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Abstract:

Slow formations, characterized by shear-wave velocities lower than those of the borehole
fluid, present significant challenges for shear-wave velocity estimation using monopole
acoustic logging, primarily due to the absence of critically refracted shear waves. To
address this limitation, a borehole full-waveform inversion framework is proposed in this
paper, which employs low-frequency monopole excitation to exploit the sensitivity of
Stoneley waves to shear velocity. The elastic wave equation is reformulated in cylindrical
coordinates as a recurrent neural network structure within a deep learning framework,
allowing automatic differentiation for efficient gradient computation without adjoint-state
methods. Numerical experiments reveal that while high-frequency monopole data can
accurately recover compressional-wave velocities, they fail to resolve shear-wave velocities
due to weak Stoneley energy in the high-frequency data. In contrast, strong low-frequency
Stoneley waves enable robust and reliable shear-wave inversion. An inversion workflow is
further proposed, in which an initial shear-wave velocity model is derived by applying a
velocity ratio to the inverted compressional-wave model and subsequently refined through
inversion of low-frequency monopole data. The proposed approach yields high-accuracy
shear velocity profiles in the near-wellbore region and remains effective under complex
geological conditions, including small-scale anomalies and ultra-slow formations. These
results highlight the critical role of Stoneley waves in monopole-based inversion and offer
a practical solution for estimating the shear-wave velocities of slow and unconsolidated
formations.

1. Introduction

Shear-wave (S-wave) velocity is a key parameter for

combination with compressional-wave velocity, contributes to
identifying fluid distribution and characterizing reservoir prop-
erties. In slow formations where the S-wave velocity is lower

characterizing the mechanical properties of rocks, such as
the Young’s modulus, Poisson’s ratio, and shear modulus
(Mavko et al., 2020; Berg et al., 2021; Li et al., 2022; Wang
et al., 2023b; Xu, 2024). Thus, it plays a critical role in drilling
optimization, hydraulic fracturing design and borehole stability
analysis (Zhang et al., 2009; Fan et al., 2025). Furthermore,
S-wave velocity is minimally influenced by pore fluids and, in

than the velocity of the borehole fluid, critically refracted shear
waves fail to form, making conventional logging techniques in-
effective for estimating shear velocity (Tang and Cheng, 2004).
To address the challenge of estimating S-wave velocity in
slow formations, dipole acoustic logging was developed by
Kurkjian and Chang (1986), where the propagation velocity
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of flexural waves near the low-frequency cutoff is typically
used as an approximation of the formation’s S-wave velocity.
In cases where dipole measurements are unavailable, Stoneley
waves can also be employed to indirectly infer S-wave velocity
(Stevens and Day, 1986), as they exhibit a certain degree
of sensitivity to the shear properties of the formation. In
recent years, with the advancement of data-driven techniques,
machine learning has been increasingly applied to S-wave
velocity prediction (Wang et al., 2020; Ebrahimi et al., 2022;
Rajabi et al., 2023), further extending the capabilities and
applicability of conventional logging methods.

Several methods have been proposed for S-wave velocity
profiling around boreholes, including joint inversion using
Stoneley and flexural waves (Sinha et al., 2005), the introduc-
tion of constraints to address the nonuniqueness issue (Tang
and Patterson, 2010), and the utilization of second-order flex-
ural modes to enhance sensitivity (Li et al., 2023). However,
first, these approaches commonly assume an exponential radial
decay of shear velocity, which may not reflect the actual
geological conditions (Wang and Zhang, 2018; Li et al., 2024).
Second, most rely on point-based dispersion curve fitting,
limiting axial resolution and reducing the effectiveness of full
wavefield for high-resolution S-wave imaging. Third, borehole
tomography methods (Hornby, 1993; Zeroug et al., 2006; Xu
et al., 2024; Xu and Zou, 2025) fail to utilize refracted wave
information within the formation, making them ineffective for
S-wave velocity estimation in slow formations.

