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Abstract:
With the ongoing rise in global energy demand, the importance of enhanced oil recovery in
oilfield development is becoming increasingly prominent. However, traditional chemical
flooding agents face bottlenecks such as poor adaptability to application environments,
unclear coupling mechanisms regarding multiple factors, as well as long research and
development cycles. This paper systematically discusses the innovative paradigm of oilfield
chemical agent development driven by artificial intelligence and proposes four core
technological breakthroughs. Firstly, artificial intelligence-empowered molecular simula-
tion technology can reveal the behavior mechanisms of flooding agents under extreme
conditions. Secondly, intelligent molecular design using generative adversarial networks
and reinforcement learning breaks through the traditional trial-and-error model. Thirdly, the
construction of a data-mechanism dual-driven multi-objective optimization model achieves
the collaborative prediction of physicochemical properties, economic benefits and environ-
mental friendliness. Lastly, an integrated system of robotic chemist and high-throughput
experimental platforms forms a closed-loop system of “artificial intelligence design -
automated synthesis - online detection”, yielding a complete ecosystem. The analysis
of the current technological development challenges and future development directions
reveals that the artificial intelligence-empowered intelligent Research and Development
system is expected to promote the transformation of chemical flooding technology toward
efficiency, environmental protection and sustainable development, providing a new standard
for intelligent oil and gas field development.

1. Introduction
Crude oil continues to play a central role in the global

energy landscape, serving as a primary source of fuel and
chemical feedstock for transportation, manufacturing, and
daily life (IEA, 2024). As conventional oil reserves decline,
reducing production costs and maximizing recovery from

mature fields has become essential for ensuring energy se-
curity and sustainable development. Primary and secondary
recovery methods typically extract only about one-third of the
original oil in place, leaving significant amounts of residual
oil trapped in heterogeneous, low-permeability formations
(Zerpa et al., 2005; Wang et al., 2023; Yuan et al., 2024).
To address this challenge, Enhanced Oil Recovery (EOR)
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technologies have gained increasing attention. Among them,
chemical flooding is one of the most widely applied and
effective techniques (Karimov and Toktarbay, 2023). By in-
jecting chemical agents (such as surfactants, polymers, alkalis,
and nanoparticles) chemical flooding aims to reduce oil-
water Interfacial Tension (IFT), alter reservoir wettability, and
increase sweep efficiency, ultimately mobilizing residual oil
under harsh reservoir conditions (Druetta et al., 2019; Lv et
al., 2023).

However, the success of chemical flooding is contingent
on the stability, efficiency, and environmental compatibility
of the injected agents under high-temperature, high-salinity,
and high-pressure environments. Polyacrylamide (PAM) and
Petroleum Sulfonate (PS) have long been the cornerstone
chemicals for flooding applications. While PAM provides vis-
cosity for mobility control, it degrades under extreme reservoir
conditions, reducing its effectiveness. Various strategies have
been developed to improve PAM’s thermal and salt resistance,
including incorporation of hydrophobic or rigid monomers
(Taylor and Nasr-El-Din, 1998; Sabhapondit et al., 2003; Shi
et al., 2022). Nonetheless, the optimization process often in-
volves labor-intensive experimentation, with each modification
requiring years to scale from lab to field implementation.

Surfactants based on PS are effective at lowering IFT
but suffer from formulation complexity, inconsistent active
component content, and susceptibility to formation adsorp-
tion. Composite surfactant systems have been explored to
mitigate these issues, yet reliable performance still depends
on extensive core flooding tests and field trials, prolonging
development cycles and increasing costs (Rosen, 2012; Kamal
et al., 2017). Furthermore, early formulations failed to account
for the potential environmental impact, including the toxicity
of residual acrylamide in PAM and the ecological risks posed
by PS (Millemann et al., 1982; Xiong et al., 2018). Faced with
the increasingly diverse reservoir conditions and stringent en-
vironmental requirements, the performance of chemical agents
is not only affected by their molecular structure but also by
numerous factors such as reservoir environment. Essentially,
the design of effective chemical flooding agents is a high-
dimensional problem involving the classification, processing
and learning of a large amount of data while considering all
relevant factors simultaneously. However, the traditional chem-
ical agent development model is often limited to the cycle of
“single-performance optimization - experimental correction”,
lacking a systemic design approach that can quickly adapt to
different working environments. For this model, it is difficult
to integrate and optimize massive data information and solve
high-dimensional problems, thus it fails to effectively balance
time and cost.

In contrast, recent advances in artificial intelligence (AI)
offer promising solutions. The success of AI applications in
fields like the Materials Genome Initiative (Wang et al., 2024)
and drug development (Vamathevan et al., 2019; Yang et
al., 2019) demonstrates its potential for accelerating innovation
in EOR chemical design. Machine Learning (ML) and Deep
Learning (DL) models can extract complex structure - property
relationships from large datasets. Tools such as Graph Neural
Network (GNN), molecular fingerprints, and Variational Au-

toencoder (VAE) enable high-throughput screening and gener-
ative molecular design. Moreover, Machine Learning Potential
(MLP) and enhanced sampling algorithms now allow for ac-
curate, cross-scale molecular simulations under reservoir con-
ditions, offering insights into kinetic behaviors and interfacial
interactions critical to chemical efficacy. Complementing these
approaches, automated high-throughput synthesis platforms
and robotic chemists enable rapid experimental validation of
AI-generated molecular candidates. The integration of AI,
molecular simulation, and intelligent experimentation creates a
closed-loop framework of “design - synthesis - testing - analy-
sis”, streamlining the development cycle of chemical flooding
agents. This paradigm has the potential to substantially reduce
R&D costs, enhance formulation precision, and enable faster
adaptation to complex reservoir environments.

Despite the significant progress in AI-driven material dis-
covery and the optimization in fields such as drug development
and materials science, the application of AI in oilfield chemical
agent design remains underexplored. While AI technologies
like Random Forest (RF), Support Vector Machine (SVM)
and Convolutional Neural Networks (CNNs) have shown great
promise in other domains, their integration into oilfield chem-
ical development is still in its infancy, which highlights the
need for a systematic framework that leverages AI to address
the high-dimensional challenges of chemical agent design,
optimize formulations and accelerate experimental validation.

The remainder of this paper is structured as follows:
Section 2 discusses the AI-driven paradigm for oilfield chem-
ical agent development, focusing on four core technologi-
cal breakthroughs, including molecular simulation, intelligent
molecular design, formulation optimization, and intelligent
experimental systems. Section 3 analyzes the current technical
challenges and future development directions in this field.
Finally, Section 4 provides a conclusion and outlook on the
transformative impact of AI on oilfield chemical agent devel-
opment and its potential to drive sustainable and intelligent oil
and gas field operations.

