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Abstract:
Understanding thermal energy transfer and fracture evolution in submarine hydrothermal
systems is essential for sustainable resource utilization, but simulating these complex
multiphase, multi-physics processes is challenging. This study integrates the lattice
Boltzmann method with a fully connected neural network to investigate hydrothermal
phase separation and its effects on chemical dissolution in carbonate fractures at the pore
scale. Specifically, the lattice Boltzmann method simulates gas-liquid phase separation
induced by seawater boiling, affecting carbonate fracture dissolution at the pore scale. The
fully connected neural network predicts the resulting fracture geometry and dissolution
quantities under various physical conditions. Analysis of simulation datasets demonstrates
that the fully connected neural network achieves high predictive accuracy, with a total
loss of 0.01 and reduces computation time by over 20% compared to traditional methods.
The coupled lattice Boltzmann method-fully connected neural network model effectively
simulates fractures with sizes ranging from millimeters to centimeters, excelling in handling
chemical dissolution, multiphase flows, and multicomponent interactions. This approach
offers valuable predictive capabilities for applications such as enhanced geothermal systems
and oil reservoir exploitation.

1. Introduction
Submarine hydrothermal systems play a crucial role in

renewable energy exploration and marine resource develop-
ment, serving as significant sources of thermal energy (Lowell
et al., 1995). These systems are essential for global heat
transfer, mineral formation, and marine ecosystem dynamics
(Spitzmüller et al., 2021). A comprehensive understanding
of the complex interactions among fluid flow, heat transfer,
and rock dissolution in these systems is critical for vari-
ous applications, including thermal energy extraction from
submarine hydrothermal vents, reservoirs management, and
mineral resources assessment. Within submarine hydrothermal

systems, seawater undergoes substantial physical and chemical
changes as it circulates through underground fractures and
rock strata. Under high temperature and pressure conditions,
phase separation occurs (Zhang et al., 2019), generating com-
plex multiphase flow patterns within fractures. This phase
separation process significantly affects water-rock interactions
(Mahmoodi et al., 2018), particularly carbonate minerals disso-
lution, thereby modifying fracture geometry and permeability.
However, accurately modeling the coupled effects of phase
separation, chemical reactions, and fracture evolution remains
a major challenge for traditional methods.

Direct observation of hydrothermal circulation in deep-sea
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environments remains inherently difficult, making numerical
simulation essential for understanding of these processes.
Previous simulation studies have explored hydrothermal cir-
culation, plume dynamics, and mineral precipitation, shedding
light on key characteristics of hydrothermal systems (Zeng
et al., 2023; Luo et al., 2024). However, computational con-
straints and the complexity of the underlying physical phe-
nomena (Liu and Liu, 2016), particularly the comprehensive
modeling of coupled multi-physics processes at the mesoscale,
pose significant challenges. Moreover, to effectively apply nu-
merical simulations in geothermal development and reservoir
management, it is necessary to develop computational frame-
works capable of efficiently and accurately predicting disso-
lution patterns under various conditions (Gong et al., 2023).
Traditional computational fluid dynamics methods struggle to
resolve complex interfacial phenomena and chemical reactions
at the pore scale (Xi et al., 2021; Micale et al., 2022). The
lattice Boltzmann method (LBM) has emerged as a powerful
approach for simulating multiphase flows and reactive pro-
cesses at the mesoscale, clarifying underlying mechanisms and
evolution (Zhang et al., 2021a). LBM is particularly well-
suited for handling complex geometries and boundaries, as
well as capturing multiphase flows and phase separation (Fu
et al., 2024). It is also adept at dealing with multiple coupled
physical processes fluid flow (Bhadauria et al., 2021), heat
transfer (Sharma et al., 2020), and chemical reactions (Chen
et al., 2013)). Despite these advantages, LBM’s computa-
tional cost remains a significant drawback, particularly for
large-scale or long-term simulations (Mohammadi-Arani et
al., 2024). Furthermore, it is prone to disturbances that can
lead to divergence in simulation results, restricting its usen in
some scenarios.

