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Abstract:
This work introduces a new computational framework aimed at advancing the modeling of
gas transport in confined porous media, particularly shale and tight geological formations
that are characterized by their intricate network of meso- and micro-scale fractures and a
broad distribution of organic pores. Accurate simulation of gas behavior in such media is
challenging due to the complex interactions occurring at high Knudsen numbers, where
conventional continuum-based methods fail and kinetic-theory approach becomes more
suitable. To tackle these complexities, this work presents a lattice Boltzmann framework
tailored for large computational domains with multi-scale pore structures from nano
to micro scales. This framework incorporates slip boundary conditions and features an
innovative multi-block approach to enable efficient simulations over a wide range of pore
sizes, from nanometers to micrometers. The novel contributions of this work include: A
scale-informed grid refinement strategy, the incorporation of shear stress terms, multi-
block evolution algorithm, and a novel classification method for implementing specular
reflection boundary conditions on irregular surfaces. Validation against Direct Simulation
Monte Carlo and Molecular Dynamics data from the literature confirms the model’s
accuracy in predicting gas behavior. Simulations of methane transport in tight porous
media with irregular geometries highlight the framework’s effectiveness in modeling gas
permeability across varying pressure conditions. Apparent permeability results across a
range of Knudsen numbers demonstrate the versatility of this framework in capturing the
physics of gas transport in confined porous media.

1. Introduction
Shales hold significant promise as a source of low-carbon

natural gas and potential seals for the storage of carbon dioxide
and hydrogen fuel, making it crucial to better understand
gas flows within these confined, complex systems (Abedi
et al., 2024). However, the challenges that shales present,
such as heterogeneity, non-classical transport mechanisms,
and phase behavior, hinder accurate simulations of flow and
transport in these tight media. Shales are primarily made up
of ultra-fine-grained rocks with diverse chemical and structural

features, ranging from nanometers to millimeters (Loucks et
al., 2012). In the most extreme cases, nanopores can approach
the size of individual gas molecules, leading to confined
behaviors (Zhao et al., 2022). This confinement intensifies
fluid-particle interactions, causing significant deviations from
bulk fluid properties. Furthermore, studies have shown that
pore roughness plays a critical role in methane transport within
these irregular geometries (Liu et al., 2021). One of the main
challenges in understanding fluid flow in shales is the wide
range of pore sizes, from nano-scale pathways to millimeter-
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scale fractures (Carrillo et al., 2020; Wu et al., 2024). As
described by Mehmani et al. (2021), in the absence of a
clear separation of scales, this disparity makes scale translation
techniques, such as homogenization methods ineffective. In
such systems, it may be necessary not only to understand the
various scales individually but also to study their collective
behavior, which arises from intricate intra-scale interactions.

Transport mechanisms are typically characterized by the
Knudsen number (Kn), which is the ratio of the mean free
path of molecules to the characteristic length of the medium
(Li et al., 2022). When Kn < 0.001, transport can be accurately
described using continuum mechanics, such as the Navier-
Stokes equations with no-slip boundary conditions. In the
range between 0.001 < Kn < 0.1, the flow enters the slip
flow regime, where the Navier-Stokes equations with slip
boundary conditions can still provide reasonable predictions
(Dongari and Agrawal, 2012). As Kn increases to 0.1, the flow
transitions into a regime between slip flow and free molecular
flow, where kinetic theory becomes a reliable approach for
modeling gas transport (Rapp, 2016). At Kn > 10, transport is
in the free molecular regime. Given the vast range of scales
present in shale systems, a multi-scale modeling approach is
essential to account for the various scales and to understand
their system-level behavior (Rustamov et al., 2023; Liu et
al., 2024).

The lattice Boltzmann (LB) method has emerged as a
promising alternative to continuum approaches for modeling
transport over the last several decades (Su et al., 2017).
The LB equation is a discrete formulation derived through
certain simplifications of the Boltzmann transport equation
(Succi, 2001). As a mesoscopic method, the LB approach
describes the evolution of probability density functions of par-
ticles and can recover macroscopic properties such as pressure
and velocity (Bocanegra et al., 2023). Due to its simplicity, LB
is often more computationally efficient than other numerical
techniques, such as finite volume methods, and lends itself
to efficient parallel algorithms (Latt et al., 2020). While LB
is well-suited for bridging the gap between free molecular
and continuum scales, the challenge of solving high-fidelity
models across multiple scales calls for additional strategies
to handle the computational cost and memory requirements.
One such technique is the multi-block method, which effi-
ciently accelerates the convergence of numerical solutions by
solving the problem on non-uniform grids. Our motivation
for employing multi-block methods stems from the need to
handle large domain sizes and irregular geometries commonly
encountered in shales and other tight porous media. In such
cases, the standard LB method can become computationally
expensive as finer resolutions are required to capture small-
scale details accurately. A similar approach to the multi-block
method is the multi-grid method, which comes in two main
types: Geometric and algebraic. Geometric multi-grid meth-
ods rely on predefined, structured grids typically generated
based on the geometry of the problem. These methods use
known geometric information to coarsen grids and interpolate
between them (Chiu and Lin, 2023). In contrast, Algebraic
Multi-Grid (AMG) methods do not depend on geometric
information. Instead, AMG constructs coarse grids, and the

multi-grid hierarchy based on the algebraic properties of the
matrix arising from problem discretization. This flexibility
enables AMG to handle unstructured grids or irregular meshes,
but it can also make the problem setup more computationally
expensive (Adams and Chartier, 2005). By combining the
LB equation with multi-grid or multi-block approaches, the
computational load can be significantly reduced, allowing for
faster convergence. However, multi-block methods are better
suited for complex geometries, such as those found in shales
and tight systems (Zhang et al., 2013). The aim of the current
study is to develop a scale-informed grid refinement strategy
and a multi-block LB method capable of simulating gas
transport at high Knudsen numbers in complex geometries.

