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Supplementary A 

A 1. NUFT model framework and spatial discretization 

Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) solves a system of coupled 

nonlinear partial differential equations governing mass conservation for CO2 and brine phases, energy 

conservation, and thermodynamic equilibrium relationships using an integrated finite difference 

method with fully implicit time discretization (Nitao, 1998). The governing equations account for 

advective and dispersive transport, capillary pressure effects described by van Genuchten 

relationships (α = 5.1×10-5 Pa-1, n = 0.46) (Zhou et al., 2008; Buscheck et al., 2012; Chen et al., 2023), 

relative permeability functions following Brooks-Corey models, and temperature-dependent fluid 

properties including CO2 phase transitions between gaseous, liquid, and supercritical states. 

The three-dimensional computational domain represents a fault-bounded reservoir block in North 

Oman (Chen et al., 2023), measuring 2,000 m × 3,000 m × 20 m (X×Y×Z), inclined at a 5° dip angle 

around the Y-axis with the anchor point (0,0) positioned at 1,500 m depth (Table A 1). The domain 
is discretized into a structured grid with uniform spacing of Δx = 50 m, Δy = 50 m, and Δz = 1 m, 

resulting in 40 × 60 × 20 = 48,000 computational cells that provide sufficient resolution to capture 

thermal fronts and CO2 plume migration while maintaining computational tractability. A horizontal 

well doublet configuration is implemented with 1-km long wells placed parallel to the Y-axis at the 

middle Y-range (Y = 1,500 m), where the injection well is fixed at the top-left corner (X = 0, Z = 0) 

and the production well location varies between 400 and 1,000 m distance for optimization purposes. 

The reservoir boundaries are treated as no-flow (closed) conditions for all faces except the right 

boundary (X = 2,000 m), with its cell volume magnified by 106 to represent far-field conditions, while 

the bottom boundary receives a constant geothermal heat flux of 0.05 W/m², representative of 

continental crust heat flow (Moridis and Pruess, 1992; Babaei et al., 2016; Chen et al., 2023). The 
initial conditions and simulation scenarios are described in detail in Appendix A of the supplementary 

information. 

 

Table. A 1. Reservoir model geometry and discretization parameters. 

Parameter Value Unit Description 

Domain size 

(X×Y×Z) 2,000×3,000×20 m 

Fault-bounded reservoir 

block 

Grid spacing 

(Δx×Δy×Δz) 50×50×1 m Uniform structured grid 

Number of 

cells 48,000 - 40×60×20 grid cells 

Reservoir dip 5 degrees 

Inclination around Y-

axis 

Anchor depth 1,500 m Top-left corner depth 

Well length 1,000 m Horizontal well extent 

Well 

placement Y = 1,500 m Middle of Y-domain 

 

Supplementary B 

B 1. Initial conditions and simulation scenarios 

 



The reservoir pressure is initialized with hydrostatic pressure distributions calculated based on depth, 

with the anchor point (0.0) at 1500 depth is specified as 17 MPa. The initial reservoir temperature is 

specified at a uniform 90 oC (Zhao et al., 2012). The reservoir formation is initially saturated by 70 
vol% CO2 and 30 vol% brine with 180 ppt of salinity (Table B 1). Cold CO2 (30 oC) is injected and 

hot CO2 is extracted via a production well to a surface power plant. CO2 circulation between the 

injection-production well doublet is driven by specified injection overpressure and production 

pressure fixed at its initial value for up to 100 years or until produced fluid temperature drops below 

80 °C. The heterogeneous porosity-permeability fields are generated using Sequential Gaussian 

Simulation with correlation lengths varying from 100 to 1000 m in horizontal directions and 1-20 m 

vertically, with permeability derived from porosity using the Kozeny-Carman relationship: k = 

192φ³/(1-φ)², where mean porosity is 0.25 corresponding to mean permeability of 5.3 mD (Rajabi et 

al., 2021). 

 

Table. B 1. Reservoir properties and operational parameters (Chen et al., 2023). 

Parameter Value/Range Unit Description 

Initial temperature 90 °C Whole domain 

Heat flux (bottom) 0.05 W/m² Basal heat source 

Brine salinity 180 ppt Formation water 

Rock density 2,650 kg/m³ Carbonate formation 

Rock specific heat 1,000 J/kg·°C Thermal capacity 

Thermal conductivity 2.1 W/m·°C Rock matrix 

Mean porosity 0.25 - Geostatistical mean 

Mean permeability 5.3 mD Derived from porosity 

Injection temperature 30 °C Cold CO2 injection 

Injection overpressure 5-15 MPa Optimization variable 

Well spacing 400-1,000 m Optimization variable 

CPG cutoff temperature 80 °C Economic threshold 

 

Supplementary C 

C 1. Feature selection algorithms 

Three feature selection techniques, namely Boruta, Chi-Square, and Pearson correlation, were 

employed to ensure the identification of the most relevant predictors as inputs for the models. The 
Boruta method represents a wrapper-based feature selection technique that leverages Random Forest 

classifier as its core computational engine for determining feature relevance (Kursa & Rudnicki, 

2010). This algorithm operates by generating shadow attributes (randomized duplicates of original 

features) and conducting comparative analysis to distinguish truly important variables from those that 

may appear significant due to random chance. The selection criterion employed by Boruta is the z-

score metric, and features achieving Z-scores above a predefined threshold are classified as 

statistically significant and retained as important variables. The Chi-square test was utilized to assess 

the independence between categorical features and the target variable (Plackett, 1983). Since the 

original continuous variables required discretization, features were categorized into discrete bins 

before analysis. The Chi-square statistic was calculated as (Pandis, 2016): 

χ2  =∑
(Oi −Ei)

2

Ei

k

i=1

 

(1) 

where χ2 is the Chi-square statistic, Oi is the observed frequency in category i, Ei is the expected 

frequency in category i under the null hypothesis of independence, and k is the number of categories. 



