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Shale gas reservoirs Shale gas resources are widely distributed and abundant in China, which is an important
organic matter field for strategic replacement and development of oil and gas resources. Shale gas
pore structure reservoirs has adsorption gas, free gas. The structure of different scale media, such as

organic pores, are difficult to describe. Therefore, flow behavior cannot be simulated by
. conventional method. In this paper, the micro-scale fluid migration in shale gas reservoirs
apparent porosity was established in a single pore, which coupled surface diffusion, slip flow, and viscous
apparent permeability flow. On this basis, the fractal scale relationship was applied to describe the distribution of
Cited as: pore radius, tortuosity, and surface roughness. Based on the comprehensive characterization
Sheng, G., Su, Y., Zhao, H., Liu, J. A of static structure characteristics of porous media, sugh as pore size distribution, pore

oo T Y P o shapes, tortuosity and surface roughness, and the dynamic pore size influenced by various
stresses, the apparent porosity/permeability model of organic matter considering single-
phase multi-migration mechanism was established. The gas migration in organic porous

multi-migration mechanism

unified apparent porosity/permeability
model of organic porous media: Coupling

complex pore structure and multi- media was analyzed with the apparent porosity/permeability model. The results show that
migration mechanism. Advances in the small pores in organic matter are the main storage space of gas (more than 95% of the
Geo-Energy Research, 2020, 4(2): gas is stored in pores less than 10 nm), and the large pores are gas flow channel. At the
115-125, doi: 10.26804/ager.2020.02.01. same time, the apparent porosity/permeability model combined with conventional Darcy

equation can be used to describe the single-phase gas flow in shale gas reservoirs.

1. Introduction is very small. The pore radius of matrix is between 5-800 nm,
most of which are distributed around 100 nm, and the radius
of pore throat is generally 10-20 nm (Loucks et al., 2009).
The porous media of shale reservoirs has specific strong
heterogeneity, and their pore size distribution, pore geometry,
tortuosity, and surface roughness have a greater impact on
fluid migration. Shale reservoirs have a wide range of pore
size distribution. Loucks et al. (2009) studied Barnett shale
in Mississippi, and found that organic nanopores are usually
between 5 and 750 nm. Wang et al. (2009) found the organic
pore size range of Barnett shale is 5-1000 nm. Liu et al. (2016)
found that organic matter in Qinshui Basin of China has pores
larger than 1000 nm. In fact, research showed that the pore
size distribution of natural porous media, including organic
matter in shale reservoirs, follow statistical fractal scales (Yang
et al., 2014; Cai et al., 2018). To our best knowledge, there

Shale gas resources are widely distributed and rich in
reserves, which will become an important area for China’s
oil and gas resources strategic replacement and development
(Chen et al., 2011; Meng et al., 2019). Shale gas reservoirs
have very different gas storage and pore structure from con-
ventional gas reservoirs (Curtis et al., 2012; Wang et al., 2019).
The shale pore structure is complex and multi-scale. Shale gas
is generally stored as adsorbed phase and free phase (Wang
and Reed, 2009; Wang et al., 2019). Shale gas mainly exists in
the interior and surface of organic matter in adsorbed state, and
it exists in the intergranular pores in adsorbed and free state.
The nano-scale pores existing in shale cause a large internal
surface area, and the adsorbed gas content may exceed 50%
(Lu et al., 1995). The shale matrix is dense and the pore radius
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is few related studies comprehensively considered complex
gas migration mechanism in nanopores and multi-scale radius
distribution (Shi and Durucan, 2004).

Generally, pore geometry includes various possible shapes,
including circular pores, elliptical pores, rectangular pores, slit
pores, and square pores. SEM images from Eagle Ford shale
samples showed that pores are mainly round, angular, and slit-
shaped pores (Afsharpoor and Javadpour, 2016; Song et al.,
2019). In conventional oil and gas reservoirs, using circular
pores approximation to represent actual pore type is reason-
able because the pore surface-to-volume ratio in conventional
reservoirs is small (Zhu et al., 2019). In shale reservoirs,
pores have a large surface-to-volume ratio. Therefore, fluid
flow in shales depends more on pore shape, especially when
slip effect is significant (Wu et al., 2015; Xu et al., 2017; Li
et al., 2018). The tortuous structure of porous media in shale
reservoirs also has a great impact on fluid migration. For shale
reservoirs, the tortuosity of micro-nano pores not only reflects
the geometric characteristics of reservoirs (Mehmani et al.,
2013; Singh and Javadpour, 2013), but also reflects fluid flow
characteristics in porous media (Li et al., 2017), which needs
to be comprehensively studied. In micro-nano porous media,
the surface roughness changes pore radius distribution (cross-
sectional area), which affects free gas flow capacity (Wu et
al., 2016). At the same times, surface roughness also increases
surface area (cross-section perimeter). The surface roughness
also making surface effect more significant (slip effect, surface
diffusion, etc.), which need to be discussed in detail.