Over the years, several grid refinement strategies have been
proposed for LB. One of the earliest attempts to extend LB to
arbitrary geometries was by Nannelli and Succi (1992), who
used a finite volume discretization method to solve flow prob-
lems in relatively simple geometries. Building on this founda-
tion, Chen et al. (2005) developed grid refinement algorithms
that incorporated locally embedded grids to conserve mass and
momentum through a volumetric formulation. In their method,
coarse cells "explode" into finer cells while conserving mass
and momentum. The distribution functions of fine cells after
explosion are computed using linear interpolation from the
coarse cells. Following the streaming and collision operations
in fine cells, the distribution functions are recombined to
update the coarse cells. However, this method is limited to
relatively simple geometries and lacked a detailed discussion
on convergence and runtime compared to standard LB. Later,
Cheng and Hung (2004) proposed a method to decouple the
computational mesh from the discretization of momentum
space, where the collision and streaming steps are performed
at grid points of the computational mesh, and Lagrange inter-
polation is used to determine the new distribution function.
Unlike the approach in Chen et al. (2005), their method
eliminates the need for explosion and coalescence steps since
lattice points are decoupled from the computational mesh,
meaning that underlying lattice structure remains uniform for
streaming operations. After streaming, Lagrange interpolation
is used to compute density distribution at the non-uniform
mesh points before collision steps are performed. Although
interpolation introduces an additional computational step, it
provides greater flexibility in mesh refinement. Moreover,
interpolation methods have been shown to improve the ac-
curacy of LB when transitioning between coarse and fine
grids. This was highlighted by Guzik et al. (2013) who
demonstrated that advanced interpolation techniques improved
both computational performance and stability in simulations.
Unlike previous studies, they implement different collision
operators with non-uniform meshes and provide comprehen-
sive error analysis based on the level of refinement. Other
notable contributions include the work of Liu et al. (2022)
who developed an Adaptive Mesh Refinement library in C++
for complex geometries and Ahmed et al. (2023) who extended
the multi-block algorithm to moving boundaries for simulating
scenarios such as of settling of a solid sphere in a fluid, the
motion of an insect wing in air, and the hovering of elliptic
airfoil. These studies demonstrate that the LB method is fully
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capable of solving complex physics on non-uniform grids with
sufficiently advanced grid refinement strategies.

A key challenge in the multi-block LB method is the
construction of non-uniform meshes. The quadtree structure
has been widely used for mesh refinement in the literature
(Perumal and Koh, 2023; Prouvost et al., 2024). In two
dimensions, the quad-tree structure, and in three dimensions,
the octree structure, are hierarchical data structures based on
the principle of recursive decomposition. These grids can
be dynamically and automatically generated using simple
algorithms that apply quad-tree refinement based on specific
criteria (Shephard and Georges, 1991). Chen et al. (2011)
implemented a quadtree structure for refining meshes in the
Lattice Boltzmann method, using linear interpolation to deter-
mine unknown distribution functions at the interface between
grid cells of different levels. They implemented back-and-
forth error compensation and correction, where post-collision
distribution streamed back and forth using positive and neg-
ative discrete velocity vectors. This process involved linear
interpolation applied to post-streaming and post-collision dis-
tributions, and normal streaming is conducted on the post-
interpolation distributions. Another significant implementation
of quad-tree is by Foroughi et al. (2013) who used the
"cell explosion and coalescence" technique similar to Chen et
al. (2005), which avoids interpolation while simulating flow in
porous media. One of the most comprehensive applications of
the quadtree based multi-block LB method comes from Liu et
al. (2023) who introduced a novel buffer zone layout between
different grid levels and a novel interpolation mechanism.

2. Simulation framework

2.1 Lattice Boltzmann method
The simulation framework is based on the Boltzmann

transport equation, which is expressed as (Mohamad, 2019):

∂ f
∂ t

+ ccc
∂ f
∂ rrr

+
FFF
m

∂ f
∂ccc

= Ω (1)

A system’s statistical representation can be described by
a distribution function denoted as f (rrr,ccc, t) which describes
the number of molecules at a given time t, with position rrr
and velocity ccc. The derivation of Eq. (1) can be found in
Mohamad, 2019. When an external force FFF is applied to a
gas molecule of mass m, it alters the molecule’s velocity from
ccc to ccc+FFFdt, and its position from rrr to rrr+cccdt. The difficulty
of solving the continuous Boltzmann equation arises from the
collision term Ω. He and Luo (1997) proposed the following
linearized solution:

fα (x+ eeeα δ t, t +δ t)− fα(x, t) = Ωα ( f (x, t))+δ tFα(x, t) (2)
Here, fα(x, t) represents the density distribution function

in the direction α at position x and time t, Ωα is the collision
operator, and FFFα is the force term. In the two-dimensional 9-
velocity D2Q9 lattice model, the microscopic velocity vectors
are defined as (Lallemand and Luo, 2000):

eeeα =


(0,0) α = 0
(1,0),(0,1),(−1,0),(0,−1) α = 1,2,3,4
(1,1),(−1,1),(−1,−1),(1,−1) α = 5,6,7,8

