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Supplementary A

A 1. NUFT model framework and spatial discretization

Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) solves a system of coupled
nonlinear partial differential equations governing mass conservation for CO» and brine phases, energy
conservation, and thermodynamic equilibrium relationships using an integrated finite difference
method with fully implicit time discretization (Nitao, 1998). The governing equations account for
advective and dispersive transport, capillary pressure effects described by van Genuchten
relationships (a =5.1x 10 Pa’l, n=0.46) (Zhou et al., 2008; Buscheck et al., 2012; Chen et al., 2023),
relative permeability functions following Brooks-Corey models, and temperature-dependent fluid
properties including CO; phase transitions between gaseous, liquid, and supercritical states.

The three-dimensional computational domain represents a fault-bounded reservoir block in North
Oman (Chen et al., 2023), measuring 2,000 m x 3,000 m x 20 m (X*xYxZ), inclined at a 5° dip angle
around the Y-axis with the anchor point (0,0) positioned at 1,500 m depth (Table A 1). The domain
is discretized into a structured grid with uniform spacing of 4x = 50 m, 4y = 50 m, and 4z = 1 m,
resulting in 40 x 60 x 20 = 48,000 computational cells that provide sufficient resolution to capture
thermal fronts and CO; plume migration while maintaining computational tractability. A horizontal
well doublet configuration is implemented with 1-km long wells placed parallel to the Y-axis at the
middle Y-range (¥ = 1,500 m), where the injection well is fixed at the top-left corner (X =0, Z =0)
and the production well location varies between 400 and 1,000 m distance for optimization purposes.
The reservoir boundaries are treated as no-flow (closed) conditions for all faces except the right
boundary (X = 2,000 m), with its cell volume magnified by 10° to represent far-field conditions, while
the bottom boundary receives a constant geothermal heat flux of 0.05 W/m?, representative of
continental crust heat flow (Moridis and Pruess, 1992; Babaei et al., 2016; Chen et al., 2023). The
initial conditions and simulation scenarios are described in detail in Appendix A of the supplementary
information.

Table. A 1. Reservoir model geometry and discretization parameters.

Parameter Value Unit  Description

Domain size Fault-bounded reservoir

(XXYxZ) 2,000%3,000%20 m block

Grid spacing

(AxXAy*xAz) 50x50x1 m Uniform structured grid

Number of

cells 48,000 - 40x60x20 grid cells
Inclination around Y-

Reservoir dip 5 degrees axis

Anchor depth 1,500 m Top-left corner depth

Well length 1,000 m Horizontal well extent

Well

placement Y =1,500 m Middle of Y-domain

Supplementary B

B 1. Initial conditions and simulation scenarios



The reservoir pressure is initialized with hydrostatic pressure distributions calculated based on depth,
with the anchor point (0.0) at 1500 depth is specified as 17 MPa. The initial reservoir temperature is
specified at a uniform 90 °C (Zhao et al., 2012). The reservoir formation is initially saturated by 70
vol% CO; and 30 vol% brine with 180 ppt of salinity (Table B 1). Cold CO- (30 °C) is injected and
hot CO; is extracted via a production well to a surface power plant. CO; circulation between the
injection-production well doublet is driven by specified injection overpressure and production
pressure fixed at its initial value for up to 100 years or until produced fluid temperature drops below
80 °C. The heterogeneous porosity-permeability fields are generated using Sequential Gaussian
Simulation with correlation lengths varying from 100 to 1000 m in horizontal directions and 1-20 m
vertically, with permeability derived from porosity using the Kozeny-Carman relationship: k£ =
192¢%/(1-¢)?, where mean porosity is 0.25 corresponding to mean permeability of 5.3 mD (Rajabi et
al., 2021).

Table. B 1. Reservoir properties and operational parameters (Chen et al., 2023).

Parameter Value/Range  Unit  Description
Initial temperature 90 °C Whole domain
Heat flux (bottom) 0.05 W/m?  Basal heat source
Brine salinity 180 ppt Formation water
Rock density 2,650 kg/m*  Carbonate formation
Rock specific heat 1,000 J/kg-°C  Thermal capacity
Thermal conductivity 2.1 W/m-°C Rock matrix
Mean porosity 0.25 - Geostatistical mean
Mean permeability 53 mD Derived from porosity
Injection temperature 30 °C Cold CO; injection
Injection overpressure 5-15 MPa  Optimization variable
Well spacing 400-1,000 m Optimization variable
CPG cutoff temperature 80 °C Economic threshold
Supplementary C

C 1. Feature selection algorithms

Three feature selection techniques, namely Boruta, Chi-Square, and Pearson correlation, were
employed to ensure the identification of the most relevant predictors as inputs for the models. The
Boruta method represents a wrapper-based feature selection technique that leverages Random Forest
classifier as its core computational engine for determining feature relevance (Kursa & Rudnicki,
2010). This algorithm operates by generating shadow attributes (randomized duplicates of original
features) and conducting comparative analysis to distinguish truly important variables from those that
may appear significant due to random chance. The selection criterion employed by Boruta is the z-
score metric, and features achieving Z-scores above a predefined threshold are classified as
statistically significant and retained as important variables. The Chi-square test was utilized to assess
the independence between categorical features and the target variable (Plackett, 1983). Since the
original continuous variables required discretization, features were categorized into discrete bins
before analysis. The Chi-square statistic was calculated as (Pandis, 2016):

k 2
2 = Z (0; —E))
i=1 Ei

where x? is the Chi-square statistic, O; is the observed frequency in category i, E;is the expected
frequency in category i under the null hypothesis of independence, and k is the number of categories.