Recent advances in artificial intelligence, particularly in
deep learning, have facilitated the integration of machine
learning techniques with numerical simulation methods, of-
fering a promising avenue for enhancing the modeling and
prediction of complex geophysical processes (He et al., 2019).
Machine learning has been successfully applied in subsurface
engineering, including well log analysis (Xie et al., 2024),
reservoir characterization (Wang et al., 2023), and production
optimization (Wang and Chen, 2023), demonstrating strong
adaptability to complex multi-physics and multiphase chal-
lenges (Elrahmani et al., 2024). Among these ML methods,
fully connected neural networks (FCNNs) excel due to their
robust representational capacity (Hinton et al., 2006; Salakhut-
dinov and Hinton, 2009). FCNNs effectively model complex
nonlinear relationships between multiple physical quantities
(such as density, velocity, temperature, etc.) generated by LBM
and the predicted dissolution states by learning from large
datasets. Unlike Convolutional Neural Networks, FCNNs are
better suited for non-spatially structured parameter relation-
ships, and they outperform Recurrent Neural Networks in
computational efficiency for steady-state or quasi-steady-state
problems (Yi et al., 2024). Additionally, FCNNs enable real-
time data processing and exhibit strong predictive capabilities,
allowing them to quickly adapt to new and changing con-
ditions without extensive recalibration. This allows them to
demonstrate superior adaptability and efficiency in handling

complex engineering application (Kamrava et al., 2021; El-
Amin et al., 2023; Elrahmani et al., 2024).

This study proposes an innovative integration of FCNNs
with LBM to simulate thermo-hydro-chemical multiphase
reactions in submarine hydrothermal systems, enabling the
accurate prediction of fracture dissolution patterns. The op-
timized model architecture balances the physical accuracy
of LBM with the computational efficiency of FCNN. This
study’s key contributions are threefold: First, it pioneers the
coupling of deep neural networks with LBM to predict disso-
lution processes in submarine hydrothermal systems. Second,
it employs an FCNN to capture the complex variations dur-
ing the dissolution process, with a detailed analysis of the
FCNN architecture and hyperparameter optimization. Third, it
systematically evaluates the dissolution process under various
parameter settings, rigorously assessing the model’s robustness
and demonstrating its applicability and reliability in real-world
scenarios. This approach provides valuable simulation insights
and practical tools for engineers working in geothermal re-
source development and reservoir management.

2. Modeling dissolution process
Submarine hydrothermal systems represent a pivotal sub-

ject of inquiry within the vanguard of Earth sciences, offering
insights into the intricate interactions between deep-seated
geological processes and marine environments (Martín-Díaz
et al., 2024). These systems serve as reservoirs of substantial
thermal and mineral resources and are governed by hydrother-
mal processes such as gas-liquid phase separation, mineral pre-
cipitation, and dissolution Numerical studies have investigated
phase separation on water-rock interactions in pores and rough
fractures, analyzing the influence of various factors on the heat
and mass transfer reactions of multiphase hydrothermal flows
(Liu et al., 2024). To further investigate these phenomena,
this study employs the LBM, a microscopic particle-based
approach in computational fluid dynamics, which effectively
simulates multiphase flows and interfacial phenomena. This
section first presents the derivation of using the LBM for
computing dissolution processes, and then introduces the task
formulation in FCNN.

2.1 LBM numerical method
In this study, seawater is modeled as an acidic brine

solution. Given its relatively low concentration, it is assumed
that ionic mass transfer has a negligible effect on fluid behav-
ior. To simulate seawater flow with exhibiting phase-change
characteristics, a distribution function model is employed: The
LBM relies on its core evolution equation, which underpins
the simulation and prediction of fluid dynamics. The evolution
equation for the density distribution function within a mul-
tiphase multicomponent LB model is outlined as (Shan and
Chen, 1993):

f σ
i (x+ eiδt , t +δt)− f σ

i (x, t) =

− 1
τσ

[
f σ
i (x, t)− f eq,σ

i (x, t)
]
+∆ fi (x, t)

(1)
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Fig. 1. Fracture geometry model diagram.