Higher Chi-square values indicate stronger dependence between the feature and target variable, 

suggesting greater discriminative power. Features with statistically significant Chi-square values 

(higher scores) were considered more important for classification tasks. Pearson correlation 
coefficient was employed to measure the linear relationship between each feature and the target 

variable. The correlation coefficient quantifies the strength and direction of linear association, 

calculated using the following equation (Pearson, 1895; Benesty et al., 2009): 

r =
∑ (Xi − X)(Yi −Y)
n
i=1

√∑ (Xi − X)
2n

i=1 ∑ (Yi −Y)
2n

i=1

 
(2) 

where r  is the correlation coefficient, Xi  and Yi  are individual data points, X  and Y  are the 

means of variables X and Y, respectively, and n is the sample size. The correlation coefficient ranges 

from -1 to +1, where values closer to ±1 indicate stronger linear relationships. To enable 

comparability among methods, the importance weights of all features were normalized to a [0,1] scale, 

and features with standardized weights ≥ 0.75 were selected as significant predictors. 

 
C 2. Quantum machine learning models and classical baseline development 

The QML framework employs a sophisticated data encoding pipeline that transforms classical 

features into quantum-compatible representations through angle encoding and quantum state 

preparation (Schuld et al., 2015). To prepare quantum-compatible input features, the original dataset 

underwent power transformation using the Yeo-Johnson method (Yeo & Johnson, 2000), followed 

by principal component analysis (PCA) to reduce dimensionality while preserving variance (Jolliffe 

& Cadima, 2016). The resulting features were then standardized and transformed using the arctan 

function with π/2 offset to map all values into the range of [0, π], ensuring optimal performance for 

quantum rotation gate operations (Tudisco et al., 2025). The dataset was split using an 80/20 strategy, 

where 80% of the samples were used for training and the remaining 20% for testing. In this study, 
two QML-based models were applied as surrogate models, including a QNN model (Beer et al., 2020) 

and a HQER model. 

The QNN represents a hybrid quantum-classical approach that mimics the structure of classical neural 

networks using quantum circuits (Liang et al., 2021; Arthur & Date, 2022). This model utilizes the 

principles of quantum superposition and entanglement to process input data in ways that may offer 

advantages over classical neural networks for certain types of problems. The QNN architecture 

consists of a data encoding layer that maps input features to quantum states using rotation gates (RY), 

followed by multiple variational quantum layers. Each variational layer contains parameterized 

rotation gates (RX, RY, RZ) applied to each qubit, representing the quantum equivalent of weight 

transformations in classical neurons, followed by CNOT entanglement gates that create quantum 

correlations between qubits, analogous to connections between neurons in classical networks. The 
QNN uses 4 qubits (or fewer if the input has fewer features) and 4 quantum layers, resulting in 48 

quantum parameters (3 rotations per qubit per layer). The classical linear layer adds 5 additional 

parameters (4 weights + 1 bias). The choice of 4 qubits was guided by consideration of classical 

simulation tractability and computational efficiency for the iterative training process required for 

surrogate model development, and also by empirical validation through preliminary experiments 

showing that 4 qubits combined with PCA dimensionality reduction and proper feature encoding can 

achieve acceptable prediction performance for the CPG optimization task. The model is trained using 

a gradient-free optimization approach over 500 epochs, with random perturbations (Gaussian noise 

with standard deviation 0.1) added to parameters. Quantum weights are initialized from a Gaussian 

distribution (mean=0, std=0.1), while classical weights are uniformly initialized between -1 and 1. 
The quantum circuit is implemented using PennyLane with the default.qubit simulator, and target 

values are normalized during training and denormalized for evaluation. 

The HQER model adapts the Quantum Approximate Optimization Algorithm (QAOA) framework 

(Farhi et al., 2014) for continuous regression tasks by treating feature extraction as an optimization 

problem. This model uses a parameterized quantum circuit to extract quantum features from input 

data, which are then combined with classical features in an ensemble of classical regression models 



to make predictions. The HQER architecture begins by initializing qubits in superposition using 

Hadamard gates, followed by multiple QAOA layers with alternating problem Hamiltonians (cost 

layers) that encode input data and mixer Hamiltonians (mixing layers) that enhance exploration 
(Bengtsson et al., 2020; Majumder et al., 2024). The quantum circuit extracts features through Pauli-

Z measurements on each qubit, which are then concatenated with the original (scaled) classical 

features. These combined features are fed into an ensemble of classical regression models (Ridge, 

ElasticNet, Random Forest, and Gradient Boosting), with final predictions obtained through a 

weighted average of the ensemble outputs. The HQER model uses 4 qubits (or fewer if the input has 

fewer features) and 3 QAOA layers, with 3 alpha parameters (range [0, 2π]) for the problem 

Hamiltonian and 3 beta parameters (range [0, π]) for the mixer Hamiltonian. The quantum circuit 

parameters are optimized over 500 iterations using a gradient-free approach with Gaussian noise 

(std=0.2). The ensemble consists of Ridge regression (alpha=0.5, weight=0.3), ElasticNet (alpha=0.1, 

l1_ratio=0.5, weight=0.25), Random Forest (n_estimators=200, max_depth=8, weight=0.25), and 

Gradient Boosting (n_estimators=200, learning_rate=0.1, max_depth=5, weight=0.2). Original 
features are standardized using StandardScaler before combining with quantum features, and the 

quantum circuit is implemented using PennyLane with the default qubit simulator. 

