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Abstract:
Wellbore stability is a key factor affecting safe and efficient drilling. At present, it is
difficult to conduct real-time and accurate analysis of wellbore stability in related research.
To address the current research shortcomings, this study proposes a real-time analysis
model of wellbore stability integrating image recognition and an expert system, which
mainly includes caving image segmentation and recognition, and a wellbore stability expert
system. The caving image recognition proposes a new dynamic threshold segmentation
method based on simple linear iterative clustering superpixel segmentation and visual
geometry group 19-layer image classification. After completing the segmentation of the
caving image, the geometric features of the caving are calculated, and the multi-source
feature fusion GoogleNet model is established by integrating the geometric features with
the convolution features extracted by GoogleNet to identify the caving types efficiently.
After segmentation and recognition of caving images. The wellbore stability expert system
uses the caving features to establish an expert system model to determine the mechanism
of wellbore instability and provide reasonable solutions. Finally, the wellbore stability
integrating image recognition and an expert system model was applied to a well in field
production, accurately determining the mechanism of wellbore instability in real time and
effectively solving the corresponding wellbore instability problem based on the measures
provided by the model.

1. Introduction
With the development of related technologies, the extrac-

tion of unconventional oil and gas resources such as shale
oil and gas, tight oil and gas, and deep-water oil and gas
has received widespread attention. The extraction of uncon-
ventional oil and gas resources is challenging and has a low
recovery rate. Complex well structures like extended-reach
wells and horizontal wells are widely utilized to achieve

efficient extraction of these resources (Zou et al., 2015). The
risk of wellbore instability in complex wells is often higher
than in vertical wells, thus higher requirements for wellbore
stability are necessary (Ma et al., 2015). The most common
form of wellbore instability is the collapse of wellbore rock,
which typically produces cavings that can further lead to
incidents such as the sticking of tools (Xu et al., 2024).

Experts and scholars in this field have conducted long-term
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research and established analytical models, empirical models,
and numerical simulation methods to quantitatively character-
ize the risk of wellbore instability (Chen et al., 2002; Yuan et
al., 2013; Ayoub et al., 2019; Gong et al., 2022). These existing
models mainly focus on constitutive models that describe the
stress-strain relationship and failure criteria that describe the
ultimate state of rock failure. Constitutive models include
linear elastic models, elastoplastic models, poroelastic models,
and chemo poroelastic models, which consider the effects of
different conditions and environments on rock deformation to
establish the mapping relationship between stress and strain
(John et al., 2014; Gao et al., 2022; Peng et al., 2023). The
main failure criteria include the Mohr-Coulomb criterion, the
Mogi-Coulomb criterion, the Hoek-Brown criterion, and the
Drucker-Prager criterion. These criteria describe the critical
failure state of rocks under different conditions (Al-Ajmi and
Zimmerman, 2006; Zoback, 2007; Shen et al., 2019). While
these constitutive models and failure criteria can effectively
describe the stress-strain relationship and failure strength of
rocks to a certain extent, they mostly rely on logging data
and experimental results, thus having hysteresis and being
unable to perform real-time analysis. For drilling engineering,
it is particularly important to analyze the risk of wellbore
instability and make real-time adjustments to reduce the risk
of instability.

During drilling, cavings are returned to the surface in real-
time with the mud. Since cavings are generated due to wellbore
instability and the detachment of surrounding rock, the shape
and surface changes of the cavings can reflect the type and
mechanism of wellbore instability in real-time (Edwards et
al., 2004; Skea et al., 2018). Patel et al. (2018) proposed a
real-time analysis of formation pore pressure by analyzing
the shape and quality of downhole cavings. Purkayastha et
al. (2020) analyzed the morphological characteristics of the
cavings and analyzed the collapse of the wellbore, ultimately
providing corresponding remedial measures. In recent years,
some experts and scholars have used machine learning meth-
ods to identify the types of cavings, in order to determine the
mechanism of wellbore instability and provide corresponding
solutions based on the mechanism of wellbore instability
(Izurieta et al., 2019; Jin et al., 2022).