(1)



Higher Chi-square values indicate stronger dependence between the feature and target variable,
suggesting greater discriminative power. Features with statistically significant Chi-square values
(higher scores) were considered more important for classification tasks. Pearson correlation
coefficient was employed to measure the linear relationship between each feature and the target
variable. The correlation coefficient quantifies the strength and direction of linear association,
calculated using the following equation (Pearson, 1895; Benesty et al., 2009):

L& -XY-Y) 2
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where r is the correlation coefficient, X; and Y; are individual data points, X and Y are the
means of variables X and Y, respectively, and n is the sample size. The correlation coefficient ranges
from -1 to +1, where values closer to +1 indicate stronger linear relationships. To enable
comparability among methods, the importance weights of all features were normalized to a [0,1] scale,
and features with standardized weights > 0.75 were selected as significant predictors.

C 2. Quantum machine learning models and classical baseline development

The QML framework employs a sophisticated data encoding pipeline that transforms classical
features into quantum-compatible representations through angle encoding and quantum state
preparation (Schuld et al., 2015). To prepare quantum-compatible input features, the original dataset
underwent power transformation using the Yeo-Johnson method (Yeo & Johnson, 2000), followed
by principal component analysis (PCA) to reduce dimensionality while preserving variance (Jolliffe
& Cadima, 2016). The resulting features were then standardized and transformed using the arctan
function with n/2 offset to map all values into the range of [0, m], ensuring optimal performance for
quantum rotation gate operations (Tudisco et al., 2025). The dataset was split using an 80/20 strategy,
where 80% of the samples were used for training and the remaining 20% for testing. In this study,
two QML-based models were applied as surrogate models, including a QNN model (Beer et al., 2020)
and a HQER model.

The QNN represents a hybrid quantum-classical approach that mimics the structure of classical neural
networks using quantum circuits (Liang et al., 2021; Arthur & Date, 2022). This model utilizes the
principles of quantum superposition and entanglement to process input data in ways that may offer
advantages over classical neural networks for certain types of problems. The QNN architecture
consists of a data encoding layer that maps input features to quantum states using rotation gates (RY),
followed by multiple variational quantum layers. Each variational layer contains parameterized
rotation gates (RX, RY, RZ) applied to each qubit, representing the quantum equivalent of weight
transformations in classical neurons, followed by CNOT entanglement gates that create quantum
correlations between qubits, analogous to connections between neurons in classical networks. The
QNN uses 4 qubits (or fewer if the input has fewer features) and 4 quantum layers, resulting in 48
quantum parameters (3 rotations per qubit per layer). The classical linear layer adds 5 additional
parameters (4 weights + 1 bias). The choice of 4 qubits was guided by consideration of classical
simulation tractability and computational efficiency for the iterative training process required for
surrogate model development, and also by empirical validation through preliminary experiments
showing that 4 qubits combined with PCA dimensionality reduction and proper feature encoding can
achieve acceptable prediction performance for the CPG optimization task. The model is trained using
a gradient-free optimization approach over 500 epochs, with random perturbations (Gaussian noise
with standard deviation 0.1) added to parameters. Quantum weights are initialized from a Gaussian
distribution (mean=0, std=0.1), while classical weights are uniformly initialized between -1 and 1.
The quantum circuit is implemented using PennyLane with the default.qubit simulator, and target
values are normalized during training and denormalized for evaluation.

The HQER model adapts the Quantum Approximate Optimization Algorithm (QAOA) framework
(Farhi et al., 2014) for continuous regression tasks by treating feature extraction as an optimization
problem. This model uses a parameterized quantum circuit to extract quantum features from input
data, which are then combined with classical features in an ensemble of classical regression models



to make predictions. The HQER architecture begins by initializing qubits in superposition using
Hadamard gates, followed by multiple QAOA layers with alternating problem Hamiltonians (cost
layers) that encode input data and mixer Hamiltonians (mixing layers) that enhance exploration
(Bengtsson et al., 2020; Majumder et al., 2024). The quantum circuit extracts features through Pauli-
Z measurements on each qubit, which are then concatenated with the original (scaled) classical
features. These combined features are fed into an ensemble of classical regression models (Ridge,
ElasticNet, Random Forest, and Gradient Boosting), with final predictions obtained through a
weighted average of the ensemble outputs. The HQER model uses 4 qubits (or fewer if the input has
fewer features) and 3 QAOA layers, with 3 alpha parameters (range [0, 2xn]) for the problem
Hamiltonian and 3 beta parameters (range [0, m]) for the mixer Hamiltonian. The quantum circuit
parameters are optimized over 500 iterations using a gradient-free approach with Gaussian noise
(std=0.2). The ensemble consists of Ridge regression (alpha=0.5, weight=0.3), ElasticNet (alpha=0.1,
11_ratio=0.5, weight=0.25), Random Forest (n_estimators=200, max_depth=8, weight=0.25), and
Gradient Boosting (n_estimators=200, learning rate=0.1, max_depth=5, weight=0.2). Original
features are standardized using StandardScaler before combining with quantum features, and the
quantum circuit is implemented using PennyLane with the default qubit simulator.