Recently, Borehole Full-Waveform Inversion (BFWI) has
shown great potential for high-resolution velocity imaging by
leveraging the full wavefield information in both time and
space (Chen et al., 2023; Tang et al., 2023; Fang et al., 2024).
Zhang et al. (2025) investigated S-wave inversion in slow
formations using monopole BFWI and showed that, even in the
absence of refracted S-waves, Stoneley waves can effectively
be utilized for imaging shear velocity in layered, metamorphic
and ultra-slow formations. While effective, this approach is
constrained by the use of traditional adjoint-state gradient
computation and the need for manually constructed initial
models, reducing the flexibility and hindering scalability in
practical scenarios.

To address the above limitations, a BFWI framework is
presented in this paper, that integrates Automatic Differentia-
tion (AD) with a Recurrent Neural Network (RNN) represen-
tation of the elastic wave equation in cylindrical coordinates.
This approach fundamentally differs from the adjoint-state
method in that it embeds both forward modeling and gradient
computation within a unified deep learning structure, elimi-
nating the need for explicit adjoint derivation and allowing
for seamless gradient backpropagation through time. As a
result, the inversion process becomes more flexible, easier to
implement, and potentially more efficient in handling complex
geometries and material contrasts. In addition, a practical
strategy is introduced for constructing the initial S-wave model
by scaling a high-resolution compressional-wave (P-wave)
velocity model, derived from high-frequency monopole data,
using a constant P-to-S wave velocity (Vp/Vs) ratio. S-wave
velocity is then recovered through low-frequency monopole
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Fig. 1. Propagation of the particle velocity field formulated as
a RNN, along with the architecture of each RNN cell.

inversion by leveraging the sensitivity of Stoneley waves. Nu-
merical experiments demonstrate the robustness and accuracy
of the proposed method in both typical slow formations and
more complex settings, including ultra-slow formations and
velocity anomaly zones. This study offers an efficient and
broadly applicable solution for S-wave velocity estimation in
slow formations, extending the utility of BFWI in challenging
borehole environments.

2. Theory and method

BFWI is an advanced technique for reconstructing the
elastic parameters (e.g., P-wave and S-wave velocities) of
formations surrounding the borehole by minimizing the misfit
between observed and simulated full waveform data. In full
waveform inversion, the objective function E is typically
defined as the squared L2 norm of the difference between
synthetic and observed data, such as:

L e
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where m = (Vp, Vs) represents the model parameters; w° and
w" are the observed and simulated waveforms, respectively.

To overcome the complexity of traditional adjoint-state gra-
dient derivations, this study adopts an AD-based BFWI frame-
work, AD-BFWI, which embeds the elastic wave equation into
a RNN, treating the subsurface model m as trainable parame-
ters (Wang et al., 2023a). This enables full-waveform inversion
to be implemented within modern deep learning frameworks
using automatic differentiation, avoiding manual derivation of
adjoint equations and improving flexibility (Sun et al., 2020;
Du et al., 2024). Fig. 1 illustrates the implementation of the
elastic wave equation in cylindrical coordinates using a RNN.
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The model decomposes wavefield propagation into a time-
recursive structure, where particle velocities (radial and axial
components) and stress components are updated step-by-step
in a timely manner to simulate dynamic wavefield evolution.
At its core, this approach transforms Partial Differential Equa-
tions (PDEs) into sequential RNN computational units. Spatial
derivatives are approximated using finite-difference schemes,
and wave propagation is achieved through the alternating
update of stress and velocity fields. This design embeds phys-
ical laws directly into the deep learning framework, enabling
forward modeling that is inherently compatible with automatic
differentiation. It combines explicit physical constraints with
end-to-end differentiability, providing a robust foundation for
automatic gradient computation and multiparameter inversion.
The optimization objective is defined as:

arg,, min { £ (WaveRNN(m, 5,x,),w°*(s,x,)) + AR(m) }
2
where WaveRNN represents the forward simulation operator
that computes synthetic waveforms given the model m, the
source function s, and receiver positions X,; w"bs(s, x,) denotes
the observed waveforms corresponding to the same acquisition
configuration; A denotes the regularization weight, and R(m)
is the total variation regularization term (Engl et al., 1996)
used to stabilize the inversion. AD calculates the gradient
via the chain rule by recording intermediate variables during
forward propagation and applying backpropagation from the
output to the input layers. This process yields the gradient of
the objective function with respect to the model parameters as
follows:
my =m;— oVE(my), VE(my)=back(E) (3)
where « is the learning rate, and k denotes the iteration index.
The gradient VE(my) is automatically computed without re-
quiring the manual derivation of adjoint-state equations. The
term back denotes the backward algorithm, a widely used
method in deep learning that efficiently computes gradients
by applying the chain rule to the computational graph con-
structed during forward modeling. Compared to traditional full
waveform inversion, the AD-based approach avoids manual
derivation of the adjoint-state equations and offers greater
flexibility and scalability for multi-parameter inversion.