(3)

The collision term in Eq. (2) is the multi-relaxation
time collision operator (Lallemand and Luo, 2000;
D’Humières, 2002), which is given by:

Ωα ( f (xxx, t)) =−∑
β

(
MMM−1SSSMMM

)
αβ

(
fβ − f eq

β

)
(4)

where MMM is the projection matrix that maps discrete velocities
onto moment space. Collisions occur in moment space with
different relaxation times for each discrete direction, and the
resulting moments are transformed back into velocity space.
The multi-relaxation time operator is a generalization of the
well-known Bhatnagar-Gross-Krook (BGK) collision model,
and it addresses numerical stability concerns. The matrix S is
the diagonal relaxation matrix, given as:

S = diag
(
τρ ,τe,τε ,τ j,τq,τ j,τq,τs,τs

)−1 (5)
In Eq. (5), τρ and τ j ensure the conservation of mass and

momentum and are set to 1.0. τe and τε are related to energy
and its square, and are set to 1.1 and 1.2, respectively. τs is
related to shear viscosity, while τq relates to slip velocity. The
impact of confinement on shear viscosity and slip velocity is
described by the following equations (Li et al., 2010; Michalis
et al., 2010):

τs =
1
2
+

√
6
π

HKn

1+2Kn
(6)

τq =
1
2
+

3+A2π (2τs−1)2

8(2τs−1)
(7)

Here, H represents the local characteristic length (i.e., pore
size), Kn is the local Knudsen number, and A2 is the coefficient
for the second order slip velocity boundary condition (Wang
and Aryana, 2020) which will also appear in Eq. (12) in section
2.3. The equilibrium distribution in Eq. (2) is obtained via
the Hermite expansion of the Maxwell-Boltzmann distribution
function (Chen et al., 1992):

f eq
α (x, t) = ωα ρ(x, t)

[
1+

eα u(xxx, t)
c2

s
+

(eα u(xxx, t))2

2c4
s

− u(xxx, t)2

2c2
s

]
(8)

In the equation above, the weighting factors ωα = 4/9
for α = 0, ωα = 1/9 for α = 1, . . . ,4, and ωα = 1/36 for
α = 5, . . . ,8, are for the D2Q9 lattice. Here, cs = 1/3 represents
the lattice speed of sound, and ρ(x, t) and uuu(xxx, t) are the
macroscopic density and velocity respectively.

2.2 Regularization
To minimize errors introduced by confinement, the non-

equilibrium distributions are regularized by projecting them
onto the second-order Hermite space using the following
equation (Zhang et al., 2006):
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Fig. 1. Combination of halfway bounce-back and specular
reflection: Black shows solids and white shows pores.

f̃α = ωα

[
1

2c2
s
H (n)

(
eα

cs

)
: ∑

β

f noneq
β

eβ ⊗ eT
β

]
(9)

where f noneq
β

is the non-equilibrium part of the distribution
function, and H (n), with n = 2, represents the second-order
Hermite polynomial expressed as:

H (2) = e⊗ eT −δ (10)
In the above equation, δ is the Kronecker delta function.

Substituting Eq. (9) into Eq. (4), Eq. (2) can be rewritten in
the following form, excluding the force term:

fα (x+ eα δ t, t +δ t) = f eq
α + f̃α −∑

β

(
MMM−1SSSMMM

)
α,β

f̃β (11)

2.3 Boundary conditions
The second order slip boundary condition is given by:

us = A1Kn
∂u
∂n

∣∣∣∣∣
w

−A2K2
n

∂ 2u
∂n2

∣∣∣∣∣
w

(12)

where A1 and A2 are the first and second order slip coefficients,
respectively, n is wall normal vector and w denotes derivative
of the quantity at the wall. The values of slip coefficients A1 =
0.6 and A2 = 0.9 are adapted from (Wang and Aryana, 2020).
In confined systems, to capture this slip effect using LBM, we
apply a combination of the halfway bounce-back and specular
reflection boundary conditions, as proposed by (Succi, 2002;
Guo et al., 2007):

f HBB
α = r fα

f SR
α = (1− r) fα

(13)

In the above equations, fα is the distribution function
colliding with the wall, f HBB

α is the halfway bounce-back
component, and f SR

α is the specular reflection component. A
schematic of this setup is shown in Fig. 1. The combination
coefficient r is derived from the second order slip boundary
condition by (Guo et al., 2008):

r =

[
1+

√
π

6
A1 +

τ ′s(0)
8
(
τs(0)− 1

2

)]−1

(14)

where τ
′
s(0) is the first-order derivative of the shear viscosity

term with respect to y at the wall, hence (0). As indicated
by Eq. (13), when r approaches unity, the halfway bounce-

back component dominates, leading to the disappearance of
slip velocities. The f HBB