2. The AI-driven paradigm for oilfield chemical
agent development

The development of oilfield chemicals (such as surfactants,
polymers, and nano-flooding agents) faces significant chal-
lenges in harsh reservoir environments marked by high temper-
ature and salinity. Traditional approaches to developing these
chemicals are often inefficient, costly, and time-consuming.
They also struggle with the “curse of dimensionality”, where
the complex interplay of performance requirements, molec-
ular structures, and environmental factors makes molecular
design extremely difficult. However, recent advancements
in high-performance computing and ML technologies have
transformed this landscape. These innovations include multi-
scale molecular simulation, generative molecular design, data-
driven formulation optimization, and intelligent experimental
platforms. Collectively, they enable researchers to identify
effective oil-displacing and auxiliary chemical agents more
efficiently, even within limited timeframes and resource con-
straints. The following sections provide an in-depth explora-
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Table 1. Common AI technologies.

Technology Description Application scenarios Advantages

MLP DNN-based potential energy
surfaces with QM fidelity

Simulating molecular behavior
under extreme reservoir conditions Quantum accuracy at classical cost

Generative models
(GAN/VAE/Diffu-
sion)

Learn data distribution to create
novel molecular graphs

De-novo flooding agents with
target IFT, CMC

Rapidly explores huge chemical
space

GNN Message-passing over molecular
graphs

Predict IFT, CMC, adsorption
directly from topology

Captures local & global structural
features

Tree / Kernel
Ensembles (RF,
GBRT, SVM)

Decision-tree or kernel ensembles
for regression

Quick screening of IFT, contact
angle, formulation tuning

High accuracy on small, mixed
datasets

RL Reward-guided molecular
refinement loop

Iteratively optimise generated
molecules for multi-objective EOR
metrics

Self-improves toward desired
properties

...
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Fig. 1. The basic principle of MLPs. Reproduced with per-
mission from (Kang et al., 2020). Copyright ©2020 American
Chemical Society.

tion of four key technological approaches (Sections 2.1-2.4)
and examine how they interconnect in practical applications.

Before delving into the specific applications of AI in
oilfield chemical agent development, it is essential to briefly
introduce some common AI technologies that form the foun-
dation of this paradigm, which are shown in Table 1.

2.1 Molecular simulation
Molecular simulation, such as Molecular Dynamics (MD)

and Dissipative Particle Dynamics (DPD), is a key step in the
R&D process of oilfield chemicals, which helps to clarify the
working mechanisms of additives such as polymers and surfac-
tants in various application environments (Kirch et al., 2020;
Santo and Neimark, 2021), conduct research on the structure-
property relationship of molecules, and propose directions for
molecular design based on the perceived mechanisms. How-
ever, traditional simulations face challenges when dealing with
complex environments, such as high temperature and salinity,
where chemical agents may undergo chemical failure and the
chemical reactions involved cannot be solved by traditional
molecular simulations. Moreover, despite significant progress
in the simulation methods and computing power, existing sim-

ulations continue to face the problem of scale disaster in terms
of time and space when dealing with complex working con-
ditions. In other words, quantitative research remains a major
challenge at present. To address this, researchers have begun
to explore the integration of AI algorithms into the molecular
simulation process, forming new technologies such as MLPs
(Zhang et al., 2018b; Wen et al., 2022), enhanced sampling
strategies, and multi-scale coupling modeling, providing more
efficient and accurate ways for mechanism research.

2.1.1 Machine learning potentials

Computational chemistry is an indispensable tool for un-
derstanding molecules and predicting their chemical proper-
ties. However, due to the difficulties in solving the Schrödinger
equation and the increasing computational cost with the size of
the molecular system, traditional computational methods face
significant challenges (Aldossary et al., 2024).

MLP functions serve as a revolutionary technology bridg-
ing the precision of quantum mechanics and the efficiency of
classical MD. However, challenges remain in balancing com-
putational cost and accuracy for large-scale systems. As shown
in Fig. 1, by training DNNs with high-precision quantum
mechanical data, such as Density Functional Theory (DFT)
or ab Initio Molecular Dynamics, the model can quickly
predict atomic energy and forces, thereby retaining quantum-
mechanical precision in large-scale molecular simulations
(Shang et al., 2023; Liu et al., 2024). This successfully re-
solves the long-standing contradiction between computational
precision and efficiency in traditional simulation methods.

As an example, the SchNet model by Schütt et al. (2017)’s
team innovatively employs continuous filter convolution layers
(cfconv) and radial basis function expansion to process atomic
distance information, achieving three-dimensional rotational
invariance and overcoming the geometric limitations of tra-
ditional convolution. On the QM9 dataset, its ground-state
energy prediction reaches 0.31 kcal/mol (state-of-the-art), and
on the MD17 dataset, the prediction error of atomic forces is
only 0.05 kcal/mol/Å. The ISO17 benchmark test shows that
with force-supervised training, the prediction error of unknown
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molecular energy can be reduced to 2.40 kcal/mol, prelim-
inarily establishing a new paradigm that integrates physical
constraints with ML for quantum computation.

The DeePMD series research (Wang et al., 2018; Zhang
et al., 2018a; Zeng et al., 2023) uses DNN to learn atomic
potential energy functions from data generated by first princi-
ple calculations, such as DFT, in order to construct potential
energy surfaces. This approach integrates quantum-mechanical
precision into molecular dynamics simulations; while main-
taining linear computational complexity, it achieves near-first-
principle precision (atomic force error of 7.1-19.1 meV/Å),
with an efficiency improvement of five orders of magnitude
compared to traditional quantum chemical methods.

The upgraded version, DeePMD-kit, employs a three-tier
parallel strategy and has successfully completed nanosecond
molecular dynamics simulations involving 100 million copper
atoms on supercomputers. It achieves a peak performance
of 86PFLOPS and maintains 76% parallel efficiency. This
represents a two-order-of-magnitude increase in the scale of
quantum-level simulations, offering a larger atomic precision
platform for mesoscale system research such as amorphous
materials (Lu et al., 2021).

In addition, Batzner’s team’s NequIP model (Batzner et
al., 2022) differs from most scalar-invariant convolutional
models by employing E(3)-equivariant convolution to handle
the interaction of geometric tensors, thereby representing
atomic environments more richly and accurately. In the MD-
17 benchmark, its force field prediction error is reduced by
78% compared to sGDML, and it demonstrates high data
efficiency: Only 133 training samples are needed to achieve
the precision of the initial DeepMD using 133,500 samples in
water phase change simulations. In the CCSD(T)-level dataset,
the force field error of NequIP (3.1 meV/Å) is reduced by 63%
compared to that of DimeNet. It successfully reproduces the
non-harmonic vibration spectrum of ice and the ion migration
barrier of lithium superionic conductors, indicating that net-
works based on physical symmetries can break through the
dependence on large-scale data.

In the field of oilfield chemicals, MLP technology provides
a new direction for the structure-property correlation analysis
of molecular systems such as surfactants, scale inhibitors and
nano-flooding agents. Once a potential energy function with
quantum precision is established, researchers can capture the
key behaviors of chemical agent molecules applied in oil reser-
voir flooding in nanosecond mesoscale simulations, providing
effective guidance for the optimization design of chemical
agent molecules and significantly reducing the experimental
verification costs.