The adoption of quantum feature encoding in this study is motivated by several theoretical advantages 

that are particularly relevant for capturing the complex, nonlinear physics governing CPG systems. 

First, quantum feature encoding through rotation gates and entanglement operations enables the 

creation of nonlinear feature transformations in quantum state space, where quantum superposition 

and parameterized unitary operations can generate complex feature representations that complement 

classical methods. While 4-qubit circuits operate at a modest scale that does not demonstrate 

exponential quantum advantage, the quantum operations can still create nonlinear feature 

transformations and capture higher-order feature interactions that may be valuable for capturing the 
complex physics of CPG systems. Classical polynomial feature expansion could theoretically achieve 

similar interaction terms, but the number of features grows combinatorially, leading to the curse of 

dimensionality, whereas quantum entanglement implicitly encodes these interactions in the quantum 

state structure without explicit feature enumeration. Third, the variational nature of quantum circuits, 

where parameterized gates are optimized during training, provides a form of learnable nonlinear basis 

function that adapts to the specific structure of CPG simulation data, analogous to kernel methods but 

with kernels defined by quantum operations rather than fixed classical functions. This adaptive 

quantum kernel approach may be particularly effective for problems where the optimal feature 

representation is unknown a priori and differs substantially from standard polynomial or radial basis 

function kernels commonly employed in classical ML. Fourth, the hybrid quantum-classical 

architecture (especially in HQER) combines quantum feature extraction with classical ensemble 
methods, leveraging the complementary strengths of both paradigms: quantum circuits explore 

nonlinear feature spaces that may be difficult to access classically, while classical regressors provide 

stable, interpretable predictions and uncertainty quantification. This synergy is theoretically expected 

to outperform either purely quantum or purely classical approaches, particularly for scientific 

computing problems where both complex feature interactions and reliable predictions are essential. 

To benchmark the performance of the developed quantum-based models, two widely-used classical 

ML algorithms were implemented as baseline comparisons: (1) Generalized Boosted Regression 

(GBR), a powerful regression approach that iteratively builds an ensemble of weak learners to capture 

complex nonlinear patterns, and (2) Gradient Boosted Trees (GBT), also known as gradient boosting 

machine which is a gradient-based ensemble method recognized as a state-of-the-art algorithm with 
strong predictive performance across diverse regression tasks. The GBT model was implemented 

using the h2o package in R (Fryda et al., 2024), while the GBR model was implemented using the 

gbm package in R (Ridgeway, et al., 2024). Both GBR and GBT models were trained using 500 trees, 

with an interaction depth of 3 for the GBR model and a maximum depth of 5 for the GBT model. 

 



Supplementary D 

D 1. Model accuracy assessment 

The performance of the developed QML models was assessed using six complementary statistical 

metrics that capture different aspects of prediction accuracy and model reliability. These include 

mean absolute error (MAE) and root mean square error (RMSE), relative error expressed as the 

RMSE–standard deviation ratio (RSR), and Refined Index of Agreement (dr) (Willmott et al., 2012) 

and the coefficient of determination (R²). The mathematical formulations of these metrics are 

provided in Eqs (3) to (7): 

𝑀𝐴𝐸 =
∑ |Y𝑖 − Y𝑖̂|

𝑛

1=1

𝑛
 

(3) 

𝑅𝑀𝑆𝐸 = √
∑ (Y𝑖 − Y𝑖̂)

2𝑛

𝑖=1

𝑛
 

(4) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

SD𝑜𝑏𝑠
 

(5) 

dr =

{
 
 

 
 1 −
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n
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(6) 

𝑅2 = 1 −
∑ (Y𝑖 −Y𝑖̂)

2𝑛

𝑖=1

∑ (Y𝑖 − 𝑌)
2

𝑛

𝑖=1

 
(7) 

where n is the number of data points in the dataset, Y𝑖 and Y𝑖̂ indicate the observed and predicted 

values for the i-th data point, respectively. 𝑌 represents the mean of observed values, SD𝑜𝑏𝑠 is the 

standard deviation of observed values, and c is a constant value (set as 2). 

  



Supplementary E 

 
Fig. E 1. Standardized feature importance weights (0-1 scale) for iCO2 (a), eCO2 (b), sCO2 (c), and extQh (d) across 

three feature selection methods. 

 

Supplementary F 

F 1. Comparative performance of developed quantum-based and classical baseline models 

The comparative analysis between the best-performing quantum-based models and classical baseline 
models (GBR and GBT) across all six target variables reveals consistent superiority of the quantum-

inspired architectures, while also demonstrating that classical models achieve competitive 

performance with appropriate feature selection (Fig. F 1). The comparison evaluates the test set 

performance using three metrics (MAE, R², and RMSE) to provide comprehensive assessment of 

prediction accuracy, with quantum models represented by either HQER or QNN architectures 

depending on which achieved the best test performance for each target variable. Comparative analysis 

of quantum-based versus classical approaches revealed that quantum-enhanced models consistently 

achieve superior or competitive performance using substantially fewer input features than classical 

models require, demonstrating quantum advantage in data efficiency and feature economy. 