The adoption of quantum feature encoding in this study is motivated by several theoretical advantages
that are particularly relevant for capturing the complex, nonlinear physics governing CPG systems.
First, quantum feature encoding through rotation gates and entanglement operations enables the
creation of nonlinear feature transformations in quantum state space, where quantum superposition
and parameterized unitary operations can generate complex feature representations that complement
classical methods. While 4-qubit circuits operate at a modest scale that does not demonstrate
exponential quantum advantage, the quantum operations can still create nonlinear feature
transformations and capture higher-order feature interactions that may be valuable for capturing the
complex physics of CPG systems. Classical polynomial feature expansion could theoretically achieve
similar interaction terms, but the number of features grows combinatorially, leading to the curse of
dimensionality, whereas quantum entanglement implicitly encodes these interactions in the quantum
state structure without explicit feature enumeration. Third, the variational nature of quantum circuits,
where parameterized gates are optimized during training, provides a form of learnable nonlinear basis
function that adapts to the specific structure of CPG simulation data, analogous to kernel methods but
with kernels defined by quantum operations rather than fixed classical functions. This adaptive
quantum kernel approach may be particularly effective for problems where the optimal feature
representation is unknown a priori and differs substantially from standard polynomial or radial basis
function kernels commonly employed in classical ML. Fourth, the hybrid quantum-classical
architecture (especially in HQER) combines quantum feature extraction with classical ensemble
methods, leveraging the complementary strengths of both paradigms: quantum circuits explore
nonlinear feature spaces that may be difficult to access classically, while classical regressors provide
stable, interpretable predictions and uncertainty quantification. This synergy is theoretically expected
to outperform either purely quantum or purely classical approaches, particularly for scientific
computing problems where both complex feature interactions and reliable predictions are essential.
To benchmark the performance of the developed quantum-based models, two widely-used classical
ML algorithms were implemented as baseline comparisons: (1) Generalized Boosted Regression
(GBR), a powerful regression approach that iteratively builds an ensemble of weak learners to capture
complex nonlinear patterns, and (2) Gradient Boosted Trees (GBT), also known as gradient boosting
machine which is a gradient-based ensemble method recognized as a state-of-the-art algorithm with
strong predictive performance across diverse regression tasks. The GBT model was implemented
using the h20 package in R (Fryda et al., 2024), while the GBR model was implemented using the
gbm package in R (Ridgeway, et al., 2024). Both GBR and GBT models were trained using 500 trees,
with an interaction depth of 3 for the GBR model and a maximum depth of 5 for the GBT model.



Supplementary D

D 1. Model accuracy assessment

The performance of the developed QML models was assessed using six complementary statistical
metrics that capture different aspects of prediction accuracy and model reliability. These include
mean absolute error (MAE) and root mean square error (RMSE), relative error expressed as the
RMSE-standard deviation ratio (RSR), and Refined Index of Agreement (dr) (Willmott et al., 2012)
and the coefficient of determination (R?). The mathematical formulations of these metrics are
provided in Egs (3) to (7):

St V- ®)
MAE = n @)
Z;;l(Yi - Y,)?
RMSE = n
B RMSE 5)
RSR = Dur n
0 o ) B (6)
(1= Z=lel Sy <e Y7
dr = { ¢ i |Yi - Y| i=1 i=1
— n n
Y Y -] L > %
lf— A D 10— > e ) [¥ -7
i=1|Yl - Yi| i=1 i=1
RZ=1- 2oy (Y = )2 7

> -y

where n is the number of data points in the dataset, Y; and Y, indicate the observed and predicted

values for the i-th data point, respectively. Y represents the mean of observed values, SD,, is the
standard deviation of observed values, and c is a constant value (set as 2).
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Fig. E 1. Standardized feature importance weights (0-1 scale) for iCO; (a), eCO; (b), sCO; (c), and extQh (d) across
three feature selection methods.

Supplementary F

F 1. Comparative performance of developed quantum-based and classical baseline models
The comparative analysis between the best-performing quantum-based models and classical baseline
models (GBR and GBT) across all six target variables reveals consistent superiority of the quantum-
inspired architectures, while also demonstrating that classical models achieve competitive
performance with appropriate feature selection (Fig. F 1). The comparison evaluates the test set
performance using three metrics (MAE, R? and RMSE) to provide comprehensive assessment of
prediction accuracy, with quantum models represented by either HQER or QNN architectures
depending on which achieved the best test performance for each target variable. Comparative analysis
of quantum-based versus classical approaches revealed that quantum-enhanced models consistently
achieve superior or competitive performance using substantially fewer input features than classical
models require, demonstrating quantum advantage in data efficiency and feature economy.