3. Numerical results
3.1 Radially layered model

The first test model is a classical radially layered formation.
The borehole has a radius of 10 cm and is filled with
water, with a P-wave velocity of 1,500 m/s and a density of
1,000 kg/m>. The surrounding formation is defined as a slow
formation. The P-wave velocities of the inner, middle and outer
layers are 2,000 m/s, 2,300 m/s and 2,500 m/s, respectively,
and the corresponding S-wave velocities are 1,100 m/s, 1,200
m/s and 1,300 m/s. The formation rock density is uniformly
set to 2,000 kg/m>. The sources and receivers are uniformly
arranged along the borehole axis with a spacing of 0.15 m.
For each source excitation, all receivers are triggered simul-
taneously to record the wavefield data. According to typical

monopole logging configurations, the source is modeled as
a Kelly-type monopole source with central frequencies of 10
kHz and 2 kHz. The initial velocity model is constructed by
applying a Gaussian filter with a standard deviation of 15 to
the true velocity model.

Fig. 2 presents the BFWI results of P-wave (Figs. 2(a),
2(c)) and S-wave (Figs. 2(b), 2(d)) velocity models at dif-
ferent iteration steps under monopole excitation with central
frequencies of 10 kHz and 2 kHz. Under the 10 kHz high-
frequency monopole excitation, the P-wave velocity is well
recovered (Fig. 2(a)), accurately delineating the layer inter-
faces and internal structures, especially with high resolution
at the boundaries. However, the S-wave inversion result is
significantly poorer (Fig. 2(b)), with only vague structural
outlines near the interfaces and large deviations from the true
S-wave velocities within the layers. This indicates that at
high frequencies, the monopole source is much more sensitive
to P-waves than to S-waves. This observation aligns with
the theoretical expectations: in slow formations where the
S-wave velocity is lower than the borehole fluid velocity,
critically refracted shear waves cannot be excited, resulting
in a lack of usable S-wave information for inversion. In
contrast, under low-frequency excitation at 2 kHz (Figs. 2(c)
and 2(d)), the inversion of S-wave velocity is significantly
improved. The reconstructed model (Fig. 2(d)) accurately
captures both the layer boundaries and intra-layer variations,
indicating the enhanced sensitivity of low-frequency monopole
wavefields to S-wave information. This improvement is pri-
marily attributed to the strong presence of Stoneley waves at
low frequencies. Stoneley waves are capable of propagating
through slow formations and carry substantial S-wave content,
thereby enhancing the resolution of shear velocity imaging.
Additionally, although some perturbations are observed near
layer interfaces in the P-wave inversion result (Fig. 2(c)), the
overall velocity structure is still well recovered, suggesting
that low-frequency data also retain useful P-wave information.
In summary, high-frequency monopole logging (10 kHz) is
more effective for extracting P-wave velocity information,
whereas low-frequency logging (2 kHz) proves advantageous
for retrieving S-wave velocity, particularly in slow formations
where the S-wave velocity is lower than that of the borehole
fluid. In such cases, low-frequency Stoneley waves play a key
role in enabling successful S-wave inversion. Notably, similar
trends were observed in surface-wave FWI using high-speed
railway seismic data, where S-wave velocity inversion outper-
formed P-wave velocity inversion, which indirectly supports
the validity of the conclusions drawn from borehole acoustic
logging (Wang et al., 2025). The acoustic field characteristics
underlying these observations are illustrated in Fig. 3.