For tLife prediction, BO-QNN1 served as the quantum benchmark, achieving test MAE of 1.953 

years, R² of 0.946, and RMSE of 2.422 years, demonstrating the strongest overall performance among 

all tested models. Among classical baselines, PC-GBR1 achieved the best performance with MAE of 
1.535 years, R² of 0.947, and RMSE of 2.403 years. This near-parity suggests that for tLife prediction, 

the comprehensive 15-feature set selected by Pearson correlation combined with gradient boosting 

regression effectively captures the temperature-dominated dynamics governing operational lifetime. 

However, BO-GBR1 and CH-GBR1 showed substantially degraded performance (R² of 0.775 and 

0.773, respectively) with RMSE exceeding 4.9 years, indicating that compact feature sets (2-3 

features) are insufficient for classical models to accurately predict system lifetime, whereas the 

quantum model achieved strong performance with only 2 features (CPT_mean, CPT_median). The 

iCO₂ prediction comparison demonstrates clear quantum advantage, with BO-HQER2 achieving test 

MAE of 0.824 Mt, R² of 0.953, and RMSE of 1.153 Mt, substantially outperforming all classical 

baselines (in terms of R² and RMSE). PC-GBR2 emerged as the strongest classical model with MAE 

of 0.899 Mt, R² of 0.945, and RMSE of 1.252 Mt. The Boruta and Chi-squared feature selections 
(using only 2-3 features) resulted in significantly degraded classical model performance, with BO-

GBR2 and CH-GBR2 achieving R² of only 0.943 and 0.901, respectively, accompanied by 

substantially higher errors (MAE of 0.822-1.365 Mt, RMSE of 1.267-1.679 Mt). This pattern 

indicates that minimal feature sets fail to provide adequate information for classical tree-based 

methods to accurately predict CO₂ injection dynamics. The GBT models showed consistent but 

inferior performance compared to GBR counterparts across all feature selection methods (R² ranging 

from 0.892-0.942 versus 0.901-0.945 for GBR). 

For eCO₂ prediction, BO-HQER3 achieved exceptional test performance with MAE of 0.501 Mt, R² 

of 0.951, and RMSE of 0.73 Mt, establishing a strong benchmark against which classical models were 

compared. PC-GBR3 delivered the best classical performance with MAE of 0.549 Mt, R² of 0.953, 
and RMSE of 0.716 Mt. However, this classical performance required the comprehensive 8-feature 

Pearson correlation set, whereas the quantum model achieved nearly equivalent accuracy using only 

3 features (Az_deg, Lw_m, CPT_mean) selected by Boruta. The sCO₂ prediction results reveal the 

strongest quantum advantage among all CO₂-related variables, with BO-HQER4 achieving test MAE 

of 0.422 Mt, R² of 0.941, and RMSE of 0.496 Mt, substantially outperforming all classical models. 

CH-GBR4 emerged as the best classical baseline with MAE of 0.525 Mt, R² of 0.89, and RMSE of 

0.675 Mt. For extEn prediction, BO-HQER5 established the performance benchmark with test MAE 

of 0.212 PJ, R² of 0.95, and RMSE of 0.307 PJ, demonstrating exceptional accuracy for this critical 

performance metric. PC-GBR5 achieved the strongest classical performance with MAE of 0.223 PJ, 

R² of 0.954, and RMSE of 0.295 PJ. However, this classical model required the comprehensive 8-

feature Pearson correlation set, whereas the quantum model achieved near-equivalent performance 
using only 3 Boruta-selected features (Az_deg, Lw_m, CPT_mean). The extQh prediction 

comparison reveals the most pronounced quantum advantage observed across all target variables, 

with BO-HQER6 achieving test MAE of 0.419 MW, R² of 0.95, and RMSE of 0.993 MW, 

outperforming all classical baselines. PC-GBR6 emerged as the strongest classical model with MAE 

of 0.797 MW, R² of 0.909, and RMSE of 1.337 MW. The BO-GBR6 and CH-GBR6 models with 

compact feature sets (9 features selected by Boruta and Chi-squared) showed severely degraded 

performance with identical R² values of 0.893, MAE of 0.71 MW, and RMSE of 1.447 MW, 

indicating that even relatively feature-rich selections (9 features) prove insufficient for classical 

methods to accurately predict instantaneous heat flux dynamics.  

 
 



 

 

 

 



 

 
 

Fig. F 1. Comparative performance analysis of quantum-based models versus classical baseline models (GBR and 

GBT) across tLife (a), iCO2 (b), eCO2 (c), sCO2 (d), extEn (e), and extQh (f) variables for the test dataset. Each panel 

displays three performance metrics for the best-performing quantum model (the model achieving the highest 

performance during test phase) and classical baselines across three applied feature selection methods.  

 

Supplementary G 

Fig. G 1 shows the Taylor diagrams of developed storage QML models across all six target variables 

for the entire data set (train and test together). The remarkable clustering of models near the observed 

reference point demonstrates exceptional accuracy, with all models achieving high correlations, 

indicating that developed models successfully capture both the magnitude and variability of six target 

variables. The tLife predictions show slightly more dispersion but maintain high performance, with 

HQER models consistently positioned closer to the reference point than their QNN. The most notable 
pattern emerges in the extQh diagram, where models display greater spread with QNN variants 

showing larger RMSE (positioned farther from the reference), while HQER models maintain tighter 

clustering near the observed point. Across all diagrams, the Boruta-based models (red and cyan 

markers) consistently achieve optimal or near-optimal positioning. The overall tight clustering and 

high correlations across diverse target variables demonstrate that the developed QML models’ 

capabilities to capture the complex physics of CPG systems. 