For tLife prediction, BO-QNNI1 served as the quantum benchmark, achieving test MAE of 1.953
years, R? 0 0.946, and RMSE of 2.422 years, demonstrating the strongest overall performance among
all tested models. Among classical baselines, PC-GBR1 achieved the best performance with MAE of
1.535 years, R? 0 0.947, and RMSE of 2.403 years. This near-parity suggests that for tLife prediction,
the comprehensive 15-feature set selected by Pearson correlation combined with gradient boosting
regression effectively captures the temperature-dominated dynamics governing operational lifetime.
However, BO-GBR1 and CH-GBR1 showed substantially degraded performance (R? of 0.775 and
0.773, respectively) with RMSE exceeding 4.9 years, indicating that compact feature sets (2-3
features) are insufficient for classical models to accurately predict system lifetime, whereas the
quantum model achieved strong performance with only 2 features (CPT _mean, CPT median). The
1CO: prediction comparison demonstrates clear quantum advantage, with BO-HQER?2 achieving test
MAE of 0.824 Mt, R? of 0.953, and RMSE of 1.153 Mt, substantially outperforming all classical
baselines (in terms of R? and RMSE). PC-GBR2 emerged as the strongest classical model with MAE
of 0.899 Mt, R? of 0.945, and RMSE of 1.252 Mt. The Boruta and Chi-squared feature selections
(using only 2-3 features) resulted in significantly degraded classical model performance, with BO-
GBR2 and CH-GBR2 achieving R? of only 0.943 and 0.901, respectively, accompanied by
substantially higher errors (MAE of 0.822-1.365 Mt, RMSE of 1.267-1.679 Mt). This pattern
indicates that minimal feature sets fail to provide adequate information for classical tree-based
methods to accurately predict CO: injection dynamics. The GBT models showed consistent but
inferior performance compared to GBR counterparts across all feature selection methods (R? ranging
from 0.892-0.942 versus 0.901-0.945 for GBR).

For eCO: prediction, BO-HQER3 achieved exceptional test performance with MAE of 0.501 Mt, R?
0f0.951, and RMSE of 0.73 Mt, establishing a strong benchmark against which classical models were
compared. PC-GBR3 delivered the best classical performance with MAE of 0.549 Mt, R? of 0.953,
and RMSE of 0.716 Mt. However, this classical performance required the comprehensive 8-feature
Pearson correlation set, whereas the quantum model achieved nearly equivalent accuracy using only
3 features (Az deg, Lw_m, CPT mean) selected by Boruta. The sCO: prediction results reveal the
strongest quantum advantage among all CO.-related variables, with BO-HQER4 achieving test MAE
of 0.422 Mt, R? of 0.941, and RMSE of 0.496 Mt, substantially outperforming all classical models.
CH-GBR4 emerged as the best classical baseline with MAE of 0.525 Mt, R? of 0.89, and RMSE of
0.675 Mt. For extEn prediction, BO-HQERS established the performance benchmark with test MAE
of 0.212 PJ, R? of 0.95, and RMSE of 0.307 PJ, demonstrating exceptional accuracy for this critical
performance metric. PC-GBRS achieved the strongest classical performance with MAE of 0.223 PJ,
R? of 0.954, and RMSE of 0.295 PJ. However, this classical model required the comprehensive 8-
feature Pearson correlation set, whereas the quantum model achieved near-equivalent performance
using only 3 Boruta-selected features (Az deg, Lw m, CPT mean). The extQh prediction
comparison reveals the most pronounced quantum advantage observed across all target variables,
with BO-HQERG6 achieving test MAE of 0.419 MW, R? of 0.95, and RMSE of 0.993 MW,
outperforming all classical baselines. PC-GBR6 emerged as the strongest classical model with MAE
of 0.797 MW, R? of 0.909, and RMSE of 1.337 MW. The BO-GBR6 and CH-GBR6 models with
compact feature sets (9 features selected by Boruta and Chi-squared) showed severely degraded
performance with identical R? values of 0.893, MAE of 0.71 MW, and RMSE of 1.447 MW,
indicating that even relatively feature-rich selections (9 features) prove insufficient for classical
methods to accurately predict instantaneous heat flux dynamics.
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Fig. F 1. Comparative performance analysis of quantum-based models versus classical baseline models (GBR and
GBT) across tLife (a), iCO; (b), eCO: (c), sCO» (d), extEn (e), and extQh (f) variables for the test dataset. Each panel
displays three performance metrics for the best-performing quantum model (the model achieving the highest
performance during test phase) and classical baselines across three applied feature selection methods.

Supplementary G

Fig. G 1 shows the Taylor diagrams of developed storage QML models across all six target variables
for the entire data set (train and test together). The remarkable clustering of models near the observed
reference point demonstrates exceptional accuracy, with all models achieving high correlations,
indicating that developed models successfully capture both the magnitude and variability of six target
variables. The tLife predictions show slightly more dispersion but maintain high performance, with
HQER models consistently positioned closer to the reference point than their QNN. The most notable
pattern emerges in the extQh diagram, where models display greater spread with QNN variants
showing larger RMSE (positioned farther from the reference), while HQER models maintain tighter
clustering near the observed point. Across all diagrams, the Boruta-based models (red and cyan
markers) consistently achieve optimal or near-optimal positioning. The overall tight clustering and
high correlations across diverse target variables demonstrate that the developed QML models’
capabilities to capture the complex physics of CPG systems.
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Fig. G 1. Taylor diagrams comparing the performance of six developed QML models for tLife (a), iCO; (b), eCO: (c),
sCO; (d), extEn (e), and extQh (f) variables using the entire dataset (all 100 samples, including both training and testing
data).