where f σ
i (x, t) is the density distribution function of fluid

component σ at position x and time t; δt is the lattice step
time step length; ei is the discrete velocities; τ is the relaxation
time. f eq,σ

i represents the density distribution function in
equilibrium:

f eq, σ

i (x, t) = ωiρσ

[
1+

ei ·uσ

c2
s

+
(ei ·uσ )

2

2c4
s

− u2
σ

2c2
s

]
(2)

where ωi is the weighting factor; ρσ and uσ respectively de-
note the macroscopic density and velocity of fluid component
σ ; cs = 1/

√
3 is the lattice speed. In the LBM framework,

fluid flow is modelled using the density distribution function
alongside the continuity equation:

ρσ = ∑ f σ
i (3)

ρσ uσ = ∑
i

ei f σ
i +

δt

2
Fσ (4)

where Fσ is the total external force exerted on the fluid
component σ (Zhang et al., 2021b).

To address thermal effects during phase separation, the
LBM energy equation models the temporal evolution of the
temperature field, incorporating thermal conduction and heat
source terms (Zhou et al., 2020b):

∂T
∂ t

+∇ · (uσ T ) = ∇ · (α∇T )+φ1 +φ2 (5)

where T is the temperature; φ1 and φ2 respectively represent
the source terms for gas-liquid phase transition and reaction
heat; α denotes the thermal diffusivity coefficient. The varia-
tions and spatial distribution of solute ion concentrations over
time within hydrothermal fluids are characterized, within the
mass transfer LBM model:

∂C
∂ t

+(uσ ·∇)C = D∆C (6)

where C signifies the ion concentration; D represents the
solute diffusion coefficient. In hydrothermal reaction zones,
these fluids typically exhibit acidic properties, enriched with
hydrogen ions that drive dissolution reactions with rocks, such
as calcite. The simulation of dissolution reactions is expressed
through the following equation:

H++CaCO3 = Ca2++HCO3
− (7)

The chemical reaction process is characterized as a first-
order kinetic reaction at the acid-fluid-solid interface. The
reaction occurs exclusively at the liquid-solid boundary, and
the boundary conditions can be described by the following
equation (Zhou et al., 2020a):

D
∂C
∂n

=−kr (C−Ceq) (8)

where Ceq is the ion concentration at equilibrium. The rate
of reaction for dissolution at the scale of pores is largely
dictated by the discrepancy in concentration from the current
state to that at equilibrium. And under conditions that are not
isothermal, the constant rate of reaction kr, is characterized
through the Arrhenius equation (Kang et al., 2010).

The solid mass change induced by dissolution reactions
are quantified using a volumetric approach, which can be
implemented through the volume-of-pixel method (Zhang et
al., 2021b), as expressed below. If the solid phase mass falls
below zero, it is considered fully dissolved:

∂y
∂ t

=−MSkr (C−Ceq) (9)

where y is the mass of calcite per unit lattice; M represents
the molar mass of calcite and S is the reaction area.

2.2 Fracture geometry model
This study develops a detailed fracture geometry to simu-

late hydrothermal reactions and phase separation in submarine
hydrothermal systems, as shown in Fig. 1. The model consists
of interconnected fracture channels representing the fractures
and pores within suboceanic bedrock (Coronado et al., 2011),
designed as two-dimensional planar structures. The fracture
dimensions are determined based on geological data from
actual submarine hydrothermal vent regions, with selected
representative fracture sizes of 1.2 cm in width and 3 cm
in length, to balance computational efficiency and model
complexity. This study posits the roughness of the fractures as
regular rather than random (following a sinusoidal distribution)
to mitigate the effects of fracture roughness. A heat source is
positioned along lower boundary of the fracture to simulate the
conditions of a heated wall and phase separation zones. The
fractures are assumed to be fully interconnected, allowing for
fluid ingress and egress through the defined inlet and outlet
boundary conditions.