α component in Fig. 1 is simly the
opposite of fα , but determining the direction of specular
reflection becomes challenging in irregular geometries. Liu et
al., 2021 classified the boundaries into 12 different types based
on geometry and calculated the components of the basis vector
using the following equation:

eeeSR
α = eeeα −2(eeeα nnn)nnn (15)

where eeeSR
α is the basis vector for specular reflection, eeeα is the

incoming particle direction, and nnn is the vector normal to the
boundary, which is calculated as follows:

−→n =
∑

9
α=2
−→eα∣∣∑9

α=2
−→eα

∣∣ if −→x +−→eα ≡
−→
1 (16)

Here, −→x represents the position of fα , and
−→
1 denotes

the boundary position. In many cases, irregular geometries
do not fit into any of the 12 boundary types identified by
Liu et al. (2021). In this work, we extend the boundary
classification, identifying 52 different types. As shown in Fig.
1, a 3 × 3 section of the image is used to determine the
directions of bounce-back and specular reflection. Suppose
boundary cells are marked as 0, and fluid cells as 1; the
image section represents a 3 × 3 Boolean matrix. Column-
wise linearization of this matrix produces a Boolean vector,
which can be represented as a 9-digit binary number ranging
from 0 (all boundary cells) to 511 (all fluid cells). Out
of 512 possible cases, we select those where the central
nodes are fluid and have at least one adjacent boundary cell,
reducing the possibilities by half. Additionally, we ignore
cases where the local pore size Eq. (1), i.e., when a fluid
cell is sandwiched between two boundary cells, as this lacks
sufficient resolution. For the remaining 138 cases, the normal
vector direction is calculated using Eq. (16). If the magnitude
of the normal vector is not a real number (due to division
by zero), those cases are ignored since specular reflection
cannot be determined. Otherwise, the boundary type is stored
as a decimal number corresponding to its binary format, along
with the axis-aligned normal and specular reflection direction
vectors. This process is illustrated in Fig. 2. The stored data
is later used as a lookup table for porous media simulations.
We scan the large binary image in a 3 × 3 window, convert
it to its decimal equivalent, and compare it against the pre-
calculated table. If the number is not present, that section
is removed from the fluid region. This approach has two
major advantages. First, storing boundary types as decimal
values significantly reduces the computational time required
to identify the correct type and specular reflection direction.
Second, it enhances the robustness of the simulations in porous
media by allowing for more complex boundary shapes. Sample
3×3 images representing boundary types are shown in Fig. 3.

3. Multi-Block LB method

3.1 Resolution analysis
The Lattice Boltzmann Method is primarily designed for

uniform meshes. Hence, for non-uniform meshes, special att-
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Fig. 2. Boundary classification methodology: black shows solids and white shows pores.

Fig. 3. Example boundary types: Black shows solids and white
shows pores.

ention is required to conserve mass and momentum. To address
this, we first decompose the uniform mesh using a quad-
tree algorithm. The standard quad-tree algorithm, however,
creates abrupt transitions at the interface between grids of
different levels, which reduces the accuracy of interpolation.
Additionally, tight pores require higher resolution to accurately
capture slip velocity near the boundary.

When the simulation domain contains a wide range of pore
sizes, the grid cell resolution δxa.k.a lattice spacing, must
be selected according to the smallest pore, i.e., the highest
Knudsen number. This implies that the required lattice spacing
is inversely proportional to Knudsen number. This means
that domain decomposition should account for the minimum
required resolution for each pore size. To address this, we
conducted a study to correlate grid resolution to Knudsen
number under constant pressure and temperature. An ensemble
of simulation cases for methane flow in simple channels with
diameters ranging from 5 to 1,000 nm was generated. Each

channel was discretized into grids with mesh sizes ranging
from 11 to 511 in the y-direction. The resulting grid resolution
for a 5 nm channel ranged between 0.45 nm and 0.005 nm.
Around 1,300 simulations were executed, and the results were
collated for analysis.

As shown in Fig. 4, increasing the mesh size in the y-
direction leads to more accurate velocity profiles, particularly
near the boundary. To find the optimal mesh size, we analyzed
the second-order derivative of velocity at the boundary with
respect to mesh size for each channel size (see Fig. 5(a)). By
selecting a threshold of 10−5, we determined the required mesh
size in the y-direction for each channel from 5 nm to 1000
nm. In the final stage of the resolution analysis, we calculated
the critical resolution as D/Ny,

where D is the channel width, and Ny is the y-direction
mesh size, determined from the second derivative of velocity.
The Knudsen number for each channel width was calculated
using Kn = λ/D, where λ is the mean free path. As seen
in Fig. 5(b), there is a strong correlation between the critical
resolution and the Knudsen number. Thus, from Fig. 5(b), it
can be concluded that:

D
Ny

= 0.00956K−1
n (17)

The above correlation does not suggest that the Knudsen
number is inherently related to mesh resolution or that it
possesses a direct physical interpretation. Instead, it indicates
that for a given Knudsen number, an adequately fine mesh
is required to accurately capture transport behavior. As the
Knudsen number increases, the mesh must be refined further
to maintain accuracy. The purpose of the resolution analysis
presented in this section is to determine the level of mesh
refinement necessary for the LB method to accurately model
slip velocity. In the subsequent section, this correlation will
be utilized to develop scale-informed grid refinement.
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( ) ( )

Fig. 4. Velocity profiles in different sized slit nano-channels: (a) 5 nm and (b) 1,000 nm.