Supplementary H

H 1. Multi-objective optimization

Table H 1 and Fig. H 1 present the optimization results based on the best developed surrogate models
for each variable. Results reveal distinct patterns in optimal decision variables and objective trade-
offs across six scenarios of increasing complexity, with the solution selection strategy prioritizing
maximum extEn from the Pareto fronts. Single-objective optimization using MFO (Scenario 1)
achieved the baseline maximum extEn of 5.787 PJ with dP_MPa of 5.305 (MPa) and well spacing
(Lw_m) of 991.293 (m). The bi-objective optimization for energy metrics (Scenario 2) required
significantly higher overpressure at the injection well (12.158 MPa) to balance extEn (5.517 PJ) with
heat extraction rate (9.249 MW). When system lifetime was added as the third objective (Scenario 3),
the optimizer converged to lower pressure (5.094 MPa) and slightly reduced well spacing (969.316
m), achieving superior extEn (5.862 PJ) while maintaining acceptable heat flux (4.126 MW) and
extending operational lifetime to 39.502 years. The storage-focused scenarios (4-6) consistently
converged to nearly identical solutions (dP = 5.1 to 5.3 MPa, Lw = 991 to 969 m), suggesting a robust
optimal configuration for maximizing both energy extraction and CO> sequestration, with stored CO»
around 8 Mt and injected CO» approximately 22.4 Mt for scenarios involving injection minimization.
The convergence of multiple multi-objective scenarios to similar optimal solutions (particularly
Scenarios 3, 5, and 6) validates the robustness of the identified configuration and suggests that lower
injection pressures combined with well spacing around 970 m represents a CPG system design that
naturally balances energy extraction, storage effectiveness, and operational longevity.

Table. H 1. Optimal solutions and corresponding objective values for six optimization scenarios via MFO (for single-
objective optimization) and NSGA-II (for multi-objective optimization). * Marks indicate objectives not included in the
respective optimization scenario.

Number Solution  Solution Best Best Best Best Best Best Best

Scenario of for for objective  objective objective objective objective objective objective

Objectives dP MPa Lw m (extEn)  (extQh) (tLife) (sCOy) (1COy) (extQh) (tLife)
Scenario 1 % % % % % %
(MFO) 1 5.305 991.293 5.787
Scenario 2 % % " " %
(NSGA-II) 2 12.158  994.889 5.517 9.249
Scenario 3 " " " "
(NSGA-IT) 3 5.094 969.316 5.862 4.126 39.502
Scenario 4 " " " " "
(NSGA-II) 2 5.305 991.291 5.786 7.816
Scenario 5 % " % %
(NSGA-IT) 3 5.094 969.319 5.863 8.044 22.444
Scenario 6 5 5094 969316  5.862 * * 8.041 22437 4125  39.507

(NSGA-IT)
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Fig. H 1. Spider diagrams comparing recommended solutions for dp_ MPa (a), Lw_m (b), and extEn (c) via various
scenarios showing trade-offs between different CPG performance metrics.

The convergence of Scenario 3 to the 5.094 MPa - 969.316 m configuration and its recurrence in
storage-focused scenarios (5 and 6) with nearly identical parameter values warrants detailed
examination to understand why this solution occupies a dominant position on the Pareto frontier. This
configuration achieves superior multi-objective performance by balancing three competing
mechanisms governing CPG system behavior: thermal sweep efficiency, CO: plume containment,
and pressure-induced fracturing risk. The moderate injection overpressure of ~5.1 MPa provides
sufficient driving force to maintain continuous CO: circulation and heat extraction (extEn = 5.862 PJ,
extQh =4.126 MW) while remaining well below the estimated fracture pressure threshold (~15 MPa),
thereby minimizing induced seismicity risk and formation damage that could compromise long-term
system integrity. The well spacing of ~970 m represents an optimal trade-off between thermal
breakthrough time and plume connectivity: closer spacing (<600 m) would cause premature thermal
breakthrough as cold injected CO: reaches the production well before sufficient heat extraction,
reducing both extEn and tLife, while wider spacing (>1200 m) would require excessive injection
pressures to establish hydraulic communication, increasing iCO2 without proportional gains in sCO2
or extEn.