2.1.2 AI-driven enhanced sampling

Although molecular dynamics simulations can reveal fine
microscopic kinetic processes, for certain rare events that
span high energy barriers or slow transitions (such as protein
folding, chemical reaction pathways, phase change nucleation,
etc.), they often undersample due to limitations in terms
of time step and simulation duration. Enhanced sampling
techniques (such as metadynamics) accelerate the exploration
of low-probability regions or energy barrier crossing processes

by introducing external bias potentials or improving the kinetic
equations in the system (Laio and Parrinello, 2002).

With the emergence of AI, the combination of enhanced
sampling and ML provides new ideas for multi-scale sim-
ulations of complex systems. For instance, in the field of
drug design, Bertazzo et al. (2021) proposed a semi-automated
computational framework integrating enhanced sampling, ML
and physical path analysis to address issues such as high com-
putational cost, insufficient sampling efficiency, and the lack
of dynamic path information in the calculation of Absolute
Binding Free Energy. By optimizing the ligand dissociation
trajectory with the principal path algorithm to construct Path
Collective Variables, and integrating metadynamics to recon-
struct the free energy surface of the dissociation path, followed
by corrections for solvation free energy and configurational en-
tropy, accurate predictions of standard binding free energy can
be made. The results show that this method has a good linear
correlation with the experimental values in various protein-
ligand systems (Pearson correlation coefficients of 0.84 and
0.78), with an average absolute error of about 1.5-2.2 kcal/mol,
highlighting the importance of path generation quality for free
energy calculations in asymmetric ligand systems.

Targeting the high-precision simulation needs of hetero-
geneous catalytic systems, Xu et al. (2021) developed the
adaptive ML potential-accelerated metadynamics method. It
uses Bayesian inference to dynamically assess the variance
of potential energy predictions, triggering first principle cal-
culations in real time to update the training set; through a
two-stage sampling strategy and ∆-MLP technology (learning
the residual energy term on top of the Density Functional
Tight Binding base potential), it could achieve free energy
surface errors of less than 0.23 and 0.02 eV in the Pt13-
CO cluster and Pt (111)-CO surface systems, respectively.
The computational efficiency is improved by a factor of 10
compared to traditional DFT-metadynamics, with only 81 DFT
calculations required. Based on the scalable base potential
function design, this method is compatible with both periodic
and non-periodic boundary conditions, providing an efficient
and accurate multi-scale simulation tool for the mechanistic
study of heterogeneous catalytic reactions.

In high-salinity, high-temperature environments, surfactant
molecules may undergo slow structural rearrangements or
engage in multiple adsorption mechanisms. To this end, the
combination of ML and enhanced sampling can more quickly
find energy minima and barriers, as well as analyze the
assembly of surfactant molecules and the modification of oil-
water interfaces, providing support for the efficient design of
surfactants.

2.1.3 AI-driven multi-scale & cross-scale simulation

In the process of chemical flooding with oilfield chemicals,
the multi-level physicochemical interactions from molecules
to reservoirs are extremely complex. Traditional single-scale
models are unable to capture the synergistic effects between
femtosecond molecular vibrations and hour-scale displacement
processes, nor can they balance the details of angstrom-level
molecules with meter-scale reservoir flow behavior (Horste-
meyer, 2010; Joshi and Deshmukh, 2021; Shilko et al., 2024;
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Wang et al., 2025). The hierarchical levels of multi-scale
simulation are shown in Fig 2.

In order to break through the limitations of high-precision
simulations in temporal and spatial scales, research is evolving
along two technical paths: Deep learning-based coarse-grained
modeling and adaptive multi-scale coupling modeling. Deep
learning-based coarse-grained modeling integrates All-Atom
Molecular Dynamics data with deep neural network poten-
tial functions to achieve efficient predictions within Coarse-
Grained Molecular Dynamics or DPD frameworks. This ap-
proach not only enhances the simulation rate by hundreds
to thousands of times compared to the original model but
also maintains a good description of key molecular interac-
tions, providing new ideas for analyzing the thermodynamic
and kinetic characteristics of complex systems (Majewski et
al., 2023; Shinkle et al., 2024).

In the field of coarse-grained modeling based on DL,
Majewski et al. (2023) proposed a protein modeling method
that integrates neural network potential functions, thus devel-
oping thermodynamically consistent models based on all-atom
molecular dynamics trajectory data. This model, while retain-
ing atomic-scale features, increases the kinetic rate by three
orders of magnitude, successfully reconstructing the natural
conformation distribution of various proteins and revealing
the metastable transition mechanisms in folding pathways
through Markov state models. As its breakthrough, it is the
first single model integrating 12 different structural proteins
that possesses the transfer learning capability for predicting
mutant conformations, achieving a synergistic optimization of
kinetic fidelity and universality.

Adaptive multi-scale coupling modeling refers to the use of
regional decomposition algorithms, a combination of molecu-
lar dynamics and Direct Simulation Monte Carlo in nanoscale
confined regions (pores < 10 nm or near oil-water interfaces),
and modified Navier-Stokes equations for continuous medium
modeling in macroscopic pore regions (> 1 µm) (Karniadakis
et al., 2005; Tartakovsky and Panchenko, 2016). For example,
in shale gas reservoirs, Wang et al. (2020) combined MD with
pore network models to more accurately quantify the com-
bined influence of inorganic and organic pores on permeability.
The predicted permeability of the model (96.4±11.2 nD) was
highly consistent with the experimental values, successfully
quantifying the pore structure-transport coupling effect and
correcting the traditional bias in permeability assessment that
focuses solely on organic matter.

Multi-scale simulation docking technology not only allows
for predicting the macroscopic behavior of existing molecules
but also provides more complete and realistic evaluation
indicators for generative molecular design. With the large
number of sample data generated by high-fidelity simulations,
AI models can construct more accurate data models that in turn
can be used to screen or generate new molecules, forming a
closed loop of “simulation-generation-validation”.

Given its powerful capabilities, AI-driven molecular simu-
lation technology has brought about numerous breakthroughs
in relevant fields. On the one hand, it can significantly reduce
experimental costs and effectively shorten the R&D cycle; on
the other hand, it deeply analyzes the cross-scale behavior of
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Fig. 2. Schematic diagram of multi-scale simulation hierarchy
(Keith et al., 2021).

flooding agents under extreme conditions, providing a solid
and reliable basis for the performance prediction of chemical
flooding agents. Besides, this technology can continuously
supply high-quality training data for generative molecular
design, thereby ingeniously alleviating the dilemma faced by
large models due to insufficient training data to a certain extent
and paving an efficient and highly valuable research path for
molecular design.

2.2 Intelligent molecular screening & design
Rapid screening and molecular generation technologies

based on ML and DL have been used for fruitful explorations
in fields such as drug development and protein structure
prediction, accumulating a wealth of experience. These tech-
nological accumulations and experiences provide new ideas
for the design of oilfield chemicals.