)( (  )

Fig. 5. Results of resolution analysis: (a) second-order derivative of velocity at the boundary and (b) correlation between critical
resolution and Knudsen number.

3.2 Local Knudsen number
In simple channels, such as those used in our resolution

analysis, determining the Knudsen number is a relatively
straightforward task. However, in complex geometries, vari-
ations in pore diameter complicate the computation of the
Knudsen number. Since our focus is primarily on complex
porous media, it is important to define how the local Knudsen
number is calculated. We begin with a binary uniform repre-
sentation of the porous media, such as the one shown in Fig.
6, where pores are represented as white regions and grains as
black. Using a morphological thinning operation in MATLAB,
we generate a skeleton of the pore network. This process can
also be performed using the OpenCV library in Python. Once
the skeleton is obtained, we calculate the Euclidean distance
from the skeleton to the pore walls (shown in the top-right
image of Fig. 6). By multiplying the distance transform by the
skeleton, we obtain the distance from the medial axis (i.e., the
skeleton) to the pore wall, as shown in the bottom-right image
of Fig. 6. Next, for each pore pixel, we identify the nearest
point on the medial axis and define twice the distance from
that point (on the medial axis) to the pore wall as the local
pore size. Finally, the local Knudsen number is determined as
the ratio of the molecule’s mean free path to the local pore

size, as illustrated in the bottom-left image of Fig. 6.

3.3 Domain decomposition
The core of our domain decomposition algorithm is based

on the quad-tree structure. A binary image representing the
simulation domain is used as input, where cells with a value
of 0 correspond to solid regions, and cells with a value of 1
represent fluid nodes. The ratio of solid nodes to all nodes in
a quadrant is denoted by β . In its simplest form, the algorithm
divides the image into four quadrants at each iteration, recal-
culating β until a desired condition is met, without considering
the critical resolution. Once the algorithm converges, the
resulting quadrants form the cells of the computational mesh.
As depicted in Fig. 7, we add an additional condition for grid
resolution dx. If the resolution of a given quadrant exceeds the
critical value, the recursive function further divides it, ensuring
that the required accuracy is maintained.

3.4 Relaxation parameter
As described in Eq. (6), the shear viscosity term τs is a

function of the Knudsen number. In the multiblock LB method,
this term also depends on the grid size. In the literature, the
relationship between the shear viscosity on coarse and fine g-
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Fig. 6. Local Knudsen number calculation from binary image of porous media.
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Fig. 7. Binary image decomposition flowchart.

rids, τs, is described as (Foroughi et al., 2013):

τ
f

s =

(
τ

c
s −

1
2

)
δ tc

δ t f +
1
2

(18)

where the superscripts f and c denote fine and coarse grid
cells, respectively. This method works when the Knudsen
component of the relaxation parameter is neglected. However,
in confined media, rescaling relaxation parameters does not
result in a smooth velocity profile near the walls. To address
this issue, we combine Eqs. (6) and (18). Consider a simple
2D flow domain, as shown in Fig. 8, consisting of three levels
of grid cells. To calculate the τs distribution in this domain,
we create three copies of the same domain with uniform
meshes at different levels. At the base lies the image with
the coarsest mesh and its respective resolution. Using image
skeletonization, we calculate the distance transform, which is
then used to determine the local pore size and, ultimately, the
local Knudsen number. Finally, using Eq. (6), we calculate t-

Fig. 8. Schematic of building the shear viscosity term.

he local τs distribution and Eq. (18) to rescale it at the correct
level. Next, the image is resized to achieve a finer grid,
and the process is repeated. In the end, all three scales are
combined by selecting the corresponding values from each
scale. This method of calculating τs results in a more robust
and accurate multi-scale local shear stress distribution. The
image skeletonization, resizing, and distance transform were
performed using MATLAB and OpenCV’s C++ API (Bradski
and Kaehler, 2000).

3.5 Simulation algorithm
Due to the nature of the LB method, distribution functions

cannot stream across the interface between cells of different
sizes, because the cell size and time step are inherently linked.
Specifically, the time step for coarse cells is n times the time
step for fine cells, where n represents the ratio of the coarse
to fine cell size. Consequently, fine cells must stream and
collide n times for every single streaming and collision event in
coarse cells. Furthermore, at the interface between coarse and
fine cells, distribution functions cannot stream directly without
interpolation. Inspired by the interface layout proposed by Liu
et al. (2023), we developed a method that eliminates the need
for time interpolation by introducing additional cells in the
buffer layers, as shown in Fig. 9. The buffer zone consists
of both fine and coarse grid cells at the interface. The main
coarse cells (bottom) and their mirror image, referred to as
coarse buffer or ghost cells (top), are highlighted in red in F-
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Algorithm 1: Evolution step of multi-block LB
method

1 Function evolutionStep(L)
Input : Level L
Output : Updated Grid

2 R← 2M−L;
3 for i = 0 to R−1 do
4 Call collide(L);
5 ftemp← f ;
6 Call stream(L);
7 Call boundaryConditions(L);
8 end
9 if L > 1 then

10 Recursive Call: evolutionStep(L−1);
11 end
12 if L ̸= M then
13 Interpolation:

interpolateBlockInterface(L,L+1);
14 end
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Fig. 9. Buffer layout at the interface of different grid levels.