In this model, a uniform velocity boundary condition
is imposed at the inlet, while a fully developed boundary
condition is applied at the outlet. Fluid-solid interactions at the
midstream interface are modeled using bounce-back boundary
conditions. Initially, the system consists of a saturated, static
liquid at ambient temperature, with no chemical reactions.
The solid boundaries maintain a constant temperature. At
the inlet, a non-equilibrium bounce-back scheme is employed
to preserve ambient temperature, while convective boundary
conditions regulate fluid outflow at the outlet. The temperature
field is initialized as a developed profile, and a constant acid
concentration boundary is imposed at the inlet.

This fracture geometry model accurately captures phase
separation processes within the fracture, including hydrother-
mal phase separation, water-rock dissolution, and solute mi-
gration. In the construction of the LBM-FCNN method, it is
necessary to first utilize these LBM equations for simulations,
thereby generating a comprehensive dataset of simulation
results. Subsequently, this dataset is employed to train FCNN
models for the prediction of fluid dynamics, phase separation,
solute transport, fracture wall changes, reaction dynamics, and
solid mass variations.
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Fig. 2. Workflow overview: LBM simulations for dissolution dataset generation, FCNN model training, and generalizability
analysis.

2.3 Simulation by the LBM
This study investigates the effects of hydrothermal fluid

dynamics and phase separation on fracture dissolution, focus-
ing on the interplay between multiphase flow and chemical
kinetics. Acidic ions (H+) in seawater react with carbonate
minerals (CaCO3), dissolving them into the fluid phase and
altering fracture structure and composition. The validity of the
numerical model used in this study has been confirmed (Zhang
et al., 2021b). Simulations reveal that nucleate boiling at the
heat source produces bubbles that rise from the fracture base to
the crest, where foam accumulation hinders acidic interactions.
However, phase separation increases liquid acidity by releasing
acid-base ions during gas evolution, enhancing dissolution.
Additionally, the exothermic nature of phase separation ac-
celerates chemical reactions, moderately promoting mineral
dissolution.

The LBM has been employed for detailed mesoscopic
simulations of fluid dynamics and phase transitions within
fractures, where even relatively small fractures require tens of
thousands of grid points to accurately resolve fluid physics and
chemical reactions. This granularity incurs high computational
costs for prolonged simulations and limits adaptability to rapid
changes. In contrast, the FCNN model leverages the data-
driven nature of machine learning to extract complex patterns
from data, significantly lowering computational demands and
enhancing scalability across diverse conditions. This study
predicts total dissolution to assess mass transfer and its effects
on regional permeability. It also examines dissolution patterns
on fracture walls, uncovering microscale changes in processes
like fluid percolation. Factors including inlet velocity, wetta-
bility, and fracture aperture are analyzed to understand their
influence on dissolution, enabling predictions of mass transfer
and fracture evolution. Based on these insights, eight scenarios
have been designed for comprehensive analysis.

3. Deep learning as problem solver
The complete workflow of our proposed method is depicted

in Fig. 2. Initially, the LBM is employed to construct the
dataset. The dataset is divided into three subsets: Training,
validation, and test. The training set trains the models, the
validation set optimizes hyperparameters and test set evaluates
performance. A comprehensive analysis in the final stage
assesses the generalizability and robustness of the optimized
FCNN model.

3.1 Machine learning task definition
In the domain of FCNN, our task is formulated as a

regression task where the objective is to predict continuous
output Y based on given input X . Both input and output
are multi-dimensional arrays derived from measured values
representing material properties of the under study.

The input is designed as 31-dimensional features, includ-
ing a timestep and six distinct five-dimensional arrays, each
representing specific attributes of the dissolution process.

1) An array representing the upper bound metrics.
2) An array capturing the lower bound metrics.
3) An upper threshold array measured for validation.
4) A lower threshold validation array.
5) Array of physical variables.
6) An array consisting of edge detection results.

This study investigates a comprehensive set of param-
eters that critically influence the simulation and prediction
of hydrothermal dissolution. These parameters range from
fundamental physical properties, such as fluid velocity and
viscosity, to complex dynamics, including phase transitions
and chemical reactions. This diverse parameter set highlights
the complexity of the underlying physical phenomena and
showcases the FCNN’s ability to model and adapt to varied
scenarios effectively. By training diverse LBM datasets, the
FCNN rapidly adjusts to operational parameter changes. This
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Fig. 3. The architecture of our optimal FCNN model obtained
through hyperparameter optimization (ReLU is applied as
activation functions for each layer.).