2.2.1 High-throughput screening of molecules

In the initial stage of molecular screening, quantita-
tive structure-activity relationship (QSAR) and Quantitative
Structure-Property Relationship (QSPR) models can utilize
molecular fingerprints, topological indices or GNN to repre-
sent molecular structures, and combined with algorithms such
as RF, SVM or CNN to quickly predict key properties (such
as IFT, CMC, Hydrophilic-Lipophilic Balance (HLB) value
and complex behaviors such as adsorption/wetting interac-
tions between molecules and rock interfaces). This strategy
significantly improves the efficiency of screening potential
advantageous structures from a vast molecular library. If the
study in question involves micelle assembly, oil-water interface
modification, or molecular stability under high-temperature
and high-salinity conditions, it can be combined with MD or
DPD simulations to rapidly assess performance under different
temperatures, salinities and pore environments.

In the field of predicting molecular structures and proper-
ties, the introduction of DL and GNN technologies has signif-
icantly propelled the paradigm shift of QSAR/QSPR models
(for a comparison between traditional QSAR and deep QSAR,
please refer to Table 2). In contrast to traditional representation
methods that rely on manual feature engineering, such as
molecular fingerprints and topological indices, the end-to-
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Table 2. Comparison of traditional and deep QSAR models.

Dimension Traditional QSAR Deep QSAR

Input representation Handcrafted molecular descriptors Raw molecular formats

Feature engineering Expert-defined descriptors Automated feature learning

Model architecture Linear/nonlinear statistical models DNNs

Data requirements Small datasets (n < 103); required high-quality features Large datasets (n > 104)

Interpretability High Low

Computational cost Low-cost CPU execution (minutes to hours) GPU/TPU-accelerated training (hours to days)

Typical applications Boiling point/solubility prediction; Early-stage ADMET
screening Virtual high-throughput screening

end training mechanism of graph-structured DL can automat-
ically extract molecular graph embedding representations that
contain complex structural information. This representation
method not only breaks through the dimensional limitations
of traditional methods in describing multi-scale molecular
interactions but also achieves the synergistic optimization of
atomic-level local features and molecular-level global features
via graph convolution operations, thereby significantly im-
proving the accuracy and generalization performance of the
prediction model (Sippl et al., 2018; Tropsha et al., 2024). The
successful application of a DL-based QSAR system using im-
age representations for predicting agonists and antagonists is
showcased in the work of Matsuzaka and Uesawa (2022). This
system converts three-dimensional chemical structures into
multi-angle two-dimensional images and uses convolutional
neural networks for feature extraction, achieving an efficient
and accurate classification prediction of compound activity.
The optimized system maintains high prediction performance
while reducing model training time and lowering experimental
validation costs, providing important references for high-
throughput screening and molecular innovation in practical
applications.

In terms of model interpretability and computational effi-
ciency, some novel regression strategies have shown unique
advantages. For example, the “topological regression” method
proposed by Zhang et al. (2024) innovatively constructs a
sparse isometric mapping model between chemical space and
activity space. By mathematically modeling topological invari-
ants, it improves the model’s interpretability by more than
40% while maintaining prediction performance comparable to
DL and reduces the computational time by about two orders
of magnitude. This modeling strategy, which combines pre-
diction efficiency with mechanistic interpretability, provides
an efficient computational tool for the rapid identification of
lead compounds in high-throughput screening and, at the same
time, establishes a theoretical framework for structure-based
molecular optimization.

Current high-throughput screening strategies are gradu-
ally evolving towards data-driven and multi-level collabo-
rative optimization approaches. By integrating experimen-
tal data, simulation results and field parameters, intelligent
QSAR/QSPR platforms can quickly screen out ideal candidate

molecules from large-scale molecular libraries and conduct
multi-objective evaluations of these molecules at the same
time. For example, while predicting key parameters such as
IFT, CMC and HLB value, the platform can also consider the
adsorption and wettability behavior between molecules and
rock interfaces, providing comprehensive and precise guidance
for the formulation design of oilfield chemicals. As data
volumes continue to grow and computing resources are further
improved, the fusion of multi-modal data (including structural
images, molecular descriptors and dynamic simulation data) is
becoming the mainstream trend in high-throughput screening.
This will help to build higher-precision prediction models and
also promote the transition from virtual screening to generative
molecular design, providing a more solid technical foundation
for the development and field application of new oilfield
chemicals.

2.2.2 Generative AI-driven chemical agent design

Building on the traditional supervised learning approach
for constructing performance prediction and molecular prop-
erty association models, the novel method of Generative
Molecular Design (GMD) has shown rapid evolution in recent
years. This method can intelligently explore and “generate”
new molecules in high-dimensional chemical space by learn-
ing existing molecular structures and their performance data
through deep neural networks (Grantham et al., 2022; Nnadili
et al., 2023; Yao et al., 2023; Du et al., 2024). Its core
advantage lies in utilizing architectures such as Generative
Adversarial Networks (GANs) (Kadurin et al., 2017; Mao et
al., 2020; Liu et al., 2023), VAE (McLoughlin et al., 2023;
Zhou and Huang, 2024) , and Diffusion Models (Abramson et
al., 2024) to learn underlying patterns from vast molecular data
and generate novel molecular structures with specific functions
(Bhowmik et al., 2024; Chen et al., 2024; Nnadili et al., 2024;
Nguyen and Karolak, 2025), as shown in Fig. 3. Compared to
traditional “trial-and-error” or purely random search methods,
generative AI is superior at identifying potential structural
patterns and recombining or modifying molecules accordingly.

For generating molecules with specific properties, Kadurin
et al. (2017) proposed the druGAN model, which combines
GAN with Autoencoders for new molecule generation and
optimization. The focus of their study is on directed generation
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Fig. 3. Workflow of generative AI for molecular design.

capabilities, enabling AI to generate molecules with preset
anti-cancer properties and to handle large-scale molecular
databases. McLoughlin et al. (2023) introduced the ATOM-
GMD platform, which integrates VAE with genetic algorithms
to generate a large number of molecular candidates in batches.
The top 103 compounds were experimentally synthesized
and tested, verifying the potential of this platform in multi-
parameter optimization for drug development.

Targeting specific application scenarios, Nnadili et
al. (2024) proposed an AI-driven molecular design frame-
work specifically for surfactants, integrating generative models
(VAE), predictive modeling (GNN), and Reinforcement Learn-
ing (RL). This framework uses self-referencing embedded
strings (Krenn et al., 2020) as the molecular representation
method to ensure the validity of generated molecules and
employs VAE for molecular structure generation and GNN for
target property prediction. Furthermore, reinforcement learn-
ing optimizes the generated molecules in the latent space of
VAE to enhance their performance in target properties. The
results indicate that this framework can generate novel surfac-
tant molecules with stable structures and chemical rules, which
not only meet the target CMC threshold but also demonstrate
higher thermodynamic stability. The structural diversity of
these molecules is assessed through similarity analysis, and
their stability and solvation free energy are verified through
molecular dynamics simulations. This study provides a new
concept for the intelligent design of surfactant molecules,
which can be applied in the future to EOR, detergents and
emulsifiers, demonstrating the full potential of AI to perform
molecular optimization.