 

 



 

 

 



Fig. G 1. Taylor diagrams comparing the performance of six developed QML models for tLife (a), iCO2 (b), eCO2 (c), 

sCO2 (d), extEn (e), and extQh (f) variables using the entire dataset (all 100 samples, including both training and testing 

data). 

 

Supplementary H 

H 1. Multi-objective optimization 

Table H 1 and Fig. H 1 present the optimization results based on the best developed surrogate models 

for each variable. Results reveal distinct patterns in optimal decision variables and objective trade-

offs across six scenarios of increasing complexity, with the solution selection strategy prioritizing 

maximum extEn from the Pareto fronts. Single-objective optimization using MFO (Scenario 1) 

achieved the baseline maximum extEn of 5.787 PJ with dP_MPa of 5.305 (MPa) and well spacing 

(Lw_m) of 991.293 (m). The bi-objective optimization for energy metrics (Scenario 2) required 

significantly higher overpressure at the injection well (12.158 MPa) to balance extEn (5.517 PJ) with 
heat extraction rate (9.249 MW). When system lifetime was added as the third objective (Scenario 3), 

the optimizer converged to lower pressure (5.094 MPa) and slightly reduced well spacing (969.316 

m), achieving superior extEn (5.862 PJ) while maintaining acceptable heat flux (4.126 MW) and 

extending operational lifetime to 39.502 years. The storage-focused scenarios (4-6) consistently 

converged to nearly identical solutions (dP ≈ 5.1 to 5.3 MPa, Lw ≈ 991 to 969 m), suggesting a robust 

optimal configuration for maximizing both energy extraction and CO2 sequestration, with stored CO2 

around 8 Mt and injected CO2 approximately 22.4 Mt for scenarios involving injection minimization. 

The convergence of multiple multi-objective scenarios to similar optimal solutions (particularly 

Scenarios 3, 5, and 6) validates the robustness of the identified configuration and suggests that lower 

injection pressures combined with well spacing around 970 m represents a CPG system design that 

naturally balances energy extraction, storage effectiveness, and operational longevity. 
 
Table. H 1. Optimal solutions and corresponding objective values for six optimization scenarios via MFO (for single-

objective optimization) and NSGA-II (for multi-objective optimization). * Marks indicate objectives not included in the 

respective optimization scenario. 

Scenario 

Number 

of 

Objectives 

Solution 

for 

dP_MPa 

Solution 

for 

Lw_m 

Best 

objective 

(extEn) 

Best 

objective 

(extQh) 

Best 

objective 

(tLife) 

Best 

objective 

(sCO2) 

Best 

objective 

(iCO2) 

Best 

objective 

(extQh) 

Best 

objective 

(tLife) 

Scenario 1 

(MFO) 
1 5.305 991.293 5.787 * * * * * * 

Scenario 2 

(NSGA-II) 
2 12.158 994.889 5.517 9.249 * * * * * 

Scenario 3 

(NSGA-II) 
3 5.094 969.316 5.862 4.126 39.502 * * * * 

Scenario 4 

(NSGA-II) 
2 5.305 991.291 5.786 * * 7.816 * * * 

Scenario 5 

(NSGA-II) 
3 5.094 969.319 5.863 * * 8.044 22.444 * * 

Scenario 6 

(NSGA-II) 
5 5.094 969.316 5.862 * * 8.041 22.437 4.125 39.507 

 

 



 
Fig. H 1. Spider diagrams comparing recommended solutions for dp_MPa (a), Lw_m (b), and extEn (c) via various 

scenarios showing trade-offs between different CPG performance metrics. 

 

The convergence of Scenario 3 to the 5.094 MPa - 969.316 m configuration and its recurrence in 

storage-focused scenarios (5 and 6) with nearly identical parameter values warrants detailed 

examination to understand why this solution occupies a dominant position on the Pareto frontier. This 

configuration achieves superior multi-objective performance by balancing three competing 
mechanisms governing CPG system behavior: thermal sweep efficiency, CO₂ plume containment, 

and pressure-induced fracturing risk. The moderate injection overpressure of ~5.1 MPa provides 

sufficient driving force to maintain continuous CO₂ circulation and heat extraction (extEn = 5.862 PJ, 

extQh = 4.126 MW) while remaining well below the estimated fracture pressure threshold (~15 MPa), 

thereby minimizing induced seismicity risk and formation damage that could compromise long-term 

system integrity. The well spacing of ~970 m represents an optimal trade-off between thermal 

breakthrough time and plume connectivity: closer spacing (<600 m) would cause premature thermal 

breakthrough as cold injected CO₂ reaches the production well before sufficient heat extraction, 

reducing both extEn and tLife, while wider spacing (>1200 m) would require excessive injection 

pressures to establish hydraulic communication, increasing iCO₂ without proportional gains in sCO₂ 

or extEn. 
The optimization results reveal fundamental physical mechanisms that govern trade-offs among 

competing CPG performance objectives, which can be understood through the coupled 

thermodynamics and fluid mechanics of CO₂-brine-heat transport in porous media. The stark contrast 

between Scenario 2's high-pressure solution (12.158 MPa, 994.889 m) and Scenario 3's moderate-

pressure configuration (5.094 MPa, 969.316 m) reflects competing physical processes: high injection 

overpressures increase CO₂ mass flux through enhanced pressure gradients, accelerating both 

injection and production rates which elevate instantaneous heat extraction (extQh = 9.249 MW), but 

simultaneously cause rapid thermal sweep that depletes the reservoir's thermal energy inventory more 