The optimization results reveal fundamental physical mechanisms that govern trade-offs among
competing CPG performance objectives, which can be understood through the coupled
thermodynamics and fluid mechanics of CO:-brine-heat transport in porous media. The stark contrast
between Scenario 2's high-pressure solution (12.158 MPa, 994.889 m) and Scenario 3's moderate-
pressure configuration (5.094 MPa, 969.316 m) reflects competing physical processes: high injection
overpressures increase CO: mass flux through enhanced pressure gradients, accelerating both
injection and production rates which elevate instantaneous heat extraction (extQh = 9.249 MW), but
simultaneously cause rapid thermal sweep that depletes the reservoir's thermal energy inventory more
quickly, reducing system lifetime and cumulative energy recovery. This aggressive extraction regime
creates steep thermal fronts that propagate rapidly from the injection well toward the production well,
with convective heat transport dominating over conductive spreading, leading to premature thermal
breakthrough when cold injected CO: reaches the production well before sufficient heat exchange
with the formation. Conversely, moderate injection pressures in Scenario 3 allow more uniform
thermal sweep with greater conductive heat diffusion from surrounding rock into the CO: plume,
maximizing the effective thermal contact area and enabling sustained heat extraction over extended
operational periods (tLife = 39.502 years). The well spacing optimization reflects a balance between
two opposing physical constraints: the percolation threshold for hydraulic connectivity, which
requires sufficient pressure gradients to establish flow pathways through heterogeneous permeability
fields (requiring closer spacing or higher pressures), and the thermal interference distance, beyond
which separate circulation cells can operate independently without premature thermal breakthrough
(favoring wider spacing). The convergence to ~970 m spacing across multiple scenarios suggests this
distance optimally balances these competing requirements for the North Oman reservoir properties
(mean permeability 5.3 mD, porosity 0.25, thermal conductivity typical of sandstone formations).
The trade-off between 1CO: and sCO: in Scenarios 5-6 reflects the fundamental distinction between
mobile and immobile CO: fractions: high injection pressures mobilize larger CO2 volumes but also
enhance production efficiency through increased pressure gradient between injection and production



well, reducing the fraction of injected CO: that remains trapped through residual saturation, capillary
trapping, or dissolution in formation brine. The optimal solutions consistently minimize i1CO: while
maximizing sCO-, indicating that effective storage occurs primarily through mechanisms favored by
moderate pressures and long residence times, capillary trapping in pore throats, gravity-driven
structural trapping beneath low-permeability layers, and diffusive dissolution into brine, rather than
through brute-force injection of massive CO2 volumes. The robust recurrence of the 5.1 MPa - 970 m
configuration across storage-focused scenarios (4-6) demonstrates that this operational regime
naturally aligns multiple physical objectives: it maintains subcritical stress states that avoid
geomechanical risks (injection pressure remains well below minimum principal stress plus tensile
strength), optimizes sweep efficiency through balanced advective-diffusive transport, and maximizes
residence time for enhanced dissolution trapping.

Supplementary I

I 1. Limitations and future work

I 1.1. Computational implementation and quantum hardware constraints

In this study all quantum computations were performed using classical simulators (PennyLane's
default.qubit simulator) and while the simulated quantum circuits successfully demonstrate the
conceptual framework and achieve exceptional prediction accuracy, the practical feasibility of
implementing these QML models on current near-term quantum devices remains uncertain.
Contemporary quantum hardware faces some challenges including limited qubit coherence times,
high gate error rates, restricted circuit depth due to decoherence, and scalability constraints that
severely limit the number of qubits available for practical applications. The quantum circuits
developed in this study, while modest in qubit requirements (4 qubits), would still face
implementation challenges on real quantum hardware where noise accumulation over multiple
quantum layers could compromise prediction accuracy.

I 1.2. Technical implementation details

Several technical details require more comprehensive elaboration to enable reproducibility and deeper
understanding of the quantum-enhanced framework. The quantum scaling feature encoding process,
while described as transforming standardized features through arctan functions with n/2 offset to map
values into the [0, m] range for quantum rotation gates, lacks detailed explanation of several
implementation aspects. Specifically, the current study does not fully address how this particular
encoding scheme was selected over alternative quantum embedding strategies (such as amplitude
encoding, basis encoding, or more sophisticated variational encoding circuits). Future work should
include detailed sensitivity analyses examining how variations in quantum circuit architecture
(number of layers, types of entangling gates, measurement strategies) affect the quality and
interpretability of extracted quantum features, and should provide quantitative metrics for assessing
the added value of quantum feature extraction beyond what classical nonlinear transformations (such
as kernel methods, neural network embeddings, or polynomial features) could achieve with
comparable computational resources.

I 1.3. Physical interpretability and conservation law consistency

Another limitation of the developed QML surrogate models is the reduced physical interpretability
compared to the underlying NUFT simulations, which are grounded in rigorous conservation laws
for mass, energy, and momentum. While the quantum and hybrid quantum-classical models achieve
exceptional prediction accuracy across all six target variables (R? > 0.95 for most cases), the black-
box nature of these ML approaches raises important questions about whether the models truly capture
the fundamental physics governing CPG systems or merely perform sophisticated pattern matching



that could fail under conditions outside the training distribution. The NUFT simulator explicitly
enforces conservation of CO: and brine mass through coupled nonlinear partial differential equations,
ensures energy conservation through enthalpy balance equations accounting for advective and
conductive heat transport, and maintains thermodynamic consistency by computing CO: phase
behavior (gaseous, liquid, supercritical transitions) according to established equations of state. In
contrast, the QML surrogate models learn statistical relationships between input features and output
variables without explicit constraints enforcing these physical principles, potentially allowing
predictions that violate fundamental conservation laws under certain parameter combinations. For
instance, the models could theoretically predict eCO., 1CO2, or thermal energy extraction rates
inconsistent with the available enthalpy of the produced fluid, although such violations were not
observed in the validation datasets. Future work should incorporate physics-informed constraints into
the QML training process, either through penalization terms in the loss function that discourage
conservation law violations, through post-processing corrections that project predictions onto
physically feasible manifolds, or through hybrid architectures that combine data-driven quantum
feature extraction with physically-constrained classical output layers. Additionally, systematic testing
of the surrogate models under extreme parameter combinations not well-represented in the training
data would help assess whether the models maintain physical plausibility or produce spurious
predictions that could mislead design optimization efforts.