QSAR/QSPR models rapidly predict IFT, CMC and other
properties, and can be combined with molecular dynamics sim-
ulations to evaluate performance under high-temperature and
high-salinity conditions. DL and graph convolution methods
significantly enhance prediction accuracy and interpretability.
Generative AI can “create” functional molecules in high-
dimensional chemical space and optimize their key properties
through techniques such as reinforcement learning, targeting
the complex and diverse application environments of oilfields
to facilitate the efficient and rapid design of “targeted” func-
tional oilfield chemicals. The fusion of multi-modal data and
multi-objective evaluation endows intelligent molecular design

with great potential, accelerating the transition from virtual
screening to GMD and bringing innovational ideas in the field
of oilfield chemicals.

2.3 Chemical agent formulation optimization
and performance prediction

In the critical transition stage from the laboratory to the
field application of oilfield chemicals, “formulation optimiza-
tion” and “performance prediction” often determine whether
EOR technologies can achieve the expected results and directly
relate to their economic feasibility and promotion value.
Current research in the field of oilfield chemicals is undergoing
a paradigm shift from traditional empirical trial-and-error
to multi-objective intelligent optimization design, which has
significant potential for future development.

2.3.1 Interface regulation and performance prediction

One of the core aims of chemical flooding is to re-
duce oil-water or oil-gas IFT, in order to promote crude
oil emulsification, and to modify rock wettability, in order
to reduce capillary resistance for imbibition oil recovery,
thereby enhancing oil and gas recovery rates (Keradeh and
Khanghah, 2024; Saberi et al., 2024; Yousefmarzi et al., 2024).
Mouallem et al. (2024) predicted CO2-brine IFT using gradient
boosting models to optimize deep storage strategies for CO2
in carbonate aquifers in the UAE. Yousefmarzi et al. (2024)
systematically compared the performance of six algorithms
(Support Vector Regression (SVR), RF, etc.) in predicting
IFT in oil/gas and oil/water systems, with SVR and CatBoost
achieving prediction accuracies of R2 = 0.99 for oil/gas sys-
tems. Rashidi-Khaniabadi et al. (2023) modeled surfactant-
hydrocarbon IFT using integrated tree-based ML algorithms
(Decision Tree (DT), ET, GBRT), finding that GBRT achieved
the best prediction accuracy. Their study provides an efficient
prediction tool for EOR in petroleum engineering. Other
scholars combined DL with decision trees to compare the
contributions of different salt molecular weights, temperatures,
and oil properties to IFT, offering more specific guidance
for optimizing additive formulations under field conditions.
Regarding complex salt environments, Liu et al. (2024) de-
veloped an IFT prediction model for oil-water systems based
on real crude oil samples and salt types. Using a DT model,
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Table 3. Performance of ML algorithms for training and testing data in % oil recovery of CO2 foam EOR (Iskandarov et
al., 2024a).

Algorithms
R2 MAE RMSE WAPE

Train Test Train Test Train Test Train Test

DT 1 0.95 0 1.51 0 1.89 0 5.47

RF 0.99 0.98 0.39 1.04 0.59 1.48 1.22 3.23

Gradient boosting 0.99 0.99 0.14 1.06 0.17 1.54 0.44 3.31

Extreme gradient boosting 0.99 0.98 0.59 1.25 0.82 1.67 1.84 3.91

Extremely randomized trees 1 0.99 0.01 0.97 0.02 1.32 0.04 3.05

DNN 0.99 0.99 0.36 0.64 0.47 1.01 1.18 2.31

they revealed that temperature had a weight of 46.3% on IFT,
significantly higher than salt (8.7%) and other factors.

Another key mechanism in chemical flooding is rock
wettability regulation. Ibrahim (2023) proposed a new efficient
pathway for predicting shale wettability using ML methods.
They collected 250 sets of contact angle experimental data
covering different shale types and experimental conditions
(such as temperature, pressure, salinity, etc.) and constructed
various ML models, including Linear Regression, DT, RF,
Functional Network (FN), and GBRT, to predict contact angles
in CO2-water-shale ternary systems. The results showed that
non-linear ML models could more accurately fit the com-
plex relationship between input parameters and wettability
than traditional linear regression models. The GBRT model
performed the best, with determination coefficients (R2) of
0.99 and 0.98 for training and testing sets, respectively, and
a Root-Mean-Square Error (RMSE) of less than 5 degrees.
Sensitivity analysis further indicated that pressure is the key
factor affecting shale wettability, with shale exhibiting strong
water wettability at low pressures and CO2 wettability at high
pressures. This study significantly improved the efficiency and
accuracy of shale wettability prediction, building a strong
technology foundation for CO2 geological storage site selec-
tion, sealing assessment, and oil and gas recovery enhance-
ment. Keradeh and Khanghah (2024) systematically studied
the application potential of diethylenetriaminepentaacetic acid
(DTPA) in sandstone wettability modification and found that
DTPA could significantly change rock wettability from oil-
wet to strongly water-wet. They revealed that a concentration
of 5 wt% DTPA achieved the best wettability modification
effect, while the presence of key determining ions (PDIs,
such as Ca2+, Mg2+, and SO4

2 – ) at three times the original
concentration weakened this effect. In addition, they combined
RF and Boosted Regression Tree ML models to predict contact
angles from 240 experimental datasets, and the Boosted Re-
gression Tree model demonstrated superior prediction capabil-
ities (R2 > 0.999). Sensitivity analysis indicated that the main
factors affecting wettability were PDIs, salinity, reaction time,
and DTPA concentration. This work not only validated the
feasibility of DTPA in regulating rock wettability under high-
salinity conditions but also showcased the application potential

of ML in predicting and optimizing flooding systems.

2.3.2 Displacement system optimization and performance
prediction

Foam and microemulsion flooding play important roles
in enhancing sweep efficiency and improving flow control
(Kamaludin et al., 2024; Maia et al., 2024). The multi-
component synergistic effects, non-linear flow characteristics
and complex interfacial behaviors of these systems often make
it difficult to conduct large-scale screening using experimental
methods alone. Nonetheless, ML models offer a pathway for
rapid prediction and combinatorial optimization.

Regarding CO2 foam systems, Iskandarov et al. (2024a)
utilized ML techniques to predict CO2 foam performance
based on key parameters such as foam apparent viscosity and
IFT. They employed six different models (with comparative
results shown in Table 3) and found that DNN performed
exceptionally well in predicting oil recovery rates in reservoirs.
This is because in the test set predictions, the DNN model
achieved the lowest values for Mean Absolute Error (MAE)
at 0.64, RMSE at 1.01, and Weighted Absolute Percentage
Error (WAPE) at 2.31%. The findings revealed that foam
apparent viscosity and IFT are the key factors affecting
recovery rates. Appropriately increasing foam viscosity and
reducing IFT can significantly enhance recovery rates, while
the effect plateaus after a certain threshold. Iskandarov et
al. (2024b) also explored the impact of different surfactant
types and operating conditions on CO2 foam performance.
Using ML models to predict foam apparent viscosity, they
found that nonionic and cationic surfactants exhibited better
tolerance to high salinity conditions. Moreover, the HLB
value of surfactants significantly influenced foam strength. The
aforementioned studies provide important theoretical bases and
practical guidance for optimizing CO2 foam for EOR and
carbon sequestration technologies.