quickly, reducing system lifetime and cumulative energy recovery. This aggressive extraction regime 

creates steep thermal fronts that propagate rapidly from the injection well toward the production well, 
with convective heat transport dominating over conductive spreading, leading to premature thermal 

breakthrough when cold injected CO₂ reaches the production well before sufficient heat exchange 

with the formation. Conversely, moderate injection pressures in Scenario 3 allow more uniform 

thermal sweep with greater conductive heat diffusion from surrounding rock into the CO₂ plume, 

maximizing the effective thermal contact area and enabling sustained heat extraction over extended 

operational periods (tLife = 39.502 years). The well spacing optimization reflects a balance between 

two opposing physical constraints: the percolation threshold for hydraulic connectivity, which 

requires sufficient pressure gradients to establish flow pathways through heterogeneous permeability 

fields (requiring closer spacing or higher pressures), and the thermal interference distance, beyond 

which separate circulation cells can operate independently without premature thermal breakthrough 

(favoring wider spacing). The convergence to ~970 m spacing across multiple scenarios suggests this 
distance optimally balances these competing requirements for the North Oman reservoir properties 

(mean permeability 5.3 mD, porosity 0.25, thermal conductivity typical of sandstone formations). 

The trade-off between iCO₂ and sCO₂ in Scenarios 5-6 reflects the fundamental distinction between 

mobile and immobile CO₂ fractions: high injection pressures mobilize larger CO₂ volumes but also 

enhance production efficiency through increased pressure gradient between injection and production 



well, reducing the fraction of injected CO₂ that remains trapped through residual saturation, capillary 

trapping, or dissolution in formation brine. The optimal solutions consistently minimize iCO₂ while 

maximizing sCO₂, indicating that effective storage occurs primarily through mechanisms favored by 
moderate pressures and long residence times, capillary trapping in pore throats, gravity-driven 

structural trapping beneath low-permeability layers, and diffusive dissolution into brine, rather than 

through brute-force injection of massive CO₂ volumes. The robust recurrence of the 5.1 MPa - 970 m 

configuration across storage-focused scenarios (4-6) demonstrates that this operational regime 

naturally aligns multiple physical objectives: it maintains subcritical stress states that avoid 

geomechanical risks (injection pressure remains well below minimum principal stress plus tensile 

strength), optimizes sweep efficiency through balanced advective-diffusive transport, and maximizes 

residence time for enhanced dissolution trapping. 

 

Supplementary I 

I 1. Limitations and future work 

I 1.1. Computational implementation and quantum hardware constraints 

In this study all quantum computations were performed using classical simulators (PennyLane's 

default.qubit simulator) and while the simulated quantum circuits successfully demonstrate the 

conceptual framework and achieve exceptional prediction accuracy, the practical feasibility of 

implementing these QML models on current near-term quantum devices remains uncertain. 
Contemporary quantum hardware faces some challenges including limited qubit coherence times, 

high gate error rates, restricted circuit depth due to decoherence, and scalability constraints that 

severely limit the number of qubits available for practical applications. The quantum circuits 

developed in this study, while modest in qubit requirements (4 qubits), would still face 

implementation challenges on real quantum hardware where noise accumulation over multiple 

quantum layers could compromise prediction accuracy. 

 

I 1.2. Technical implementation details 

Several technical details require more comprehensive elaboration to enable reproducibility and deeper 

understanding of the quantum-enhanced framework. The quantum scaling feature encoding process, 
while described as transforming standardized features through arctan functions with π/2 offset to map 

values into the [0, π] range for quantum rotation gates, lacks detailed explanation of several 

implementation aspects. Specifically, the current study does not fully address how this particular 

encoding scheme was selected over alternative quantum embedding strategies (such as amplitude 

encoding, basis encoding, or more sophisticated variational encoding circuits). Future work should 

include detailed sensitivity analyses examining how variations in quantum circuit architecture 

(number of layers, types of entangling gates, measurement strategies) affect the quality and 

interpretability of extracted quantum features, and should provide quantitative metrics for assessing 

the added value of quantum feature extraction beyond what classical nonlinear transformations (such 

as kernel methods, neural network embeddings, or polynomial features) could achieve with 

comparable computational resources. 
 

I 1.3. Physical interpretability and conservation law consistency 

Another limitation of the developed QML surrogate models is the reduced physical interpretability 

compared to the underlying NUFT simulations, which are grounded in rigorous conservation laws 

for mass, energy, and momentum. While the quantum and hybrid quantum-classical models achieve 

exceptional prediction accuracy across all six target variables (R² > 0.95 for most cases), the black-

box nature of these ML approaches raises important questions about whether the models truly capture 

the fundamental physics governing CPG systems or merely perform sophisticated pattern matching 



that could fail under conditions outside the training distribution. The NUFT simulator explicitly 

enforces conservation of CO₂ and brine mass through coupled nonlinear partial differential equations, 

ensures energy conservation through enthalpy balance equations accounting for advective and 
conductive heat transport, and maintains thermodynamic consistency by computing CO₂ phase 

behavior (gaseous, liquid, supercritical transitions) according to established equations of state. In 

contrast, the QML surrogate models learn statistical relationships between input features and output 

variables without explicit constraints enforcing these physical principles, potentially allowing 

predictions that violate fundamental conservation laws under certain parameter combinations. For 

instance, the models could theoretically predict eCO₂, iCO₂, or thermal energy extraction rates 

inconsistent with the available enthalpy of the produced fluid, although such violations were not 

observed in the validation datasets. Future work should incorporate physics-informed constraints into 

the QML training process, either through penalization terms in the loss function that discourage 

conservation law violations, through post-processing corrections that project predictions onto 

physically feasible manifolds, or through hybrid architectures that combine data-driven quantum 
feature extraction with physically-constrained classical output layers. Additionally, systematic testing 

of the surrogate models under extreme parameter combinations not well-represented in the training 

data would help assess whether the models maintain physical plausibility or produce spurious 

predictions that could mislead design optimization efforts. 