Scholars have done a lot of research on pore radius chang-
ing during depressurization of shale reservoirs. Compared with
sandstone, organic matter has a weaker strength and is easily
deformed, which is more affected by stress sensitivity (Dong et
al., 2010). Related experiments showed that as effective stress
increases, the porosity/permeability of porous media decreases
significantly (Mokhtari et al., 2013). Considering that gas
desorption on surface of shale organic matter is similar to that
of coal, scholars have applied desorption shrinkage of coal
to shale reservoirs (An et al., 2017). Saurabh and Harpalani
(2018) proposed a fully coupled model that considers the
effects of stress changes caused by adsorption on reservoir
development. The study found that as pressure decreases,
adsorbed gas is desorbed from micropores, causing rock matrix
to shrink, which in turn enlarge pores.

The transport mechanism in organic media is complex
(slip, adsorption and desorption, Knudsen diffusion, surface
diffusion, etc.), and is affected by temperature, pressure, and
surface properties (Xu et al., 2018; Chai et al., 2019; Du
and Nojabaei, 2019; Wang and Sheng, 2019; Zuo et al.,
2019). When gas flows in nanochannel, different slip boundary
conditions can be described in different ranges of Knudsen
numbers (Karniadakis et al., 2006; Song, 2012), which is
defined as slip flow. Knudsen diffusion refers to the movement
of free gas molecules caused by collision of molecules with
pore surface. Based on related experiments, scholars have
used a linear method to characterize microtubule gas diffusion
under different pressure gradient, and have obtained Knudsen
diffusion coefficients (Roy et al., 2003). Javadpour et al. (2007)
proposed expression of microtubule Knudsen diffusion coef-
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ficients. Surface diffusion means that with pressure change in
production process, the adsorbed gas diffuses due to chemical
potential gradient, causing gas molecules to migrate along the
streamline direction (Krishna and Wesselingh, 1997). It is con-
sidered that gas at the organic pore surface in shale reservoirs
is single-layer adsorption, and the gas surface diffusion rate
is much lower than gas adsorption desorption rate (Wu et al.,
2016).

When considering single-phase gas flow in shale reser-
voirs, scholars described multi-migration mechanism by es-
tablishing apparent permeability model, including Javadpours
model based on pore size (Javadpour, 2009), Civans model
based on Knudsen number (Civan, 2010) and DGM model
based on diffusion coefficient (Freeman et al., 2011). Besides,
the apparent porosity model was also proposed to couple
gas storage with different states (Sheng et al., 2018, 2020).
However, shale gas reservoirs have strong heterogeneity of
porous media, large pore size distribution, diverse pore cross-
sectional shapes, complex tortuosity and surface roughness
distribution. At the same time, pore radius is affected by stress
changes during depressurization. There has no methods to
comprehensively describe multi-migration mechanism, static
structural characteristics, and dynamic pore radius changing
in shale gas reservoirs.

2. Multi-migration mechanism in a single pore

Traditionally, transport mechanism in organic media in-
cluding viscous flow, slip flow, adsorption and desorption,
Knudsen diffusion, surface diffusion, and so on. Previous
studies have shown that when considering a no-slip boundary,
the velocity distribution of Poiseuille flow in a circle pore is
(Mortensen et al., 2005):

r=-"L@1-r*)v 1
V) =gy, (=) Vp M
where v is free gas velocity, m/s; Ry is pore radius for free
gas, m; U, is gas viscosity, Pa-s; Vp is the pressure gradient
in flow direction, Pa/m.

The transport velocity of adsorption layer due to chemical
potential gradient can be expressed as (Sheng, 2019):

ZRT
va =D,C, 7VP 2

where v, is transport velocity of adsorption layer, m/s; D,
is surface-diffusion coefficient, m?%/s; C, is adsorbed gas
concentration, mol/m3; Z is compression factor for real gas,
dimensionless; R is universal gas constant, 8.314 J/(K-mol); T
is formation temperature, K; p is pore pressure, Pa.