The EACN is a key parameter for measuring the hydropho-
bicity of oil compounds and as such is significant in the design
of surfactant/oil/water systems and microemulsion applications
(Chang et al., 2019; Qu et al., 2023). Traditional experimen-
tal methods for determining EACN are cumbersome, time-
consuming and require high sample purity (Wan et al., 2016).
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In recent years, ML techniques have provided new ways for
rapid and accurate EACN prediction. Delforce et al. (2022)
developed models based on Graph Machines (GM) and Neural
Networks (NN) to quickly predict the EACN of oils. They
used a database of 121 compounds, with GM predicting
from SMILES codes and NN predicting from COSMO-RS
calculated σ -moments. They found that both GM and NN
models performed comparably in terms of prediction accuracy,
but in the case of homologous series prediction, the GM
model showed better consistency with the experimental results.
Furth et al. (2024) compared the performance of three GNNs
and an XGBoost model in EACN prediction. They collected
EACN data for 183 organic molecules, converted molecular
structures into SMILES codes, and studied the impact of
geometric optimization on prediction. The results indicated
that the Crystal Graph Convolutional Neural Network model
trained with MMFF94 optimized geometric data performed
the best, with a prediction error of 1.15 EACN units and an
R2 score of 0.9. Meanwhile, the XGBoost model excelled in
terms of runtime and prediction accuracy, especially for small
datasets.

Both of the above studies demonstrated that ML models
can rapidly and accurately predict EACN, hence are powerful
tools in the design of microemulsion systems, significantly
reducing experimental workload and time costs.

2.3.3 Composite drive design and performance prediction

Polymer flooding is an important technology in tertiary
oil recovery, with the viscosity of polymer solutions directly
affecting sweep efficiency (Dai et al., 2023). Utilizing Re-
gression Decision Trees, SVR, and Multi-Layer Perceptrons,
the viscosity of modified partially Hydrolyzed Polyacrylamide
solutions can be accurately predicted under high salinity
and different shear rates and temperature scenarios (Rashidi-
Khaniabadi et al., 2023; Shakeel et al., 2023). Shakeel et
al. (2023) established a viscosity model using Artificial Neural
Network in high-salinity environments (up to 167,000 ppm),
whose training and testing set correlation coefficients (R2)
both exceeded 0.99, significantly enhancing the efficiency and
reliability of field formulation design.

Surfactant-Polymer (SP) composite flooding requires the
optimization of both technical and economic indicators.
Larestani et al. (2022) developed a cascade neural network
model that excelled in the joint prediction of Recovery Factor
and Net Present Value (NPV), with mean absolute errors of
0.66% and 1.95%, respectively. Sun et al. (2021) combined
the hydrophilic-lipophilic difference - net average curvature
equation with a neural network surrogate model to construct
a techno-economic evaluation framework for alkali/surfactan-
t/polymer flooding. The neural network was used to replace
the numerical simulator to predict oil and water dynamics,
combined with particle swarm optimization and Pareto opti-
mality to reveal the trade-off relationship between NPV and
Chemical Efficiency (CE). When NPV reached $933,000, CE
was $8.21 per barrel; when CE was reduced to $7 per barrel,
NPV only decreased by 3.3%. Monte Carlo analysis indicated
that the project would incur losses if oil prices fell below
$30 per barrel. Multi-objective optimization quantified the

association between water cut and economic benefits, offering
risk decision support for alkali/surfactant/polymer schemes.

The general research concept for formulation optimization
and performance prediction is shifting from traditional “em-
pirical summary + trial-and-error experimentation” to “data-
driven + multi-objective optimization”. By integrating multi-
source experimental data and field operation information, ML
models can rapidly assess key indicators such as interfacial
tension, foam stability, polymer viscosity, and economic fea-
sibility within a short period. With the development of digital
oilfields, multi-disciplinary collaboration and high-throughput
experimental platforms, the value of AI in formulation op-
timization for oilfield chemicals will continue to expand,
providing more robust data support and innovative ideas for
further enhancing the oil recovery rates and extending the
economic lifespan of aging oil fields.

2.4 Intelligent experimental systems
In the process of material development, as the advancement

of molecular design and simulation technologies continues, the
workload and parameter combinations required for experimen-
tal verification have also increased significantly. Specifically,
the high dimensionality of data makes it difficult for traditional
manual operation modes to accurately capture the required
information. With the emergence of high-throughput intelli-
gent experimental systems that integrate automation, robotics
and intelligent algorithms, the entire “design - synthesis -
testing – analysis” process is interconnected, enabling un-
manned or minimally manned autonomous research processes.
While the molecular structure designed by AI is synthesized
automatically through the robot chemist platform, the synthetic
product is detected in real time through online detection,
and the detection results are fed back to the AI model for
optimization, thus achieving rapid iteration. This strategy not
only shortens the material development cycle but also makes
the research process more sustainable (Rahmanian et al., 2022;
Ha et al., 2023; Sadeghi et al., 2024; Tom et al., 2024).

With respect to intelligent systems, researchers have made
many fruitful attempts and achieved gratifying progress in
recent years. Seifrid et al. (2022) developed the Self-Driving
Lab platform ChemOS (Roch et al., 2018), which combines
automated synthesis, high-throughput characterization (HPLC-
MS, optical analysis), and Bayesian optimization algorithms
(Phoenics, Gryffin, etc.), to achieve the efficient design and
optimization of Organic Semiconductor Laser materials and in-
organic thin-film materials. Through the closed-loop “design-
manufacture-test-analyze” process, the material development
cycle was shortened from months to days, generating high-
quality, shareable datasets. This platform promotes the au-
tomation, reproducibility and interdisciplinary collaboration
of chemical discoveries and acts an accelerated tool for
addressing global challenges such as energy and environment.
Szymanski et al. (2023) developed the A-Lab autonomous
laboratory, which integrates computational screening (Mate-
rials Project and Google DeepMind stability data), literature
mining ML models (NLP synthesis recipe recommendations),
and robotic experimental systems, as shown in Fig. 4. Within
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Fig. 4. Architecture of the A-Lab autonomous materials discovery platform (Szymanski et al., 2023).

Table 4. Core architecture of the iChemFoundry platform (Lu et al., 2024).

Module Function Key technologies

Automated synthesis
system

Parallel execution of hundreds to thousands
of reaction conditions.

Flow chemistry workstations

Microplate-based batch reaction systems

Robotic manipulator platforms

High-throughput
detection system

Real-time analysis of products within seconds
to minutes.

Online UPLC-MS

Microfluidic IR/UV spectroscopy

MALDI-TOF mass spectrometry

AI decision-making
system

Optimizes reaction conditions, designs synthetic
pathways, generates novel molecular structures,
and dynamically adjusts experimental plans.