Table 1. Eight different scene hyperparameter values.

Scenarios Inter velocity
(10−4 m/s)

Contact
angle (◦)

Fracture width
(10−2 m)

1 2.0 18.0 1.2

2 3.0 18.0 1.2

3 4.0 18.0 1.2

4 3.0 25.2 1.2

5 3.0 32.4 1.2

6 3.0 18.0 0.8

7 3.0 18.0 1.0

8 3.0 18.0 1.4

adaptability not only enhances the model’s applicability in
dynamic environments but also significantly reduces the time
and computational cost associated with recalibration.

The target output Y comprises of two continuous variables,
forming an 11-dimensional vector that includes the upper and
lower fracture wall positions and dissolved volume. Each input
parameter directly influences fluid dynamics, mass transfer, or
the chemical reactions, with interdependencies among them.
All parameters are quantifiable and measured in real systems,
ensuring that model balances computational efficiency and
engineering applicability.

1) An array denoting the volume solids above the set limits,
encapsulated within a five-unit array.

2) An array representing the volume solids below the set
thresholds, also segmented into a five-unit array.

3) A scalar representing the average dissolution percentage.

3.2 Method
This section outlines the core design of the proposed FCNN

(Yamashita et al., 2018), focusing on its ability to reveal intri-
cate relationships among diverse features. At the heart of deep
learning models lies the FCNN, a cornerstone architecture
known for its simplicity and effectiveness. It consists of layers
where each neuron connects to every neuron in the adjacent
layer, earning the designations “fully-connected” or “dense”
due to this extensive interconnectivity. This full connectivity
indicates that each neuron receives outputs from all neurons in
the antecedent layer, executes a weighted summation of these

inputs, and then processes the result via a nonlinear activation
function to produce an output. The FCNN comprises three
primary components: The input layer, the hidden layer, and the
output layer. The input layer receives raw data or features. The
hidden layer serves to extract advanced features. The output
layer delivers the final prediction results. In this study, the
input layer processes the dissolved feature vector, the hidden
layer analyzes it, and the output layer yields the predicted
system values. The dense computation process in each layer
is denoted as:

Z[l] =W [l]h[l−1]+b[l] (10)
a[l] = g[l](Z[l]) (11)

where Z[l] represents the weighted sum in layer l; W [l] is the
weight matrix linking layer l-1 and layer l; h[l−1] denotes the
output vector from the preceding layer l-1; b[l] is the bias
vector of layer l; a[l] is the ultimate output vector of layer l
and g[l] signifies the activation function within layer l.

By increasing the number of hidden layers and augmenting
the number of neurons, FCNNs enhance their ability to capture
complex, nonlinear relationships. This expanded architecture
the network to learn deeper, more abstract feature represen-
tations, enhancing predictive performance. However, general
design principles may not fully suit the specific requirements
of this task. To further strengthen this capability, systematic
experimentation was conducted, including extensive hyperpa-
rameter optimization. Specifically, the dimensionality of the
hidden layers within the FCNN architecture was optimized to
achieve more robust and reliable results. The structure of the
optimized FCNN, obtained through this hyperparameter tuning
process, is illustrated in Fig. 3.

4. Experiment
To foster collaborative and support the inclusivity of

the open-source community. The source code associated
with this paper has been made publicly accessible at
https://github.com/mihara-bot/DISS.

4.1 Experimental dataset
The dataset used in this study is derived from LBM sim-

ulations, covering eight distinct real-world scenarios detailed
in Table 1. Three parameters, varied across these scenarios,
represent critical factors affecting dissolution and fluid flow
within the fracture at the physical level. By treating these
as hyperparameters, the machine learning model captures
the coupled effects of flow conditions, fluid properties, and
geometrical constraints on dissolution patterns and dynamics.
Each scenario yields a curated subset of 4,500 timesteps,
producing a total dataset of 36,000 samples. This dataset
was split into training, and test sets at an 8 : 1 : 1 ratio.
The training set supports model learning, the validation set
guides hyperparameter optimization, and the test set provides
an independent measure of final model performance.