In the time-domain waveforms acquired under 10 kHz
monopole excitation (Fig. 3(a)), the initial arrivals are dom-
inated by high-amplitude signals corresponding to borehole
fluid waves. As the offset increases, the arrivals transition into
refracted P-waves from different formation layers. This behav-
ior forms the basis for P-wave velocity inversion using high-
frequency full waveform inversion. Notably, the amplitude of
Stoneley waves at this frequency is extremely weak, indicating
that their contribution to inversion is negligible. Given that
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Fig. 2. Inversion results for P- and S-wave velocities under monopole excitation. (a) P-wave at 10 kHz; (b) S-wave at 10 kHz;

(c) P-wave at 2 kHz; and (d) S-wave at 2 kHz.

Stoneley waves are sensitive to S-wave properties, this agrees
with the poor S-wave recovery from high-frequency monopole
data (Fig. 2).

In contrast, at 2 kHz, the Stoneley wave exhibits dominant
amplitude, confirming that it is primarily excited at low
frequencies. In addition, the waveform contains identifiable
refracted P-waves, suggesting that low-frequency monopole
excitation can still provide sensitivity to P-wave structures
(see Fig. 2(c)). The normalized absolute difference between
the true and initial models is plotted in Fig. 3(b). At 10
kHz, the largest discrepancies correspond to regions dominated
by P-wave propagation. In contrast, the 2 kHz case exhibits
stronger differences associated with Stoneley waves, while
notable deviations also appear in zones influenced by P-
wave energy. These results confirm that high-frequency data
are more suitable for resolving P-wave velocities, whereas
low-frequency measurements offer improved sensitivity to S-
wave velocities, with some complementary value for P-wave
imaging.

Wavefield snapshots at selected time steps are presented in
Fig. 3(c) for high and low frequencies. Initially, the direct wave
through the borehole fluid arrives first, followed by formation-
reflected and refracted waves. Interface reflections, although
weak, are also observable and represent valuable components
of BFWI, as they help improve imaging resolution. At 2.8 ms,
Stoneley waves are observed to radiate energy continuously
into the formation, generating leaky waves and significantly
attenuating their amplitude at far offsets. Consequently, re-
liable Stoneley wave signals are hardly detectable at large
offsets under high-frequency excitation. On the other hand,
low-frequency (2 kHz) wavefields exhibit longer wavelengths,
reducing interface reflectivity. Thus, even though P-wave re-
fractions are detectable, the dominant energy resides in the
Stoneley wave, which accounts for the reduced accuracy in
P-wave velocity recovery at low frequencies. However, the
strong Stoneley wave presence enhances sensitivity to S-wave
structures. Besides, the longer wavelength enables sufficient
illumination of the entire formation thickness, making low-
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Fig. 3. Comparison of wavefields under 10 kHz and 2 kHz monopole excitation. (a) Time-domain waveforms; (b) Normalized

absolute difference maps; and (c) Wavefield snapshots.

frequency monopole BFWI well-suited for recovering shear
velocity in slow formations.

3.2 S-wave velocity profile inversion workflow

Based on the above observations, an S-wave velocity in-
version workflow is formulated for slow formations. Assuming
the availability of a P-wave velocity model, an initial S-wave
model is generated by scaling the P-wave velocity using a
constant velocity ratio. Low-frequency monopole BFWTI is
then performed to reconstruct the S-wave velocity distribution.
This process is demonstrated in Fig. 4, where Fig. 4(a) illus-
trates the initial S-wave velocity model constructed by scaling
the high-frequency P-wave inversion results using the Vp/Vg
ratio. This approach provides a reasonable approximation of
the S-wave structure, leveraging the typically better-resolved
P-wave field as a foundation for subsequent inversion. The
corresponding relative error in Fig. 4(b) reveals low errors
near the borehole, with larger discrepancies at the outer radial
boundaries. While this initial model may not capture fine-
scale S-wave variations, it serves as a stable starting point
for the low-frequency monopole BFWI process, especially in
slow formations where S-wave information is limited. After
250 iterations, the inverted S-wave model closely matches the
true model (Fig. 4(c)). The final relative error (Fig. 4(d)) is

within 0.5% in most areas, except for slight deviations in the
top and bottom corners due to limited illumination, validating
the effectiveness of the proposed approach.