I 1.4. Feature selection methodology and sensitivity analysis

The comparative analysis of three feature selection methods (Boruta, Chi-squared, Pearson
correlation) revealed substantial differences in selected feature sets, yet the practical implications of
these differences for model interpretability, robustness, and generalization require deeper
investigation. Boruta consistently identified compact feature sets emphasizing the most statistically
significant predictors (e.g., CPT mean, CPT median for tLife; Lw _m, Az deg for CO:-related
outputs), achieving strong performance particularly when combined with HQER architectures,
suggesting that minimal feature sets can capture the essential physics when quantum-enhanced
feature processing is employed. Chi-squared feature selection produced similarly parsimonious
selections, often converging to identical feature subsets as Boruta for several target variables,
indicating robust agreement on the most discriminative predictors. In contrast, Pearson correlation
systematically selected larger feature sets (up to 15 features for tLife and extQh), incorporating
broader coverage of injection, production, temperature, and heat flux statistics. While the expanded
feature sets achieved strong performance in HQER models (test R > 0.94 for most variables), they
showed mixed results in QNN architectures, with PC-QNN variants sometimes suffering larger train-
test degradation than their Boruta or Chi-squared counterparts. This suggests that compact feature
sets may provide better regularization for simpler quantum architectures, while ensemble methods
can more effectively leverage diverse feature information without overfitting.

A critical limitation is that the feature selection threshold of 0.75 for standardized importance weights
was chosen based on practical considerations rather than through systematic sensitivity analysis. The
current study does not provide empirical justification for this specific threshold value, nor does it
examine how variations in the threshold would affect model performance, feature set composition,
and computational efficiency. The threshold of 0.75 represents a relatively stringent criterion,
potentially excluding features with moderate but still meaningful predictive value (weights between
0.5-0.75), while a more lenient threshold might introduce noise from weakly relevant features. Future
work should conduct comprehensive sensitivity analyses systematically varying the feature selection
threshold across a range (e.g., 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9) and evaluating the resulting models
across multiple metrics, generalization performance (train-test gap), computational efficiency
(number of features, training time), and interpretability. Such analyses would help establish data-
driven guidelines for threshold selection tailored to different target variables and model architectures.
Additionally, more sophisticated feature selection approaches could be explored, including recursive
feature elimination that iteratively removes the least important features while monitoring model
performance, ensemble feature selection that combines rankings from multiple methods through



voting or averaging, and adaptive threshold selection that optimizes the threshold value through cross-
validation to maximize generalization performance for each specific prediction task.

I 1.5. Practical implications for decision-making and multi-objective trade-offs

While the multi-objective optimization framework successfully identified optimal CPG system
configurations across six scenarios of increasing complexity, the practical implications of the inherent
trade-offs between competing objectives require more explicit discussion to effectively guide
engineering decision-making and policy development. The optimization results reveal several
fundamental tensions in CPG system design that operators and stakeholders must navigate based on
their specific priorities and constraints. The most prominent trade-off emerges between maximizing
extQh versus tLife, as evidenced by the stark contrast between Scenario 2 (requiring 12.158 MPa
injection pressure to achieve 9.249 MW heat flux but likely reducing lifetime due to aggressive
thermal depletion) and Scenario 3 (using only 5.094 MPa to balance moderate heat flux of 4.126 MW
with extended 39.5-year lifetime). For project developers prioritizing rapid return on investment and
high power output, the high-pressure, high-flux configuration may be economically attractive despite
shorter operational periods, particularly in contexts where high electricity prices or carbon credits
justify aggressive extraction strategies. Conversely, operators seeking long-term resource
sustainability and lower operational risk may prefer conservative injection pressures that preserve
thermal resources and extend project life, accepting lower instantaneous power output in exchange
for decades-long stable operation. The convergence of storage-focused scenarios (4-6) to similar
optimal solutions (dP = 5.1-5.3 MPa, Lw = 970 m, sCO: = 8 Mt, extEn = 5.8 PJ) reveals a particularly
valuable insight: when CO- sequestration objectives are incorporated into the optimization, the
framework naturally identifies operating conditions that simultaneously maximize long-term energy
extraction and carbon storage while minimizing injection requirements. This suggests that CPG
systems designed with explicit carbon storage goals may inherently operate more efficiently and
sustainably than those optimized solely for energy production. Decision-makers should carefully
consider these trade-offs in the context of local regulatory requirements (e.g., carbon pricing
mechanisms, renewable energy mandates), project economics (capital costs, operational expenses,
revenue streams), reservoir characteristics (available storage capacity, thermal recovery potential),
and stakeholder priorities (climate mitigation goals, energy security objectives, economic
development targets) when selecting among the Pareto-optimal solutions identified by the multi-
objective optimization framework.