ig. 9. Similarly, the top two layers of green cells represent
the main fine grid cells and their mirror image, the fine buffer
cells, which are located below the main cells. In this setup,
coarse ghost/buffer cells encapsulate the fine main cells, while
fine ghost/buffer cells reside within the main coarse cells. This
arrangement allows the streaming of coarse cell distribution
functions into the fine region and vice versa. At the end of
a time step, undetermined distribution functions exist within
the buffer cells. For coarse buffer cells, these distribution
functions can be determined by averaging the values of the
constituent fine cells. However, fine buffer cells require a
more rigorous approach, which is achieved using a 9-point
bi-cubic interpolation method implemented with the AlgLib
open-source C++ library (Bochkanov, 2024). Attempts were
made to implement the interpolation equations from Liu et
al. (2023), but their validity could not be verified. In practice,
the velocity profiles could not be accurately recovered using
those equations. It is important to note that the thickness of the
buffer zone depends on the number of decomposition levels.
For example, if there are only two levels of grid cells, the
buffer zone will consist of 4 fine cell layers. For more than
two levels, the general rule for determining the buffer zone
thickness is Z = 2M , where M is the number of levels. For a
three-level grid, the buffer zone will be as thick as 8 fine-level
cells. This is because, in a 3-level grid, a single streaming

and collision operation in the coarsest cells corresponds to
4 operations in the mid-level cells and 8 operations in the
finest-level cells. To bring everything together, Algorithm 1
outlines a single iteration of the multi-block LB method. We
define the coarsest cells as level L = M and the finest cells as
level L = 0. Initially, the evolutionStep function is called with
L = M to perform collision and streaming operations in the
coarsest cells, where the number of collision and streaming
steps in each level is defined by R = 2M−L. The evolutionStep
function is then recursively called for finer levels as long as
L > 1. Interpolation begins at the interface between the finest
cells (L = 0) and L = 1 cells, working its way up until all
undetermined buffer zones are interpolated. This method is
highly effective, regardless of the number of levels involved.

3.6 Post-processing
The final stage of the multi-block LB method involves

interpolating velocity fields from multi-block simulations to
refine the solutions and enhance simulation accuracy. Each
coarse cell is subdivided into four child cells, and the same
interpolation technique described in the previous section is
applied to compute the velocity and density in each child cell.
This interpolation uses all eight neighbors of the parent cell
and is based on a 9-point bi-cubic method. This interpolation
step is performed only at the end of the simulation, just before
outputting the results, and it incurs minimal computational
expense. Omitting this step results in a slight decrease in
the accuracy of velocity fields but significantly reduces mem-
ory demands, which can be advantageous for applications
such as solute transport and reactive transport simulations
(Mostaghimi et al., 2016; Liu and Mostaghimi, 2017).

To highlight the significance of interpolation-based post-
processing, we simulate flow in a 32 × 32 grid using both
uniform and multi-block LB methods. As shown in Figs. 10(a)
and 10(b), post-processing smoothes the velocity distribution,
resulting in a profile indistinguishable from that of the uni-
form grid LB method. However, in Fig. 10(c), the child cell
velocities are set equal to the parent cell without interpolation,
leading to a less accurate representation. Furthermore, Fig.
10(d) demonstrates that without post-processing, the velocity
profile becomes stair stepped. For the remainder of this work,
we use the post-processed results of the multi-block LB
method.

4. Results

4.1 Grid refinement
We begin by comparing different levels of grid refinement

within a 512 × 512 domain. This domain represents a two-
dimensional cross-section of a narrowing tube with sinusoidal
boundaries, as illustrated in Fig. 11(a). This domain was
specifically designed to capture the sharp variation in Knudsen
number while introducing additional geometric complexity
through the sinusoidal boundaries. At the fluid entrance (left)
and exit (right), a buffer zone with a thickness of 50 pixels
is applied to maintain periodicity. By setting the resolution to
δx= 10−9 m the local pore size at each pixel can be calculated
as described in Fig. 6. Once the local pore size is determined,
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Fig. 10. Multi-block LB method with and without post-processing: normalized stream-wise velocity distribution of (a) uniform
grid LB, (b) multi-block LB with post-processing, (c) multi-block LB without post-processing and (d) cross sectional velocity
profiles.
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Fig. 11. Narrowing pore: (a) binary image, and (b) Knudsen number distribution.

the local Knudsen number can be easily computed, which, in
this case, lies entirely within the slip flow regime (Fig. 11(b)).
Using the domain decomposition flowchart described earlier
(see Fig. 7), the image is refined at different levels based on
the Knudsen number.

The finest cell is defined as level 0. As the cell size
increases, the level increases correspondingly, with the maxi-
mum level configurable during the refinement process. In Fig.
12(a), the maximum level is set to 1, resulting in only two
levels of grid cells. In Figs. 12(b) and 12(c), the maximum
levels are set to 2 and 3, respectively. The results clearly
demonstrate that cells in regions with high Knudsen numbers
are maintained at finer levels to prioritize accuracy over
computational performance, achieving the intended objective.