3.3 Ultraslow SEAM model

To evaluate the robustness of inversion, a special case
is considered in which P- and S-wave structures are decou-
pled due to geological or fluid-related effects. In particular,
ultraslow-velocity formations, common in shallow marine sed-
iments or unconsolidated deposits, exhibit S-wave velocities
as low as one-third that of the borehole fluid (Hornby and
Murphy, 1987). To evaluate the robustness of our inversion
workflow in this scenario, a subvolume near Well 2 was
extracted from the SEAM open data model provided by the
SEG Advanced Modeling Corporation. The targeted region
within the SEAM model is presented (Fig. 5), including P-
wave velocity (Fig. 5(a)), S-wave velocity (Fig. 5(b)), density
(Fig. 5(c)), andthe Vp/Vs ratio (Fig. 5(d)). Notably, the S-
wave velocity in this region is extremely low, reaching values
as low as 700 m/s. Additionally, two distinct velocity anomaly
zones are present, where the variations in P-wave and S-wave
velocities are not correlated. This complexity provides an ideal
scenario to evaluate the performance of the proposed inversion
workflow. The test is designed to validate the robustness of
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Fig. 6. Inversion results for the SEAM-based ultraslow model: (a) Evolution of S-wave velocity over iterations and final error;
(b) Radial profiles at two S-wave anomaly depths; and (c) Wavefield snapshots showing Stoneley-wave effects.

our method under challenging velocity conditions. To adapt
the model for borehole logging applications, geometric scaling
was performed by reducing the depth dimension by a factor of
100 and the radial dimension by a factor of 200. In addition,
grid refinement was applied to ensure numerical accuracy. The
acquisition geometry was kept consistent with that used in
previous tests. The inversion results are shown in Fig. 6.

Fig. 6(a) compares the true and initial S-wave velocity
models. Although the initial model generated from the scaled

P-wave structure captures the general trend, significant dis-
crepancies remain in the two anomalous zones (2.0-3.0 m
and 5.5-6.0 m). After 100 iterations at 2 kHz, the inversion
begins to resolve the near-borehole anomalies (<0.3 m). With
increasing iteration counts, the velocity artifacts are gradually
suppressed. By iteration 500, the recovered model closely
resembles the true S-wave distribution. The relative error
analysis confirms that in the near-borehole region (<0.4 m),
the error remains below 0.5%, though larger deviations persist
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in deeper zones—particularly within the anomalous structures.
Fig. 6(b) shows vertical velocity profiles at 2.60 m and 5.75
m depth. The initial models (green dashed lines) deviate
significantly from the true structure (black dashed lines), while
the inverted results (solid red lines) show excellent agreement
near the borehole wall. The deeper anomaly at 5.75 m is better
recovered due to its higher velocity and corresponding longer
wavelength, which improves radial sensitivity. Despite some
mismatch at larger radii, the overall velocity trend is accurately
captured. Wavefield snapshots at selected time steps are shown
in Fig. 6(c). Compared to the previous case, the Stoneley
wavelength in this model is shorter, resulting in improved
resolution near the borehole and superior inversion accuracy in
the shallow zone. For ultralow-velocity formations, sufficient
recording duration is essential to capture the full evolution of
Stoneley waves and their contribution to S-wave imaging.

4. Conclusion

To address the challenge of S-wave velocity estimation in
slow formations, a borehole full-waveform inversion approach
has been developed by integrating automatic differentiation
with a recurrent neural network representation of the elastic
wave equation in cylindrical coordinates. This framework
eliminates the need for traditional adjoint-state derivations,
offering greater flexibility and scalability for multi-parameter
inversion. This study establishes a fundamental relationship
between monopole source frequency and the sensitivity of
borehole wavefields to S-wave velocity in slow formations.
Low-frequency monopole excitation enhances the generation
and propagation of Stoneley waves, which remain highly
sensitive to shear velocity even when critically refracted S-
waves are absent. Based on this insight, a practical inversion
workflow is introduced: high-frequency monopole data are
first used to reconstruct the P-wave velocity model, which
is then scaled by an empirical velocity ratio to generate the
initial S-wave model. Subsequently, low-frequency inversion
leveraging Stoneley-wave-dominated data is performed to re-
cover the S-wave velocity distribution. Numerical experiments
confirm the effectiveness of this strategy in both conventional
slow formations and more complex geological settings, such
as ultra-slow formations and models containing small-scale
velocity anomalies. The proposed workflow provides a robust
and generalizable solution for S-wave velocity estimation in
environments where conventional methods fail, particularly in
shallow unconsolidated sediments, near-seafloor soft muds,
and borehole stability assessments where S-wave measure-
ments are inherently difficult.