I 1.6. Model validation strategy and generalization assessment

The current validation strategy, while demonstrating strong performance on the test dataset, exhibits
several limitations that warrant acknowledgment and motivate future research directions. First, the
single 80/20 train-test split, although commonly employed in ML studies, provides only a limited
assessment of model generalization and may be sensitive to the particular random partitioning of the
data. The absence of k-fold cross-validation represents a gap, as repeated random sampling and
averaging across multiple train-test splits would provide more robust estimates of model performance
variability and reduce the risk that reported metrics reflect fortuitous data partitioning rather than
genuine predictive capability. Future studies should implement k-fold cross-validation (e.g., 5-fold
or 10-fold) where the NUFT simulations are systematically divided into k subsets, with each subset
serving once as a validation set while the remaining subsets are used for training, thereby enabling
calculation of mean performance metrics and confidence intervals that more accurately characterize
model reliability. Second, the study lacks online or streaming validation tests where the surrogate
models would be evaluated on sequentially arriving new data points, which is particularly relevant
for real-time reservoir management applications where CPG operators might need to continuously
update predictions as new monitoring data becomes available during system operation. The absence
of temporal validation is especially concerning given that CPG system behavior evolves over multi-
decadal timescales, and surrogate models trained on early-time simulation data may not accurately



predict late-time performance as thermal depletion, CO: plume migration, and geomechanical
changes alter system dynamics.

Third, all validation was conducted on synthetic data from a single geological setting (in North Oman)
with specific reservoir properties (mean porosity 0.25, mean permeability 5.3 mD, 90°C initial
temperature, 180 ppt brine salinity, 5° dip angle). The models' ability to generalize to held-out
geological settings with substantially different reservoir characteristics remains completely untested,
raising serious concerns about the practical applicability of the developed QML framework to real-
world CPG projects in diverse geological contexts. CPG systems may be deployed in sedimentary
basins with vastly different properties including highly fractured carbonate reservoirs with dual-
porosity behavior, deep saline aquifers with heterogeneous permeability structures spanning orders
of magnitude, depleted hydrocarbon fields with residual oil or gas saturation, or volcanic rock
formations with complex thermal regimes. The surrogate models trained on the relatively
homogeneous Oman reservoir simulations may fail catastrophically when applied to these alternative
settings if the underlying physics or parameter sensitivities differ substantially. Prospective validation
requiring collection of NUFT simulation data from multiple diverse geological settings (varying
lithology, structural complexity, thermal gradients, fluid properties, well configurations) and
evaluation of whether surrogate models trained on one setting can accurately predict performance in
others would provide much more convincing evidence of practical utility. Until such cross-site
validation is performed, the generalizability claims of the developed QML framework must be
considered speculative, and practitioners should exercise caution when applying these models to CPG
projects in geological settings that differ significantly from the North Oman training data.

I 1.7. Scalability to large-scale field applications

The case study's limitation to a relatively modest synthetic reservoir model (2000 m x 3000 m x 20
m domain) raises questions about how the QML surrogate modeling framework would scale to larger,
more complex field-scale CPG applications that are more representative of commercial deployment
scenarios. Real-world geothermal projects often involve large spatial domains and such large-scale
models can require millions of computational cells and produce simulation runtimes measured in days
or weeks per realization, making the generation of comprehensive training datasets through Latin
Hypercube Sampling or other systematic parameter space exploration methods extremely
computationally expensive. A key uncertainty is whether the current training dataset size would
remain sufficient for complex field models with higher-dimensional parameter spaces, or whether
substantially larger datasets would be required to adequately sample the expanded design space and
capture the increased nonlinearity introduced by geological complexity. If training data requirements
scale unfavorably with model complexity, the computational savings offered by QML surrogates
could be partially or entirely offset by the increased cost of generating training data, potentially
limiting practical applicability to small-to-medium scale reservoir models.

I 1.8. Positioning relative to classical surrogate modeling approaches

While the developed QML framework demonstrates excellent prediction accuracy and computational
efficiency, establishing the true value of quantum-inspired architectures requires systematic
comparison against classical ML alternatives. To provide initial benchmarking, this study compared
the performance of QML models (QNN and HQER) against two widely-applied classical ML
algorithms (GBR and GBT). Recent advances in classical ML have produced more sophisticated
approaches specifically designed for scientific computing applications, including Physics-Informed
Neural Networks (PINNs) that embed governing partial differential equations directly into the loss
function to enforce conservation laws and improve extrapolation beyond training data, Fourier Neural
Operators (FNOs) that learn solution operators in frequency space and have demonstrated remarkable
accuracy for subsurface flow problems with orders of magnitude computational speedup, deep neural
networks with advanced architectures incorporating convolutional layers for spatial pattern
recognition, recurrent or transformer layers for temporal dynamics, and attention mechanisms for
multi-scale feature extraction. Therefore, future work should implement comprehensive classical



baselines including deep neural networks with comparable parameter counts to the QML models,
PINNS that explicitly enforce mass and energy conservation for CPG systems, and FNO architectures
that may be particularly well-suited to the spatiotemporal nature of reservoir simulation data. Such
comparisons should evaluate not only prediction accuracy but also training efficiency, inference
speed, robustness to parameter variations outside the training distribution, and data efficiency
(performance with limited training samples) to rigorously quantify any quantum advantage and
identify the specific prediction tasks, dataset characteristics, or problem structures where quantum-
enhanced approaches provide meaningful benefits that justify their additional implementation
complexity over mature classical alternatives.
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