4.2 Validation
Now that we have established the mesh refinement and

simulation algorithm, we must validate the accuracy of both
the multi-block and single-block LB methods. First, we val-
idate the methods against results from the Direct Simulation
Monte Carlo (DSMC) method at different Knudsen numbers.
We set up a square 64 × 64 domain with the top and bottom
boundaries defined by a combination of halfway bounce-back
and specular reflection, while the inlet and outlet are set
to periodic conditions. At 2.0 MPa pressure and 300.0 K
temperature, the resulting mean free path is calculated using
the following equation:

λ =
Mw√

2ρNAπd2
(19)
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Fig. 12. Mesh refinement at different levels: (a) 2-level grid, (b) 3-level grid and (c) 4-level grid.

( ( (

Fig. 13. Validation of stream-wise velocity profiles at different Knudsen numbers using single-block and multi-block LB
methods: (a) Kn = 0.01, (b) Kn = 0.1 and (c) Kn = 1. DSMC results are obtained from Suga (2013).

where Mw is the molecular weight of methane, NA is Avo-
gadro’s constant, d is the molecular diameter of methane, and
ρ is the density, which is calculated using the Peng-Robinson
equation of state. We set the Knudsen number to 0.01, 0.1,
1.0 by adjusting the pixel resolution in the 64 × 64 domain.
We ran 3 simulations, each corresponding to one of the
Knudsen numbers, using both the single-block and multi-block
LB methods. The stream-wise velocity profiles from these
simulations were then compared with DSMC data obtained
from Suga (2013). As expected, the velocity profile flattens
as the Knudsen number increases due to the pronounced slip
effect at the boundaries (see Fig. 13). There is no noticeable
difference between the results from the single-block and multi-
block LB methods and the DSMC results with an average error
of 1.6%.

Although the LB method, with appropriate boundary treat-
ments and Knudsen corrections, is well-suited for simulating
gas flow in the slip-flow regimes, it becomes less reliable
as the Knudsen number increases. In the transitional flow
regime (Kn > 0.1), the influence of the Knudsen layer become
significant, making LBM less reliable for accurate simulations
(Suga, 2013). In this regime, molecular dynamics (MD) is
generally more suitable technique. The Kn = 1.0 case shown
in Fig. 13 is intended merely as a demonstration of how LBM
can approximate DSMC results and does not necessarily reflect
the method’s effectiveness at higher Knudsen numbers.

The second validation case involves the domain shown
in Fig. 14(a). Molecular simulation data for this case was
obtained from Suga (2013). The simulation was conducted
in a 1024 × 1024 domain with Kn = 0.15, representing

the transitional flow regime. The presence of a triangular
obstacle creates resistance, reducing the overall velocity. In
Fig. 14(b), the normalized stream-wise velocity profiles from
the uniform grid and multi-block LB simulations (with a
maximum of 2 grid levels) are compared with MD results
obtained from literature. Overall, there is a good match among
the profiles, though slight deviations are observed with an
average deviation of 3.3%. These deviations are likely due
to restricting the Knudsen number to a constant value of 0.15
across the entire domain, whereas the Knudsen number should
ideally vary depending on the pore tightness.

4.3 Computational performance
To assess the computational efficiency of the multi-block

LB method compared to the uniform grid LB method, we
set up several uniform computational domains. Each domain
contains a circular obstacle at the center to simulate complex
boundaries. The domain sizes vary from 64 × 64 to 1024 ×
1024, with the obstacle radius set to 1/8 of the domain size.
The uniform grid resolution is 1 nm. Each domain is refined
using the method shown in Fig. 7 to generate a multi-block
grid with varying grid resolutions. An example pair of 64 × 64
domains is shown in Fig. 15. We generate five pairs of domains
by doubling the size up to 1024 × 1024. Next, we perform
simulations of methane transport with periodic inlet and outlet
boundary conditions under a constant pressure of 2 MPa and
a temperature of 300 K for both uniform and multi-block do-
mains. In total, 10 test simulations are run: Five using uniform
domains and five using multi-block domains. The simulations
are executed on a 64-bit Intel Xeon W-2275 processor, initially
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(a) (

Fig. 14. Validation of stream-wise velocity profiles: (a) simulation domain setup and (b) normalized streamwise velocity profiles
at the inlet. MD data was obtained from Suga (2013).
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Fig. 15. Simulation domain for runtime tests: (a) uniform binary simulation domain with circular obstacle and (b) non-uniform
domain after refinement.

using a single core for 100 timesteps, with the average CPU
time recorded as the runtime per timestep. We then repeat the
simulations using 4 and 8 CPU cores in parallel, calculating
the average runtime per timestep for each configuration. The
results, plotted in Figure 16, show the average runtime per
timestep (y-axis) against the domain size in the flow direction
(x-axis). For smaller domains, there is no discernible difference
between the uniform grid LB and multi-block LB methods
due to the overhead introduced by the interpolation operation
in the multi-block LB method. However, as the domain size
increases, the multi-block method significantly outperforms
the uniform grid LB method. Additionally, Figs. 16(b) and
16(b) show that the multi-block method is as scalable as the
uniform grid LB method. The key takeaway from the runtime
study is that the multi-block method is most suitable for large
domains, while the uniform grid LB method performs equally
well in small domains. In the next section, we will demonstrate
that the multi-block method generally converges to the same
tolerance faster than the uniform LB method, which provides
an additional computational advantage.