The slip phenomenon was first introduced by Brown et
al. (1946) in tube flow based on Maxwell theory, and the
first-order boundary conditions based on Maxwell and aerody-
namics were derived. There is a slip phenomenon in the flow
of free gas near surface of micro- and nano-scale pores, and
the slip phenomenon will make viscous flow easier. The slip
coefficient is (Sheng, 2019):
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2—f 4Kn
f 1—bKn
where F is slippage coefficient, dimensionless; f is tangential
momentum accommodation coefficient (TMAC), dimension-
less; Kn is Knudsen number in pores, dimensionless; b is gas
slip constant, dimensionless (b = 0 represents fisrt-order slip
boundary, b = —1 represents secondary-order slip boundary).
Knudsen diffusion is the movement of free gas molecules
caused by collision of molecules with pore surface. The free

gas flow caused by Knudsen diffusion is (Roy et al., 2003):

F=1+ 3)

| 2R, [8ZRT
ZRT 3 \ M

where N; is gas flux of Knudsen diffusion per unit area,
mol/(m?-s); M is molecular weight, kg/mol.

Without consider influence of adsorption layer, the ratio of
additional gas flow caused by slip flow and Knudsen diffusion

is:
Ny 3w 2_
M—16Qr1) )

where Ny is gas flux of slip flow per unit area, mol/(m?>-s).

It can be seen that the ratio of flow rate caused by collision
of gas molecules with wall from molecular dynamics theory
(slip flow) and the flow rate obtained by collision between
gas molecules and wall from experimental fitting (Knudsen
diffusion) is constant. The value depends on TMAC. In par-
ticular, when f is 0.74, the calculation results are completely
the same. Therefore, it can be considered that slip flow is same
as that simulated by Knudsen diffusion. In actual simulation,
It should be handled with slip boundary.

In conclusion, the multi-migration mechanism in nanopores
of shale gas reservoirs can be expressed as:
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where ¢ is gas flux of cross-sectional area, mol/(m s); ky
is free gas permeability of porous medium, m?; A, is cross-
sectional area, m?; [, is rock length, m; k, is adsorbed gas
permeability of porous medium, m?; np is pore number,
dimensionless; Ay is cross-sectional area for free gas, m?; o
is rarefaction coefficient, dimensionless; [, is pore length, m;
A, 1s cross-sectional area for adsorbed gas, m?2.

3. Complex pore characterization

3.1 Multi-geometry shape coupling

As previously analyzed, the pore shape distribution of
porous media in shale reservoirs is complex, and three analyt-
ical approaches to describe fluid flow in porous medium filled
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with multi-geometry shape pores were proposed, including
equivalent into one classic shape pore (Javadpour, 2009),
corrected by geometry correction factor (Ren et al., 2016),
and superimpose different shape pores (Singh et al., 2014).
Sheng et al. (2020) used specific surface area and aspect
ratio of height to width of noncircular nanopores to couple
multi-geometry shape pores analytically. In their work, all
of the pores were assumed to be classified into two types:
elliptical pores (including circular pores and elliptical pores)
and rectangular pores (including rectangular pores, slit pores,
and square pores), as shown in Fig. 1.

The aspect ratio and specific surface area (SSA) of ellipti-
cal pores and rectangular pores has been defined in the work
(Sheng et al., 2020). The multi-geometry pores were coupling
by superimposing the pores with different range and frequency
of SSA and aspect ratio.

3.2 Pore radius distribution

Studies have shown that the accumulated pore number with
a pore radius greater than or equal to a characteristic length
of a porous medium conforms to the fractal scale relationship
(Majumdar and Bhushan, 1990; Yu and Cheng, 2002):

Roax \*
N(L 2 Rim) — < RH'MX > (7)
int

where Rpax is the maximum pore radius, m; d, is the fractal
dimension of the pore radius, dimensionless; N is the number
of pores; R;; is pore radius with initial pore pressure, m; Rpyax
is largest pore radius with initial pore pressure, m.

Usually, we can obtain the maximum pore radius from
experimental data, InRp,x, and get:

R R
Ej)+¢m(

max
Rmaxt ) (8)
where Rpaxe 1S the maximum pore radius of cores from
experimental data, m.
Based on the above formula, the maximum pore radius

of the porous medium can be obtained. The pore number
distribution of different pore sizes is:

InN (L > Riy;) =dy1In (

dN
n (Rinz) = Wt
n

where n is the number of pores with radius of R;.

