that the CH₄ concentration curves significantly decline with elevated CO₂ injection pressure, while those of CO₂ significantly rises. This indicates that a high injection pressure enhances both CH₄ displacement and CO₂ injection. Compared to reservoir stress conditions, the CO₂ pressure has a more obvious impact on the CH₄ and CO₂ concentrations even during the initial injection period. It is observed that the coupling impacts of high-pressure differential and chemical dissolution enable injected CO₂ to migrate rapidly toward the production well under high injection pressure, thereby achieving efficient displacement.

Fig.S8. Impact of injection pressure on gas concentration in shale reservoir (Line AB): (a) CH₄ and (b) CO₂.

3. Injection temperature

The distribution of gas within the shale reservoir is fundamentally controlled by CO₂ injection temperature conditions during CO₂-ESGR. Fig. S9 shows the impact of injection temperature on gas concentration within the shale reservoirs (line AB). It can be found that the CH₄ concentration curves significantly decline as the CO₂ injection temperature increases, while those of CO₂ significantly rises. However, there is an opposite trend in the position close to the injection well. This is primarily attributed to the higher temperature difference near the injection well after high-temperature CO₂ injection, resulting in stronger heat convection and conduction effects (Fan et al., 2019). The rapid rise in temperature causes rapid desorption of adsorbed CH₄ around the injection well, which in turn enhances the flow rate. Consequently, the CH₄ concentration decreases rapidly, while the CO₂ concentration increases rapidly near the injection well. In contrast, at locations farther from the injection well, the influence of thermal effects is relatively minor. Due to the stronger selective adsorption of CO₂ by shale under low-temperature conditions, the CH₄ concentration within the reservoir is lower under low injection temperatures at these distant locations.

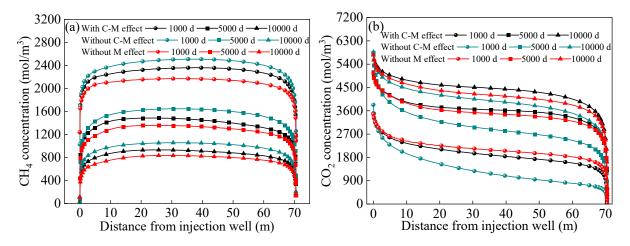


Fig.S9. Impact of injection temperature on gas concentration in shale reservoir (Line AB): (a) CH₄ and (b) CO₂.

4. Chemical dissolution-mechanical weakening (C-M) effect

The distribution of gas within the shale reservoir is controlled by chemical

dissolution-mechanical weakening effect during CO₂-ESGR. Fig. S10 shows the impact of C-M effect on gas concentration within the shale reservoirs (line AB). it can be found that the CH₄ concentration calculated without C-M effect is the highest, while the CH₄ concentration calculated without mechanical weakening effect (M effect) is the lowest. This is primarily attributed to chemical dissolution effect enlarging shale pore width, which promotes the flow of CH₄. Therefore, the CH₄ concentration calculated by the model incorporating the C-M effect and the model without incorporating the M effect is lower. On this basis, the mechanical weakening effect is further considered, the shale undergoes further compression under constant stress, leading to a mitigated trend of pore enlargement (Fatah et al., 2022; Yang et al., 2022), as a result, the CH₄ concentration increases. From Fig. S10 (b), it can be found that there is a corresponding relationship between the change of CO₂ concentration and the change of CH₄ concentration. The CO₂ concentration calculated without C-M effect is the lowest, while the CO₂ concentration calculated by the model incorporating C-M effect during the mid and late periods of CO₂ injection is the highest. The observed behavior is largely attributable to the influence of adsorption-induced swelling on shale permeability in this stage. Because the model considers the mechanical weakening effect, the shale pore fractures are further compressed under the same stress, which enhances shale's preferential adsorption of CO₂, resulting in higher CO₂ concentrations during the mid and late periods.

Fig.S10. Impact of chemical dissolution-mechanical weakening effect on gas concentration in shale reservoir (Line AB): (a) CH₄ and (b) CO₂.

References:

Fan, C., Elsworth, D., Li, S., et al. Thermo-hydro-mechanical-chemical couplings controlling CH₄ production and CO₂ sequestration in enhanced coalbed methane recovery. Energy, 2019, 173: 1054-1077.

Fatah, A., Mahmud, H., Bennour, Z., et al. Geochemical modelling of CO₂ interactions with shale: Kinetics of mineral dissolution and precipitation on geological time scales. Chemical Geology, 2022, 592: 120742.

- Kuang, N., Zhou, J., Tian, S., et al. Fluid-solid coupling model with the multiple flow mechanism for CO₂-enhanced shale gas recovery and CO₂ sequestration. Energy & Fuels, 2024, 38(8): 7068-7084.
- Yang, K., Zhou, J., Xian, X., et al. Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO₂-water exposure. Energy, 2022, 248: 123591.