4.4 Flow in complex systems
In this section, we generate a complex porous medium

using random Gaussian noise. The noisy image is filtered with

a 2D Laplacian of Gaussian filter and binarized within a 1024
× 1024 domain. The domain resolution is set to 1 nm per
pixel, resulting in 1024 nm by 1024 nm. We then extract the
skeleton and calculate the local pore size, which is used to
determine the local Knudsen number. The binary image and
its corresponding Knudsen number distribution are shown in
Fig. 17.

We perform LB simulations of methane transport with
and without grid refinement at 2 MPa pressure and 300 K
temperature. The porosity of the binary domain is around
68.73%, resulting in 720,697 active cells. The 2-level grid
refinement reduced the total number of active cells to 493,792,
including the buffer cells, representing a 31.5% reduction from
the uniform grid approach. Fig. 18 (top and middle rows)
presents the distribution of methane flow velocity magnitude
(m/s) for both the uniform grid and multi-block LB simula-
tions. To highlight the primary flow pathways, we applied a
threshold of 6.010−6 and filtered the velocity as shown in the
right columns of the top two rows in Fig. 18. To compare the
multi-block simulation to results with those from the uniform
grid, we computed the absolute difference, which is shown
in Fig. 18 (bottom left). Additionally, we calculated the errors
between uniform grid and multi-block simulation results using
Eq. (20):
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Fig. 16. Runtime of a single time-step for the proposed multi-block and uniform grid LB methods: (a) runtime on a single
CPU, (b) 4 CPUs and (c) 8 CPUs.
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Fig. 17. Complex pore system: (a) binary media and (b) local Knudsen number distribution.

Error =
|uug−umb|

uug,max−uug,min
×100 (20)

where uug and umb denote the velocity magnitudes from the
uniform grid and multi-block LB simulations, respectively,
while uug,max and uug,min represent the maximum and minimum
velocity magnitudes in the uniform grid LB simulation. The
error distribution is shown in Fig. 18 (bottom right), with a
mean error of 0.07%.

As mentioned in Section 4.3, the multi-block LB method
converges faster than uniform grid LBM. This is evident in
Fig. 17(a), which shows that, for the same domain (Fig. 17(a)),
the multi-block LB method reached a convergence tolerance
of 10−6 in 8,850 steps, whereas the uniform grid LB method
required 11,935 iterations to achieve the same tolerance. This
shows that the multiblock method converged 25% faster.
However, the extent of this improvement depends on the
geometric complexity and the level of grid refinement applied.
To further assess the capability of the multi-block method,
we conducted a set of simulations in the same domain (Fig.
17(a)) under varying pressures from 2 to 6 MPa at a constant
temperature of 300 K. We then calculated the permeability at
each pressure and compared the results with those obtained
using the uniform grid approach. Fig. 19(b) shows apparent
permeability as a function of the inverse of mean pressure.
The non-linear behavior of this curve is consistent with the

findings of Frouté et al. (2020). The average relative error in
permeability between the uniform grid and multi-block LB
methods was approximately 0.47%, further confirming the
accuracy and reliability of the multi-block method.

5. Conclusions
The proposed multi-block lattice Boltzmann method has

been shown to be an accurate and computationally efficient
approach for simulating gas transport in high Knudsen number
regimes. The key contributions of our work are as follows:

1) A Knudsen number-driven grid refinement strategy is
proposed to maintain accurate slip velocity in confined
environments.

2) The shear stress component in the relaxation matrix is
calculated by individually combining different grid levels
and scaling them using the coarse and fine grid time steps,
δ t.

3) A modified evolution algorithm is introduced, which does
not require time interpolation.

4) A new method is presented for classifying boundary types
for the specular reflection boundary condition in irregular
geometries.

Both multi-block and uniform grid approaches were val-
idated using Direct Simulation DSMC and MD simulations
from the literature 1.6% and 3.3% of average errors were
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Fig. 18. Gas transport in complex porous media. Top row: simulation results of uniform grid LB, middle row: simulation
results of multi-block LB, bottom row: absolute difference between uniform grid and multi-block LB methods (left) and error
histogram (right).

( (

Fig. 19. Convergence profiles (a) and apparent gas permeability of the complex porous media versus inverse pressure (b).
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reported in simple channel and flow around triangular obstacle,
respectively. It was shown that not only is the multi-block LB
method significantly faster per iteration, but it also converges
in far fewer iterations, making it a more favorable approach.
We also demonstrated simulation results for methane transport
in complex porous media generated using random Gaussian
noise. Additionally, we showed that the multi-block method
accurately predicts the apparent gas permeability in complex
porous media under varying pressures. That said, there are
some limitations to our method that should be acknowledged.
Firstly, although the LB method is well suited for rarefied
systems, its reliability decreases at Kn > 0.1, and at Kn >
1.0, its suitability becomes questionable at best. Secondly, the
proposed multi-block method is best suited for large systems.
As demonstrated in the computational benchmark section, the
runtime per iteration in small systems is not significantly
different from the uniform grid approach. Furthermore, since
our work focuses on high Knudsen number flows, the nu-
merical scheme can become unstable if the Knudsen number
requirement (see Fig. 7) is not met. Overall, our approach
marks another step towards bridging the gap between system-
level behavior of shale gas systems and confined pore-scale
behavior. Future work will extend this approach to incorpo-
rate molecular interactions, capturing the coupled effects of
adsorption and transport.
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