Through a comparative study of pore size distribution data
in the literature, as shown in Fig. 2. It can be seen that pore
size distribution can be more accurately described based on
fractal theory. At the same time, it can be seen that the fractal

dimension of pore radius in the related literature are between
2.43-2775.

=d, Rd (dr‘H) 9)

max mt

3.3 Fractal tortuosity

Wheatcraft and Tyler (1988) first proposed the fractal
relationship between flow path and pore length when fluid
passes through random and complex porous media:

1,(g) =g~ (10)
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Fig. 1. Multi-shape pores coupling in shale gas reservoirs (Sheng et al., 2020).
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Fig. 2. The fractal pore size distribution.

where d; is the fractal dimension of tortuosity, dimensionless;
€ is the scale for measurement in flow direction. When the
measurement scale is equal to feature length, the tortuosity is
1. When € approaches 0, the tortuosity approaches infinity.

Yu and Cheng (2002) used pore radius as a measurement
scale for single tubes, and proposed that pore length with dif-
ferent pore sizes can be expressed as a fractal scale relationship
as:

(1)

The tortuosity of a single tube can be obtained as follows:

Ly (Rin) = R}, 14

int
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where 7 is tortuosity, dimensionless.
Yu and Li (2004) proposed a geometric model of flow paths
tortuosity in porous media. The model assumes that in porous
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(b) Wang and Ju (2015)

media, some particles cover each other without restriction, and
some particles do not cover each other. The average tortuosity
of porous media is:

+—1)2+0.25

1 1 \/(ﬂ
Tavezi 1"‘5\/@"' 1_¢ 1— /71_¢

(13)
where 7,,, is average tortuosity, dimensionless; ¢ is porosity,
dimensionless.

The fractal dimension of tortuosity in porous media can be
calculated using the following equation:

In T,

Rmax
ln ( Rave )

where R, is average pore radius, m.

=1+ (14)
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3.4 Pore surface roughness

The surface roughness change pore radius (cross-sectional
area), which affects free gas flow capacity. Besides, surface
roughness also increases surface area (cross-section perime-
ter), which makes surface effect more significant (slip flow,
surface diffusion). Coppens and Dammers (2006) proposed the
expression of actual area accessible to diffusion molecules:

A, o ( n )M
Rim‘
2.

where Aj; is actual area accessible by diffusion molecules, m~;
d, represents fractal dimension of surface roughness. When d;
equals 2, it means a completely smooth plane. When d; equals
3, it means that the surface completely fills the entire space.
dy, is diameter of gas molecules, m.

It can be seen that when the difference between gas
molecule and pore radius is small, the surface area is also
small. That is, the surface roughness is not only the property
of porous medium, but also the property of flowing molecules.

Taking into account the effect of surface roughness, the
diffusion path of gas molecules on pore surface increases.

(15)

min
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It reduces the effect of surface diffusion on the flow, which
can be considered from perspective of tortuosity coefficient
modification. We define the ratio of actual perimeter of pore
section (the actual perimeter accessible to gas molecules) to
equivalent perimeter (the perimeter calculated based on pore
radius) as surface roughness tortuous, which is:

r:li:ﬁ: dm e
ol Ap Rint

where Aj, is cross-sectional area calculated based on pore
radius and pore cross-sectional shape, m?; 7 is the roughness
tortuosity of surface, dimensionless.

(16)

4. Unified apparent porosity/permeability model
4.1 Apparent porosity

The pore radius changing that comprehensively considers
the effects of stress sensitivity, adsorption layer thinning, and
desorption shrinkage can be obtained (Sheng et al., 2019).
Based on this, the dynamic porosity of porous medium can be
calculated as:

N
f]fmaxl ( mt) n, (Rint) 421 Gi (ﬂEiRcle +4RiRL2]C)dRim
=

¢dc =

Rma l
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where @, is dynamic porosity of porous medium, dimension-
less; E; is the ratio of elliptical pore number in each level
to the total pore number, dimensionless; R; is the ratio of
rectangular pore number in each level to the total pore number,
dimensionless; Ry, is dynamic pore radius, m; ¢; is ratio of
half-length of major axis to minor axis, dimensionless; Ry, 1S

N
1—Qin in_
(Riw) 1y (Ri) X {150 [1— enpr2elbnt)l | GRZ, (%E; +4R;) + GR3, (%Ei +4R;) } dRin

the minimum pore radius, m; € is Langmuir strain, represents
the maximum strain capacity of material, dimensionless; ¢;,;
is porosity of initial pressure, dimensionless; py is Langmuir’s
pressure, Pa; p;, is initial pore pressure, Pa.