Machine learning models

Retrosynthesis algorithm libraries

Generative molecular design engines

merely 17 days, they successfully synthesized 41 new in-
organic materials (oxides/phosphates, etc.) and verified the
synthesizability of 71% of the computationally predicted ma-
terials. This study is the first to realize the full closed-loop
autonomous optimization of solid-state material synthesis,
proving the feasibility of AI-driven platforms in accelerating
material discovery and providing a practical example for
the computational-experimental collaborative material devel-
opment paradigm.

The intelligent chemical synthesis platform iChemFoundry,
developed by Zhejiang University (Lu et al., 2024), inte-
grates automated high-throughput experimental systems with
AI decision-making systems to achieve the full closed-loop
optimization of “design-experiment-feedback”. Table 4 lists
the core architecture of the iChemFoundry platform. This
platform, with its µL-scale microreactor system, significantly
reduces reagent consumption (1/100 to 1/1000 of traditional
methods) and supports solid/liquid phase reactions, photo/elec-
trocatalysis, and other complex systems. It also employs online

ultra performance liquid chromatography-mass spectrometry,
and MALDI-TOF mass spectrometry for real-time product
analysis (yield, purity, byproducts) within seconds to minutes.
To illustrate the efficiency of this platform, through five rounds
of AI optimization (1,200 experiments), the enantioselectivity
was increased from 68% to 95%; in just 4 days, it constructed
a library of over 200 anti-tumor derivatives, with an efficiency
five times higher than traditional methods. In multi-step serial
synthesis, the total product yield was successfully increased
from 5% to 22%, demonstrating the platform’s ability to
control complex systems. Compared with similar platforms
(such as Chemputer, IBM RXN), iChemFoundry features the
advantage of deep collaboration between high-throughput ex-
periments and intelligent algorithms, promoting the transition
of chemical synthesis from experience-driven to data-driven
paradigms, providing an efficient and green solution for drug
development and functional molecular design. In the future,
through modular expansion and integration with quantum
computing, this platform is expected to further break through
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the bottleneck of reaction mechanism analysis and cross-scale
synthesis.

Currently, intelligent experimental systems are driving the
transition of R&D towards high-throughput, automated, and
intelligent directions (Tom et al., 2024). If applied to oilfield
chemical research, the deep integration of robotic chemists,
high-throughput screening platforms, self-driving laboratories,
and knowledge graph technologies can not only test a wider
range of molecular or formulation combinations in a shorter
period but also achieve dynamic balance and global opti-
mization of different environmental variables and multiple
performance indicators. This could enable the screening of
formulations adapted to harsh conditions such as high salinity
and temperature at lower costs and shorter cycles.

3. Technical challenges & future directions
Recently, AI has shown great potential in several links

of new material development, including molecular simulation,
data screening and performance prediction, formulation opti-
mization, and intelligent experimental verification. However,
regarding the complex and harsh oilfield environment, real-
izing the implementation and promotion of this technology
in oilfield chemicals still faces many challenges; how to break
the deadlock and find development opportunities is a key issue
worth considering in the field of oilfield chemicals.

3.1 Technical challenges
3.1.1 Data quality and sample scarcity

Oilfield chemicals often need to adapt to extreme con-
ditions such as high temperature, salinity and pressure. The
experimental data acquisition process is costly and time-
consuming, and the data is often “fragmented” and dispersed
across different laboratories or fields (Li et al., 2021; Waqar et
al., 2023). Under such circumstances, the available datasets are
not only relatively limited in scale but also have differences
in data generation conditions, making data standardization
difficult. At the same time, the extrapolation capability of AI
models outside the range of training data (i.e., their ability to
predict accurately in conditions not covered by the training
data) remains an imminent problem. Once extrapolated to
more severe conditions or other oilfield blocks, the model
may fail due to the lack of sufficient training samples. In the
face of this “data scarcity”, it has become urgent to build a
high-quality oilfield chemicals database and combine transfer
learning, few-shot learning, active learning, and other strate-
gies to enhance the robustness and extrapolation capability of
the models.

3.1.2 Multi-scale mechanistic coupling and model
complexity

Oilfield chemical reaction processes differ at multiple
scales including time and space: from the nanosecond-level
dynamics at the molecular level to the hour-level or day-level
macroscopic flow in the reservoir, and even to the monthly
or yearly dimensions of reservoir engineering (Peter and
Kremer, 2009; Joshi and Deshmukh, 2021; Peng et al., 2021).
Although multi-scale simulation has made great progress, there

is still a lack of a mature "adaptive coupling" solution that
can seamlessly connect the fine mechanisms at the molecular
level with pore network/macroscale flow models. For example,
MLPs require a large amount of high-precision quantum
chemical data for support, which has high computational
requirements, while coarse-grained simulations may sacrifice
the local electronic structure or molecular interaction details
while expanding spatial scales. Therefore, how to balance
computational efficiency and precision remains the biggest
pain point in multi-scale research.

3.1.3 Algorithm efficiency and real-time response conflict

High-precision DL models or generative AI often require
a large amount of training data and involve an expensive
training process. However, in the area of oilfield production,
production data changes in real time and decisions need to be
made quickly and robustly, without waiting for lengthy offline
calculations. A key direction of concern for both industry and
academia is finding the means to use model pruning, mixed
precision computing, edge computing, and other methods to
embed AI models into the field links, in order to achieve
quasi-real-time or online parameter optimization and formula
updates. Besides, computational power limitations in some
oilfields cannot be ignored. Although large-scale cloud com-
puting can be feasible, its network bandwidth and reliability
may also have a certain impact on real-time prediction.

3.1.4 Experimental system and field data closed-loop
insufficiency

Although “self-driving laboratories” and “high-throughput
automated platforms” have been well-developed in the mate-
rials and pharmaceutical industries (Fakhruldeen et al., 2022;
Szymanski et al., 2023; Lu et al., 2024), adapting such
platforms to oilfield chemical research still needs to deal
with more complex conditions such as high-salinity, high-
temperature, high-pressure and handle multi-type multi-source
data (rock mineral composition, salinity, viscosity, IFT, etc.).
In addition, field data is often burdened with uncontrollable
factors, such as sampling errors, instrument instability, and
well condition differences, potentially leading to a “discon-
nect” between laboratory verification results and actual field
needs. If there is no efficient data feedback mechanism to
update the model, a true “closed-loop” R&D system cannot
be formed.

3.1.5 Industrialization and cost-benefit trade-offs

AI technology performs well at the experimental stage,
but in large-scale applications, it is necessary to balance
the costs, risks and long-term benefits involved. In addition,
the oilfield development environment is highly variable, and
the deployment of AI-driven automated devices or sensor
networks requires a large initial investment and high technical
barriers. Also, many oilfield companies have a high degree
of confidentiality for core data, making it difficult to share
or centrally train models, which also adds to the challenges
faced by large-scale data-driven algorithms. Therefore, how to
achieve a balance between economic and technical feasibility
is a problem faced by all parties.
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by AI.