4.2 Evaluation metrics
In this study, model performance was evaluated for predic-

tion accuracy using three standard regression metrics: mean

https://github.com/mihara-bot/DISS
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Table 2. Fixed hyperparameters used during training.

Hyperparameter Value

Size of training set 28,800

Size of development set 3,600

Size of test set 3,600

Batch size 32

Learning rate 1e-4

Training epoch {50, 80, 100}

Optimizer Adam

Table 3. Hyperparameter optimization configuration details
of FCNN.

Hyperparameter Value type Value range

Number of hidden layers Integer {1, 2, 3, 4}

Number of neurons in
each hidden layer Integer [32, 512]

Dropout rate Float [0, 0.5]

Table 4. Optimal hyperparameters details of FCNN.

Hyperparameter Value type Exact value

Number of hidden layers Integer 3

Number of neurons in layer 1 Integer 78

Number of neurons in layer 2 Integer 286

Number of neurons in layer 3 Integer 195

Dropout rate in layer 1 Float 0.0062

Dropout rate in layer 2 Float 0.0074

Dropout rate in layer 3 Float 0.0038

Training epoch Integer 100

squared error (MSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). These metrics measure
the difference between predicted and corresponding reference
values (the gold standard obtained via LBM), calculated inde-
pendently on test dataset by averaging normalized deviations.
Notably, MAPE is expressed as a percentage to reflect relative
error. These three metrics can be calculated as:

MSE(ẏ, ŷ) =
1
n

n

∑
i=1

(ẏ− ŷ)2 (12)

MAE(ẏ, ŷ) =
1
n

n

∑
i=1

|ẏ− ŷ| (13)

MAPE(ẏ, ŷ) =
1
n

n

∑
i=1

∣∣∣∣ ẏ− ŷ
ẏ

∣∣∣∣ ·100 (14)

where n represent the total number of samples in the test
dataset; ẏ is the actual value and ŷ is the predicted value.

4.3 Training configuration
The model training configuration encompasses both hard-

ware and software specifications. The hardware includes an
Ubuntu 22.04 LTS server with an Intel(R) Xeon(R) CPU E5-
2620 v3@2.40GHz, 32GB of RAM, and an NVIDIA GeForce
RTX 2080Ti GPU. The software configuration employs Py-
Torch 1.13.0 for model implementation, ensuring compatibility
with other supported versions, alongside training scripts devel-
oped in Python 3.9.18. Additionally, the fixed hyperparameters
used during the training phase are summarized in Table 2.

4.4 Hyperparameter optimization configuration
Hyperparameter optimization during training utilized the

Optuna framework (Akiba et al., 2019) to maximize model
performance. Optuna implements Sequential Model-based Op-
timization, combining sequential modeling with model-based
techniques. This method iteratively samples parameter values
from the search space, assesses their performance, and refines
prediction of parameter-outcome relationship, enabling effi-
cient exploration of the hyperparameter space. Its scalability
and adaptability support optimization across diverse parameter
types, making it an effective tool for hyperparameter tuning.

The optimized hyperparameters include the number of
hidden layers in the model, the number of neurons in each
hidden layer, and the dropout rate, which is a technique
to prevent the model from memorizing the data too closely
(known as overfitting), applied after each layer. Given the
dataset size and task requirements, a simpler, shallower FCNN
design was selected. Further details can be found in Table 3.

4.5 Main results
As described in Sections 4.1 and 4.2, hyperparameter

optimization was performed 50, 80, and 100 epochs, with 500
trials per search to determine optimal hyperparameters for the
given scenario. Results in Table 4 indicate that these optimal
hyperparameters are somewhat unexpected, highlighting the
advantage of optimization over manual design model training.