Therefore, the porosity of adsorbed gas and free gas can
be obtained as follows:

N
¢dC flfr::i l ( mt)np( m[) Z ﬂEigiRzzic+4RigiR§C ,0Le7rgle(de 4R1(1 +gl) % dRmt
o - N (18)
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where ¢y is free gas porosity of porous medium, dimension- less; ¥, is SSA of elliptical pores, dimensionless.
f gas p y ol p p p
3 Rd dmp Rycdmp
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e - (19)
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where ¢, is adsorbed gas porosity of porous medium, dimen-
sionless.
Then the apparent porosity of porous media is:
ZRT
¢app = ¢f +C07¢a
where ¢,,, is apparent porosity of porous medium, dimen-
sionless.

(20)

4.2 Apparent permeability

Considering multi-scale pore distribution, the free gas and

adsorbed gas permeability of different pore sizes and aspect
ratio are:

giz A’j c

4(g?+1
< (2)1)

kfe (Rinta gz) = Ysem (Rinh Qz) F, (Rinta Qz) (1 + OCKI’l)
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A
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kae (Rinta gz) = Yaem (Rinh Gz) DaCa 7 (24)

where kg, is free gas permeability of porous medium filled
with rectangular pores, m?; k,, is adsorbed gas permeability
of porous medium filled with rectangular pores, m?; kg, is free
gas permeability of porous medium filled with elliptical pores,
m?; kg is adsorbed gas permeability of porous medium filled
with elliptical pores, m?; F, is slippage coefficient of elliptical
pores, dimensionless; F;. is slippage coefficient of rectangular
pores, dimensionless.

The free gas and adsorption gas permeability correction
coefficients of elliptic and rectangular pore are listed in
Appendix A.

Considering fractal pore radius distribution, the apparent
permeability of porous media is:

Rmﬂx N
Kapp :/ Z [kfe (Rint: Gi) +kpr (Rint i)

min  j=]
+kue (Rinh Gz) + kar (Rinla gl)} dRint

where k), is apparent permeability, m.

(25)

5. Results and Discussion

Fig. 3 shows the fractal tortuosity and average tortuosity
calculated under different fractal dimensions of tortuosity. It
can be seen that the fractal tortuosity gradually decreases
with the increase of pore radius. When pore radius is small,
the average tortuosity is smaller than the fractal tortuosity,
and when the pore radius is large, the average tortuosity is
greater than the fractal tortuosity. The corresponding apparent
permeability distribution is shown in Fig. 4. It can be seen that
when pore radius is less than 2 nm, the apparent permeability
is larger when the fractal tortuosity is not considered, and the
larger the fractal dimension is, the larger the difference will
be. The largest deviation ratio is about 40%. With the increase
of pore radius, the apparent permeability without considering
fractal tortuosity variation characteristics is small, and the
deviation increases with the increase of pore radius and fractal

32

28l --- dt:]..l,‘l'ave:?)
L] dt:1.2,‘l'ave:9

24+ _— dt:l.3,Tave:27

Tortuosity/dimensionless

Fig. 3. Relationship of fractal tortuosity and average tortuosity with different
fractal dimensions.
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Fig. 4. Influence of fractal tortuosity on apparent permeability with different
pore radius.

dimension. The maximum deviation ratio is —98%.

The surface roughness mainly changes apparent permeabil-
ity by affecting adsorption gas migration distance and free
gas migration cross-sectional area, which also has no effect
on apparent porosity. Analyze the effect of surface roughness
on apparent permeability, as shown in Fig. 5. It can be seen
from the figure that the surface roughness mainly affects small
pores. When pore radius is less than 100 nm, the larger the
surface roughness is (the larger the fractal dimension), the
smaller the apparent permeability will be. The main reason is
that when the pore radius is small, the proportion of adsorbed
gas permeability in the apparent permeability is large, and the
cross-sectional area of free gas is greatly affected by surface
roughness. As pore radius increases, the effect of surface
roughness on apparent permeability first increases and then
decreases, as shown in Fig. 5(b). When the pore radius is
between 3-5 nm, the apparent permeability is most affected
by surface roughness.