 

I 1.4. Feature selection methodology and sensitivity analysis 

The comparative analysis of three feature selection methods (Boruta, Chi-squared, Pearson 

correlation) revealed substantial differences in selected feature sets, yet the practical implications of 

these differences for model interpretability, robustness, and generalization require deeper 

investigation. Boruta consistently identified compact feature sets emphasizing the most statistically 
significant predictors (e.g., CPT_mean, CPT_median for tLife; Lw_m, Az_deg for CO₂-related 

outputs), achieving strong performance particularly when combined with HQER architectures, 

suggesting that minimal feature sets can capture the essential physics when quantum-enhanced 

feature processing is employed. Chi-squared feature selection produced similarly parsimonious 

selections, often converging to identical feature subsets as Boruta for several target variables, 

indicating robust agreement on the most discriminative predictors. In contrast, Pearson correlation 

systematically selected larger feature sets (up to 15 features for tLife and extQh), incorporating 

broader coverage of injection, production, temperature, and heat flux statistics. While the expanded 

feature sets achieved strong performance in HQER models (test R² > 0.94 for most variables), they 

showed mixed results in QNN architectures, with PC-QNN variants sometimes suffering larger train-

test degradation than their Boruta or Chi-squared counterparts. This suggests that compact feature 
sets may provide better regularization for simpler quantum architectures, while ensemble methods 

can more effectively leverage diverse feature information without overfitting. 

A critical limitation is that the feature selection threshold of 0.75 for standardized importance weights 

was chosen based on practical considerations rather than through systematic sensitivity analysis. The 

current study does not provide empirical justification for this specific threshold value, nor does it 

examine how variations in the threshold would affect model performance, feature set composition, 

and computational efficiency. The threshold of 0.75 represents a relatively stringent criterion, 

potentially excluding features with moderate but still meaningful predictive value (weights between 

0.5-0.75), while a more lenient threshold might introduce noise from weakly relevant features. Future 

work should conduct comprehensive sensitivity analyses systematically varying the feature selection 
threshold across a range (e.g., 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9) and evaluating the resulting models 

across multiple metrics, generalization performance (train-test gap), computational efficiency 

(number of features, training time), and interpretability. Such analyses would help establish data-

driven guidelines for threshold selection tailored to different target variables and model architectures. 

Additionally, more sophisticated feature selection approaches could be explored, including recursive 

feature elimination that iteratively removes the least important features while monitoring model 

performance, ensemble feature selection that combines rankings from multiple methods through 



voting or averaging, and adaptive threshold selection that optimizes the threshold value through cross-

validation to maximize generalization performance for each specific prediction task. 

 
I 1.5. Practical implications for decision-making and multi-objective trade-offs 

While the multi-objective optimization framework successfully identified optimal CPG system 

configurations across six scenarios of increasing complexity, the practical implications of the inherent 

trade-offs between competing objectives require more explicit discussion to effectively guide 

engineering decision-making and policy development. The optimization results reveal several 

fundamental tensions in CPG system design that operators and stakeholders must navigate based on 

their specific priorities and constraints. The most prominent trade-off emerges between maximizing 

extQh versus tLife, as evidenced by the stark contrast between Scenario 2 (requiring 12.158 MPa 

injection pressure to achieve 9.249 MW heat flux but likely reducing lifetime due to aggressive 

thermal depletion) and Scenario 3 (using only 5.094 MPa to balance moderate heat flux of 4.126 MW 

with extended 39.5-year lifetime). For project developers prioritizing rapid return on investment and 
high power output, the high-pressure, high-flux configuration may be economically attractive despite 

shorter operational periods, particularly in contexts where high electricity prices or carbon credits 

justify aggressive extraction strategies. Conversely, operators seeking long-term resource 

sustainability and lower operational risk may prefer conservative injection pressures that preserve 

thermal resources and extend project life, accepting lower instantaneous power output in exchange 

for decades-long stable operation. The convergence of storage-focused scenarios (4-6) to similar 

optimal solutions (dP ≈ 5.1-5.3 MPa, Lw ≈ 970 m, sCO₂ ≈ 8 Mt, extEn ≈ 5.8 PJ) reveals a particularly 

valuable insight: when CO₂ sequestration objectives are incorporated into the optimization, the 

framework naturally identifies operating conditions that simultaneously maximize long-term energy 

extraction and carbon storage while minimizing injection requirements. This suggests that CPG 
systems designed with explicit carbon storage goals may inherently operate more efficiently and 

sustainably than those optimized solely for energy production. Decision-makers should carefully 

consider these trade-offs in the context of local regulatory requirements (e.g., carbon pricing 

mechanisms, renewable energy mandates), project economics (capital costs, operational expenses, 

revenue streams), reservoir characteristics (available storage capacity, thermal recovery potential), 

and stakeholder priorities (climate mitigation goals, energy security objectives, economic 

development targets) when selecting among the Pareto-optimal solutions identified by the multi-

objective optimization framework. 