3.2 Future trends
3.2.1 Intelligent laboratories and data acquisition

In the future, the seamless integration of automated syn-
thesis platforms, online monitoring devices, and AI algorithms
are expected to play a pivotal role in enhancing the efficiency
and quality of data acquisition (O’Neill, 2021; Seifrid et
al., 2022; Lu et al., 2024). First, the application of high-
throughput intelligent experimental systems can rapidly gen-
erate high-quality standardized data via automated synthesis
platforms and online monitoring devices, effectively alleviat-
ing the problem of data scarcity. Second, data augmentation
and transfer learning techniques can migrate data from other
fields or similar oilfield environments to the scenarios of
the target oilfield, thereby enhancing the applicability of the
models. Additionally, active learning strategies can prioritize
the collection of the most valuable samples for model train-
ing, reducing the blindness of data collection and improving
the data utilization efficiency. Finally, by establishing cross-
laboratory and cross-oilfield data-sharing platforms, dispersed
data resources can be integrated into a unified standardized
database, providing more comprehensive training data for AI
models. These measures not only can resolve the issues of
data scarcity and standardization but also offer more efficient
data support for the future development of oilfield chemicals.

3.2.2 Multi-scale models and Physics-Informed Neural
Networks (PINNs)

To better integrate physical mechanisms with data-driven
approaches, PINNs and multi-fidelity learning methods are
becoming the current research hotspots. To improve the extrap-
olation capabilities of AI models under extreme conditions,
certain improvements can be made. First, embedding the
physical laws of oilfield chemical reactions (such as ther-
modynamic constraints and fluid dynamic equations) directly
into the structure of PINNs models can significantly enhance
their predictive capabilities under extreme conditions. Second,
multi-fidelity learning methods combine high-precision quan-
tum chemical data with large-scale, lower-precision simulation
data to effectively improve model generalization. Third, dy-
namic data feedback mechanisms can collect data in real time

during experiments and field deployments and feed it back into
the models. Through online optimization algorithms, model
parameters can be dynamically adjusted to enhance model
adaptability. By employing these methods, more accurate pre-
dictions and more efficient model optimization can be achieved
in complex oilfield environments, providing enhanced techni-
cal support for the development of oilfield chemicals.

3.2.3 Multi-objective optimization and
economic-environmental co-evaluation

Future oilfield development will undoubtedly place a
greater emphasis on environmental protection and sustainabil-
ity. AI can incorporate multiple indicators such as interfacial
viscosity reduction, oil recovery efficiency, environmental risk,
and economic returns into a single framework for comprehen-
sive assessment. As the concept of green chemistry deepens,
the development of oilfield chemical agents will shift from
a single pursuit of “high oil recovery efficiency” to a multi-
dimensional goal of “low environmental risk, biodegradability,
and low carbon emissions”. By using AI algorithms to find
“Pareto optimal solutions”, companies can make scientifically-
based decisions under the dual pressures of policy and market.

3.2.4 Algorithm simplification and field-deployable
technologies

Even when data and models achieve excellent results in
the laboratory, real oilfield sites continue to face the chal-
lenges of computational power limitations, network latency,
and hardware compatibility. Future efforts can focus on model
pruning and knowledge distillation to construct lightweight
inference models that can run stably on on-site industrial
computers or edge devices. For more complex computational
needs, hybrid cloud or distributed computing architectures can
be implemented, with some tasks transferred to remote data
centers with on-site systems retaining only the essential fast-
response modules, achieving “cloud-edge collaboration”.

3.2.5 Full-process closed-loop and digital twin oilfields

With the continued improvement of data platforms and
automation equipment, the development of oilfield chemicals
can hope to form a complete closed loop of “design-synthesis-
testing-feedback-field deployment”, as illustrated in Fig. 5.
Within the framework of digital twin oilfields, virtual models
and real oilfields can interact in real time through data,
combining online optimization algorithms to refine predictions
of displacement processes and automatically adjust injection
strategies or formulation compositions when necessary, thus
achieving a proactive control of oilfield production. This
will greatly enhance development efficiency and visualization
levels and promote the transition of oilfield production towards
intelligent, low-carbon and efficient operation and maintenance
directions.

Overall, AI has broad prospects regarding the R&D and
application of oilfield chemicals, but breakthroughs are still
needed in data, mechanism coupling, and on-site feasibility.
In the future, the innovative support role of AI for the next
generation of oilfield chemicals can truly be realized through
high-throughput intelligent experimental systems to obtain
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more complete and accurate multi-source data, relying on
multi-scale simulations and physics-informed learning models
to build cross-scale, multi-objective optimization frameworks,
and combining digital twin technologies to achieve seamless
integration between experiments and production. On this basis,
greening and sustainable development will inject new research
momentum into the field, further expanding the application
boundaries of AI-driven oilfield chemicals.

4. Conclusions
The integration of AI into the R&D of oilfield chemicals

heralds a new era of innovation and efficiency. The transfor-
mative impact of AI and outline future directions for this field
can be highlighted in the following key points:

1) Paradigm Shift in Research Methodology: AI-driven ap-
proaches are revolutionizing oilfield chemical develop-
ment by replacing traditional trial-and-error methods.
Through DL and pattern recognition, AI can predict
the molecular properties and screen for novel chemical
formulations tailored to specific reservoir conditions, sig-
nificantly reducing R&D cycles and associated costs.

2) Enhanced Understanding via Multi-scale Simulation:
MLPs and enhanced sampling techniques are providing
unprecedented insights into the behavior of flooding
agents under extreme conditions. These tools enable the
analysis of complex molecular interactions across multi-
ple scales, from nanosecond dynamics at the molecular
level to hour-scale displacements in reservoirs, enriching
our comprehension of intricate mechanisms.

3) Advancements in Intelligent Experimental Systems: The
emergence of high-throughput intelligent experimental
platforms is accelerating the entire development process.
These systems integrate automated synthesis, real-time
detection, and AI-driven decision-making, allowing for
the rapid iteration and optimization of chemical formu-
lations. This integrative approach not only shortens the
development timeline but also enhances the sustainability
and efficiency of the research process.

4) Challenges and Opportunities: Despite the significant
progress, challenges persist in data quality, model in-
terpretability and on-site deployment. Most importantly,
the scarcity of high-quality, standardized data and the
computational demands of complex AI models are hur-
dles that require innovative solutions. However, with
the advancement of cloud computing and digital twin
technologies, the vast potential of AI in this field can
still be realized.

5) Future Directions: Looking ahead, the development of
oilfield chemicals will increasingly emphasize environ-
mental protection and sustainability. AI will continue
to play a pivotal role in multi-objective optimization,
balancing oil recovery efficiency with environmental risk
and economic returns. In addition, the simplification
of algorithms and the development of field-deployable
technologies will be crucial for broader adoption in the
industry. The vision of a fully closed-loop system, from
design to field deployment, supported by digital twin

oilfields, promises to enhance development efficiency
and drive the industry toward intelligent, low-carbon
operations.

In conclusion, AI is not merely a supplementary tool but a
fundamental driver of innovation in oilfield chemical develop-
ment. As technology continues to evolve, its integration into
the industry will likely yield more efficient, environmentally
friendly and economically viable solutions for EOR.
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