Acknowledgements

This work was supported by the Qingdao Natural Sci-
ence Foundation (No. 24-4-4-zrjj-121-jch), United Fund
of National Natural Science Foundation of China (No.
U2344221), National Key R&D Program of China (Nos.
2022YFC2808302 and 2021YFC2801202) and the Young
Talents Project Start-Up Foundation of Ocean University of
China (No. 202212017). This research uses SEAM Open
Data provided by the SEG Advanced Modeling Corpora-

tion under the Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). The authors gratefully ac-
knowledge SEG for making the data publicly available
( )-

Conflict of interest

The authors declare no competing interest.

Open Access This article is distributed under the terms and conditions of
the Creative Commons Attribution (CC BY-NC-ND) license, which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The author declares that he has no
known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

Berg, E. M., Lin, E. C., Schulte-Pelkum, V., et al. Shal-
low crustal shear velocity and Vp/Vs across South-
ern California: Joint inversion of short-period Rayleigh
wave ellipticity, phase velocity, and teleseismic receiver
functions. Geophysical Research Letters, 2021, 48(15):
€2021GL092626.

Chen, D., Zhang, C., Guan, W., et al. Near-borehole formation
acoustic logging imaging: A full waveform inversion
algorithm in cylindrical coordinates. IEEE Transactions
on Geoscience and Remote Sensing, 2023, 61: 45064 14.

Du, B., Sun, J, Jia, A., et al. Physics-informed robust and
implicit full waveform inversion without prior and low-
frequency information. IEEE Transactions on Geoscience
and Remote Sensing, 2024, 62: 5918712.

Ebrahimi, A., Izadpanahi, A., Ebrahimi, P., et al. Estimation
of shear wave velocity in an Iranian oil reservoir using
machine learning methods. Journal of Petroleum Science
and Engineering, 2022, 209: 109841.

Engl, H. W., Hanke, M., Neubauer, A. Regularization of
Inverse Problems. Dordrecht, The Netherlands, Kluwer
Academic Publishers, 1996.

Fan, Y., Pang, H., Jin, Y., et al. Integration of image recog-
nition and expert system for real-time wellbore stability
analysis. Advances in Geo-Energy Research, 2025, 15(2):
158-171.

Fang, Z., Wang, H., Li, M., et al. A source independent TV-
regularized full waveform inversion method for periph-
eral imaging around a borehole. IEEE Transactions on
Geoscience and Remote Sensing, 2024, 62: 5916909.

Hornby, B. E. Tomographic reconstruction of near-borehole
slowness using refracted borehole sonic arrivals. Geo-
physics, 1993, 58(12): 1726-1738.

Hornby, B. E., Murphy, W. E. V,,/V; in unconsolidated oil
sands: Shear from Stoneley. Geophysics, 1987, 52(4):
502-513.

Kurkjian, A. L., Chang, S.-K. Acoustic multipole sources in
fluid-filled boreholes. Geophysics, 1986, 51(1): 148-163.

Li, J., He, X., Chen, H., et al. Inversion of radial shear velocity
profile for acoustic logging using CNN-LSTM network.
IEEE Transactions on Geoscience and Remote Sensing,
2024, 62: 5907610.

Li, J., Wan, J., Wang, T., et al. Leakage simulation and
acoustic characteristics based on acoustic logging by


http://creativecommons.org/licenses/by/4.0/

90 Xu, S., et al. Advances in Geo-Energy Research, 2025, 17(1): 82-90

ultrasonic detection. Advances in Geo-Energy Research,
2022, 6(3): 181-191.

Li, J. C., He, X., Zhao, A. S., et al. Joint inversion of formation
radial shear-velocity profiles by dipole acoustic logging
while drilling. Geophysics, 2023, 88(4): D295-D305.