 

I 1.6. Model validation strategy and generalization assessment 

The current validation strategy, while demonstrating strong performance on the test dataset, exhibits 
several limitations that warrant acknowledgment and motivate future research directions. First, the 

single 80/20 train-test split, although commonly employed in ML studies, provides only a limited 

assessment of model generalization and may be sensitive to the particular random partitioning of the 

data. The absence of k-fold cross-validation represents a gap, as repeated random sampling and 

averaging across multiple train-test splits would provide more robust estimates of model performance 

variability and reduce the risk that reported metrics reflect fortuitous data partitioning rather than 

genuine predictive capability. Future studies should implement k-fold cross-validation (e.g., 5-fold 

or 10-fold) where the NUFT simulations are systematically divided into k subsets, with each subset 

serving once as a validation set while the remaining subsets are used for training, thereby enabling 

calculation of mean performance metrics and confidence intervals that more accurately characterize 
model reliability. Second, the study lacks online or streaming validation tests where the surrogate 

models would be evaluated on sequentially arriving new data points, which is particularly relevant 

for real-time reservoir management applications where CPG operators might need to continuously 

update predictions as new monitoring data becomes available during system operation. The absence 

of temporal validation is especially concerning given that CPG system behavior evolves over multi-

decadal timescales, and surrogate models trained on early-time simulation data may not accurately 



predict late-time performance as thermal depletion, CO₂ plume migration, and geomechanical 

changes alter system dynamics. 

Third, all validation was conducted on synthetic data from a single geological setting (in North Oman) 
with specific reservoir properties (mean porosity 0.25, mean permeability 5.3 mD, 90°C initial 

temperature, 180 ppt brine salinity, 5° dip angle). The models' ability to generalize to held-out 

geological settings with substantially different reservoir characteristics remains completely untested, 

raising serious concerns about the practical applicability of the developed QML framework to real-

world CPG projects in diverse geological contexts. CPG systems may be deployed in sedimentary 

basins with vastly different properties including highly fractured carbonate reservoirs with dual-

porosity behavior, deep saline aquifers with heterogeneous permeability structures spanning orders 

of magnitude, depleted hydrocarbon fields with residual oil or gas saturation, or volcanic rock 

formations with complex thermal regimes. The surrogate models trained on the relatively 

homogeneous Oman reservoir simulations may fail catastrophically when applied to these alternative 

settings if the underlying physics or parameter sensitivities differ substantially. Prospective validation 
requiring collection of NUFT simulation data from multiple diverse geological settings (varying 

lithology, structural complexity, thermal gradients, fluid properties, well configurations) and 

evaluation of whether surrogate models trained on one setting can accurately predict performance in 

others would provide much more convincing evidence of practical utility. Until such cross-site 

validation is performed, the generalizability claims of the developed QML framework must be 

considered speculative, and practitioners should exercise caution when applying these models to CPG 

projects in geological settings that differ significantly from the North Oman training data. 

 

I 1.7. Scalability to large-scale field applications 

The case study's limitation to a relatively modest synthetic reservoir model (2000 m × 3000 m × 20 
m domain) raises questions about how the QML surrogate modeling framework would scale to larger, 

more complex field-scale CPG applications that are more representative of commercial deployment 

scenarios. Real-world geothermal projects often involve large spatial domains and such large-scale 

models can require millions of computational cells and produce simulation runtimes measured in days 

or weeks per realization, making the generation of comprehensive training datasets through Latin 

Hypercube Sampling or other systematic parameter space exploration methods extremely 

computationally expensive. A key uncertainty is whether the current training dataset size would 

remain sufficient for complex field models with higher-dimensional parameter spaces, or whether 

substantially larger datasets would be required to adequately sample the expanded design space and 

capture the increased nonlinearity introduced by geological complexity. If training data requirements 

scale unfavorably with model complexity, the computational savings offered by QML surrogates 
could be partially or entirely offset by the increased cost of generating training data, potentially 

limiting practical applicability to small-to-medium scale reservoir models. 

 

I 1.8. Positioning relative to classical surrogate modeling approaches 

While the developed QML framework demonstrates excellent prediction accuracy and computational 

efficiency, establishing the true value of quantum-inspired architectures requires systematic 

comparison against classical ML alternatives. To provide initial benchmarking, this study compared 

the performance of QML models (QNN and HQER) against two widely-applied classical ML 

algorithms (GBR and GBT). Recent advances in classical ML have produced more sophisticated 

approaches specifically designed for scientific computing applications, including Physics-Informed 
Neural Networks (PINNs) that embed governing partial differential equations directly into the loss 

function to enforce conservation laws and improve extrapolation beyond training data, Fourier Neural 

Operators (FNOs) that learn solution operators in frequency space and have demonstrated remarkable 

accuracy for subsurface flow problems with orders of magnitude computational speedup, deep neural 

networks with advanced architectures incorporating convolutional layers for spatial pattern 

recognition, recurrent or transformer layers for temporal dynamics, and attention mechanisms for 

multi-scale feature extraction. Therefore, future work should implement comprehensive classical 



baselines including deep neural networks with comparable parameter counts to the QML models, 

PINNs that explicitly enforce mass and energy conservation for CPG systems, and FNO architectures 

that may be particularly well-suited to the spatiotemporal nature of reservoir simulation data. Such 
comparisons should evaluate not only prediction accuracy but also training efficiency, inference 

speed, robustness to parameter variations outside the training distribution, and data efficiency 

(performance with limited training samples) to rigorously quantify any quantum advantage and 

identify the specific prediction tasks, dataset characteristics, or problem structures where quantum-

enhanced approaches provide meaningful benefits that justify their additional implementation 

complexity over mature classical alternatives. 
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