The training process of the optimal FCNN is illustrated
in Fig. 4, while Table 5 reports performance metrics for the
three optimal models across different training epochs. Fig.
5 further illustrates the training results of the best FCNN,
comparing the positional variations of the upper and lower
walls of the simulated fracture predicted by the machine
learning model against the results obtained from the LBM.
The training trajectory demonstrates remarkable stability, with
minimal fluctuations, indicating consistent model convergence.
This optimal model excels in all three evaluated metrics
having the fewest parameters, underscoring its efficiency and
effectiveness. Additionally, in terms of real-time computational
cost, the FCNN is at least 20% more efficient than the LBM.
Unlike the LBM, which requires meticulous parameter tuning
and grid setup for each new scenario. The FCNN model gen
eralizes effectively from simulation datasets to new conditions,
cutting computation time and cost. To apply it in real-world
tasks, also need to conduct additional training using data
collected from reality.

All results in this table reflect model training with optimal
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Fig. 4. The process of training optimal model.

Table 5. Results of optimal FCNN under different training
epochs.

Training
epoch

Number of
parameters MSE MAE MAPE

50 141,587 0.0371 0.0660 0.0972

80 149,877 0.0289 0.0579 0.0826

100 83,211 0.0226 0.0476 0.0578

hyperparameters, averaging over 10 runs to reduce errors from
randomness.

5. Analysis

5.1 Effects of longer training
Typically, a deep learning model progressively fits the

target distribution, its performance tends to improve with
more training epochs-up to the point before overfitting oc-
curs. The investigation into the potential for enhanced model
performance through extended training involved increasing
the number of training epochs from 100 to a maximum of
500, with increments of 50 epochs, as detailed in Table 6.
A clear trend of performance improvement is observed with
increasing epochs, particularly in accuracy metrics, up to a
threshold. Optimal performance is achieved at 450 epochs,
with the lowest MSE (0.0119), MAE (0.0219), and MAPE
(0.0299), reflecting peak prediction accuracy. The second-best
performances occur at 350 epochs for MSE (0.0128) and
at 400 epochs for both MAE (0.0259) and MAPE (0.0332).
Beyond 450 epochs, performance slightly declines, indicating
diminishing returns and possible overfitting.

While training for additional multiple epochs can yield per-
formance improvements, it requires significantly more com-
putational resources. This trade-off underscores a fundamental
consideration in machine learning: Beyond a certain threshold,
the marginal gains in performance may not offset the increased
computational cost and time. In this study, the slight improve-
ments in MSE, MAE, and MAPE metrics beyond the optimal
450 epochs incur higher resource costs. These findings high-
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Fig. 5. LBM simulated up and down position change compar-
ison with FCNN predicted points.

Table 6. Results of FCNNs under each optimal
hyperparameter optimization scenario.

Training
epoch MSE MAE MAPE

100 0.0226 0.0476 0.0578

150 0.0138 0.0419 0.0526

200 0.0148 0.0307 0.0407

250 0.0172 0.0376 0.0445

300 0.0171 0.0353 0.0438

350 0.0128 0.0329 0.0426

400 0.0170 0.0259 0.0332

450 0.0119 0.0219 0.0299

500 0.0132 0.0291 0.0368

light the importance of hyperparameter optimization strategies
that balance performance gains with computational efficiency,
supporting cost-effective real-world applications.

Results are highlighted with the best outcomes in bold and
second-best outcomes underlined for clarity.

5.2 Generalization of FCNN
The study extended its focus to a detailed analysis of mod-

els trained on individual scenario-specific datasets, following
the established superior predictive performance of the optimal
model when trained on the comprehensive dataset encompass-
ing all eight scenarios. This investigation examines two main
aspects: The predictive accuracy of a model when trained and
tested within the same scenario, and the generalization ability
of a model trained in one scenario (e.g., Scenario A) when
applied to a different scenario (e.g., Scenario B).

5.2.1 Performance within same scenario

This study trained eight models on datasets from eight
scenarios, adhering to the settings in Section 4.1 and Table 1,
with training process depicted in Figs. 6(a)-6(d). Model per-
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Fig. 6. The processes of training optimal models in Scenarios (a) 1 and 2, (b) 3 and 4, (c) 5 and 6, and (d) 7 and 8.

Table 7. Results of eight FCNNs within each scenario.