Mavko, G., Mukerji, T., Dvorkin, J. The Rock Physics
Handbook. Cambridge, UK, Cambridge University Press,
2020.

Rajabi, M., Hazbeh, O., Davoodi, S., et al. Predicting shear
wave velocity from conventional well logs with deep and
hybrid machine learning algorithms. Journal of Petroleum
Exploration and Production Technology, 2023, 13(1): 19-
42,

Sinha, B., Vissapragada, B., Kisra, S., et al. Optimal well
completions using radial profiling of formation shear
slownesses. Paper SPE 95837 presented at SPE Annual
Technical Conference and Exhibition, Dallas, Texas, 9-12
October, 2005.

Stevens, J. L., Day, S. M. Shear velocity logging in slow
formations using the Stoneley wave. Geophysics, 1986,
51(1): 137-147.

Sun, J., Niu, Z., Innanen, K. A., et al. A theory-guided
deep-learning formulation and optimization of seismic
waveform inversion. Geophysics, 2020, 85(2): R87-R99.

Tang, H., Cheng, A. C. H,, Li, Y. E., et al. Borehole acoustic
full-waveform inversion. Geophysics, 2023, 88(4): D271-
D293.

Tang, X. M., Cheng, C. H. A. Quantitative Borehole Acoustic
Methods. Amsterdam, Netherlands, Elsevier, 2004.
Tang, X. M., Patterson, D. J. Mapping formation radial S-wave
velocity variation by a constrained inversion of borehole
flexural-wave dispersion data. Geophysics, 2010, 75(6):

E183-E190.

Wang, B., Zhang, K. Direct inversion algorithm for shear
velocity profiling in dipole acoustic borehole measure-
ments. IEEE Geoscience and Remote Sensing Letters,
2018, 15(6): 828-832.

Wang, J., Cao, J., Yuan, S. Shear wave velocity prediction
based on adaptive particle swarm optimization optimized
recurrent neural network. Journal of Petroleum Science
and Engineering, 2020, 194: 107466.

Wang, L., Ren, Z., Bao, Z. Full-waveform inversion of
Rayleigh wave from high-speed-train seismic data for
shallow-surface velocity building. Chinese Journal of
Geophysics, 2025, 68(4): 1444-1456.

Wang, S., Jiang, Y., Song, P, et al. Memory optimization
in RNN-based full waveform inversion using boundary
saving wavefield reconstruction. IEEE Transactions on
Geoscience and Remote Sensing, 2023a, 61: 5919212.

Wang, Y., Liu, Y., Zou, Z., et al. Recent advances in theory
and technology of oil and gas geophysics. Advances in
Geo-Energy Research, 2023b, 9(1): 1-4.

Xu, S. Integrated multipole acoustic modeling and processing
in general stressed formations, Part 2: A well case study.
Geoenergy Science and Engineering, 2024, 233: 212484.

Xu, S., Zou, Z. Perforation evaluation using multiscale trav-
eltime tomography: Insights from borehole data. Geo-
physics, 2025, 90(3): A21-A25.

Xu, S., Zou, Z., Li, S. Offset-controlled localized velocity
inversion in the tau-p domain using acoustic traveltimes:
Modeling and application. IEEE Transactions on Geo-
science and Remote Sensing, 2024, 62: 5936110.

Zeroug, S., Valero, H., Bose, S., et al. Monopole radial profil-
ing of compressional slowness. SEG Technical Program
Expanded Abstracts 2006, 2006, 354-358.

Zhang, C., Wang, H., Chen, D., et al. A full waveform
inversion method for inverting S-wave velocity profiles of
slow formations near borehole. Geoenergy Science and
Engineering, 2025, 252: 213861.

Zhang, J., Lang, J., Standifird, W. Stress, porosity, and failure-
dependent compressional and shear velocity ratio and its
application to wellbore stability. Journal of Petroleum
Science and Engineering, 2009, 69(3-4): 193-202.



	Introduction
	Theory and method
	Numerical results
	Radially layered model
	S-wave velocity profile inversion workflow
	Ultraslow SEAM model

	Conclusion