Assume that there is only one pore with the largest pore
radius. It can be seen that the pore number increases exponen-
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Fig. 6. Influence of fractal pore distribution on apparent permeability with the same porosity.

tially as pore radius decrease. At the same porosity, the smaller
the fractal dimension is, the larger the proportion of small
pores will be. Fig. 6 shows the apparent porosity/permeability
of porous medium coupling considering multi-scale pore. It
can be seen that the apparent porosity first decreases, then
increases, and finally decreases as pressure decreases. The
main reason is that when pore pressure is greater than 20 MPa,
the stress sensitivity plays a dominant role in pore changing.
When pore pressure is in the range of 4-20 MPa, the desorp-
tion shrinkage dominates pore changing. When pore pressure
continues to decrease, the amount of adsorbed gas on pore
surface decreases, and the amount of desorption gas decreases
accordingly. At this time, stress sensitivity plays a leading
role. It can be also seen that pore radius distribution has a
significant effect on apparent porosity when pore pressure
between 1 and 20 MPa. The larger the fractal dimension is,
the greater the effect of desorption shrinkage will be, and the

larger the apparent porosity will be. Analyzing the effect of
fractal dimension on apparent permeability, it can be seen
that the fractal dimension has a greater effect on apparent
permeability. The larger the fractal dimension is, the more the
small pore will be, and the smaller the apparent permeability
will be.

Under economic pore pressure (5 MPa), analyze the con-
tribution of different radius pores to apparent porosity/perme-
ability, as shown in Fig. 7. It can be seen that the smaller the
pore radius is, the larger the contribution to apparent porosity
will be. The small pore has a great effect on gas storage.
This is because the smaller the pore radius is, the larger the
surface-to-volume ratio will be, and the more the adsorbed
gas will be. More than 95% of gas is stored in the pores
below 10 nm, and the larger the fractal dimension is, the
higher the amount of gas in small pores will be, the higher
the storage capacity will be. With the increase of pore radius,
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Fig. 7. Contribution of different pore radius to apparent porosity/permeability of multiscale pores.

the contribution of different pores to apparent permeability
decreases first and then increases, and its distribution is greatly
affected by fractal dimension. For the same porosity, the larger
the fractal dimension is, the higher the proportion of small
pore will be, and the greater the contribution of small pores
to apparent permeability will be. For the pores smaller than
100 nm, the sum of their permeability contributions ranges
from 14.5% to 61.5%. Therefore, small pores in organic matter
are gas storage media, and large pores are gas flow channels,
similar to the relationship between matrix and fractures in
conventional reservoirs.

6. Conclusions

In this paper, mathematical methods are used to quan-
titatively characterize static structure of porous media and
dynamic pore radius. Combined with multiple transport mech-
anism in nanopores, the governing equations of gas migration
in shale gas reservoirs and the apparent porosity/permeability
model of porous media are obtained. The following conclu-
sions were reached:

1) The tortuosity of different radius pore was described
by fractal theory, and the results showed that fractal
tortuosity gradually decreases with the increase of pore
rdius. The fractal tortuosity has a great influence on
transport capacity.

2) The influence of surface roughness on gas transport
capacity was analyzed. Results showed that the surface
roughness is not only the property of porous medium,
but also the property of flowing molecules. The surface
roughness mainly affects small pores.

3) The gas migration in organic porous media was analyzed.
The results showed that the small pores in organic matter
are the main storage space of gas (more than 95% of the
gas is stored in pores less than 10 nm), and the large
pores are gas flow channel.
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The free gas and adsorption gas permeability correction coefficients of elliptic and rectangular pore can be expressed as

¢dclb (Rint)np (Rint) (”EigiR(zjc 19cen'gl R;j;;?f)

min

Yeem (Rint; Gi) =
fem( t ) Ry 2— thRmdxl R ARR2 VdR:
Rmax R b( mt)np( ml)zgl (7[ i dc+ i dc) int
49ucly (Rin )ty (Rin) [4RiGIRS, — 4R; (1 -+ ) B |

Yirm (Rinh gl) = 2-2d, N
(%) SR 1y (Ring ) 1y (Rine) Z i (PERG, +ARiRG)dRin
Rdcdmp
Oacly(Rint )y (Rint ) (Ei Vee G W)

"SR (Ring) 1 (Rin) z G (TER2, +4RiR2,) dRiyy

min

Waem (Rint, Gi) = . )27% (dim)z

Rmax Rint

) Rycdmp
pL+p

¢dclb(Rint)np(Rint) |: ( Gi
N
z i (TER3, +4RiR ) dRin

min

o (Rigs6) = ———
1% 15 Gi (M)z 2d,(1€$t>2 j,f‘“" b (R ) 1 (Row)

(A-1)

(A-2)

(A-3)

(A-4)