Model MAE MSE MAPE

1 0.0213 0.0403 0.0576

2 0.0126 0.0437 0.0598

3 0.1168 0.1141 0.1268

4 0.1532 0.1687 0.1892

5 0.0130 0.0373 0.0476

6 0.0215 0.0523 0.0648

7 0.0279 0.0647 0.0792

8 0.0329 0.0488 0.0645

formance across all scenarios is detailed in Table 7.
First, the MSE, which measures the average squared dif-

ference between predicted and actual values, exhibits sig-
nificant variability across the models, ranging from 0.0126
to 0.1532. This wide range highlights notable differences in
predictive precision, with Model 2 achieving the lowest MSE,
indicating peak accuracy, and Model 4 the highest, reflecting
the poorest performance. Second, the MAE, assessing the
average magnitude of prediction errors, ranges from 0.0373
to 0.1687. Unlike the MSE results, Model 5 records the
lowest MAE, suggesting its predictions are, on average, closest

to the actual values, while Model 4 again demonstrates the
highest MAE, reinforcing its inferior performance. Third, the
MAPE, representing average relative error, spans 0.0476 to
0.1892, with model 5 performs best by this metric, indicating
superior proportional accuracy, particularly valuable where
relative error matters. These findings suggest Scenario 4 poses
the greatest challenge.

5.2.2 Generalization

The evaluation of the optimal models’ generalizability
included testing the performance of models trained on the
Scenario A dataset against the test set from Scenario B, with
full results in Table 8. The key findings are as follows:

1) Each model excels in its training scenario, confirming
strong scenario-specific specialization.

2) No model consistently performs well across all scenarios;
however, Models 3 and 4, trained on Scenarios 3 and
4, respectively, show moderate mutual generalization,
suggesting shared features or conditions, a pattern also
observed for Models 7 and 8.

3) Most models exhibit significantly poorer performance
in untrained scenarios, notably Models 1 through 6 in
Scenarios 3 and 4, and vice versa, indicating substantially
differences between Scenarios 3 and 4 and the others.
Overall, FCNN models display limited generalization
ability in this task.
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Table 8. Test results of FCNNs trained on scenarios 1 to 8.

Test set Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 0.0213 0.0146 2.4402 2.4428 0.0311 0.0248 0.0362 0.0510

2 0.0301 0.0126 2.4090 2.8834 0.0379 0.0353 0.0324 0.0325

3 2.5242 2.6476 0.1011 0.1532 4.6877 4.7203 4.8068 4.8092

4 2.5853 2.6605 0.1168 0.1012 4.6846 4.6919 4.7851 4.8562

5 0.0216 0.0243 2.4328 2.8096 0.0130 0.0325 0.0327 0.0363

6 0.0355 0.0303 2.4653 2.8551 0.0334 0.0131 0.0551 0.0364

7 0.0658 0.0493 2.4868 2.9222 0.0556 0.0541 0.0219 0.0253

8 0.0587 0.0497 2.4827 2.7664 0.0512 0.0539 0.0279 0.0106

6. Conclusion
This study introduces a method that integrating the LBM

with FCNN to simulate complex water-rock dissolution reac-
tions in submarine hydrothermal systems. The LBM-FCNN
model features 31-dimensional input layer for physical quan-
tities and an 11-dimensional output layer for dissolution
state variables. An extensive hyperparameter search using
the Optuna framework the optimized the network structure
for this task. The model’s generalizability was evaluated by
testing its performance across diverse settings. It effectively
simulates engineering environments with fracture apertures
of 8 to 14 mm, adapting to varying roughness and reactive
fluids. This approach combines LBM’s physical accuracy with
FCNN’s computational efficiency, demonstrating the power of
computational physics and machine learning.

For practical applications of this model, further training
with data collected from real-world scenarios is required.
Though, training with a combination of simulated and real-
world data can effectively reduce the cost of data collection
while ensuring relatively superior performance compared to
using only real-world data. Future research will explore apply-
ing various neural network models to fields such as enhanced
oil recovery, geothermal energy extraction, and environmental
remediation.
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