Analyzing wellbore stability through caving images is typi-
cal image recognition research. Research on image recognition
can be divided into two categories from the perspective of
image feature extraction. The first category calculates the
features of the image regions through image segmentation
to identify the type of images (Purswani et al., 2020; Song
et al., 2022; Zhai et al., 2024). The second category uses
convolutional neural networks to directly identify the type of
images (He et al., 2019; Houshmand et al., 2022; Gupta et
al., 2024). Cuttings recognition can use convolutional neural
network to directly recognize cutting images, such as ef-
fectively recognizing cuttings images using the combination
of visual geometry group 16-layer (VGG16) and transfer
learning (Wang, 2022). For some complex cutting images,
direct recognition is difficult. Image segmentation technology
can be used to segment the cuttings and calculate their features
for final recognition, such as segmenting original cuttings

images using the watershed algorithm, calculating the features
of the segmented images, and finally identifying the lithology
of the cuttings through feature similarity matching (Huo et
al., 2021).

The convolutional neural networks combine feature extrac-
tion and classification functions and are widely used in image
recognition fields, such as visual geometry group 19-layer
(VGG19), ResNet50, MobileNet, and GoogleNet (Christian et
al., 2014; Simonyan and Zisserman, 2015; Howard et al., 2017;
Ren et al., 2023). The VGG19 uses smaller convolutional
kernels, making it easier to extract local features from the
image. Additionally, VGG19 increases the receptive field
by stacking multiple convolutional layers, allowing for the
extraction of global features from the image (Simonyan and
Zisserman, 2015). Therefore, VGG19 is widely used in image
recognition research where local features are prominent and
the dataset is large (Favorskaya and Pakhirka, 2019; Rill-
García et al., 2022; Mishra et al., 2024). VGG19 is highly sen-
sitive to local features of the image, while GoogleNet, by in-
troducing the Inception module, excels at handling multi-scale
features (Christian et al., 2014). In recent years, GoogleNet has
shown excellent performance in image recognition tasks with
complex backgrounds and multiple scales of image features
(Wang et al., 2019; Khan et al., 2021; Bezabh et al., 2024).

The segmentation and recognition of cavings images aim to
better analyze wellbore instability. Based on cavings segmenta-
tion and recognition, an expert system for wellbore instability
can be established by combining other cavings information,
enabling real-time analysis of wellbore instability. Current
expert systems can be divided into rule-based expert systems,
frame-based expert systems, and neural network-based expert
systems (Stahl et al., 2015; Paradarami et al., 2017; Shishe-
hchi and Banihashem, 2021; Chen et al., 2024). Rule-based
expert systems provide solutions to problems by collecting
domain knowledge, designing rule bases, and using inference
mechanisms (Yang et al., 2017; Kolodziejczyk et al., 2022).
Belief rule-based expert systems are a widely applied type of
rule-based expert systems. In belief rule-based expert systems,
the conditions and conclusions of rules can be uncertain,
and this uncertainty can be represented and handled through
probability, fuzzy logic, and other methods (Xu et al., 2007,
2018; Yang et al., 2023).

To achieve real-time analysis of wellbore stability, this
study proposes a model of wellbore stability integrating image
recognition and an expert system. This model mainly includes
the recognition of caving images and a wellbore stability
expert system based on caving characteristics. For the cav-
ing image recognition, this study introduces a multi-source
feature fusion GoogleNet model. The multi-source feature
fusion GoogleNet model segments caving images and extracts
geometric features using the improved threshold segmentation
model proposed in this study. Finally, it fuses the geometric
features with convolutional features to recognize the cavings.
The expert system combines the cavings recognition results
with surface roughness and edge angle changes of the cavings
to establish a rule-based wellbore stability expert system
model.
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Fig. 1. WSIRES model.

2. Methodology
Imaging logging and caliper logging data can be used to

analyze wellbore collapse, but such data is mostly obtained
after drilling, making real-time analysis of wellbore collapse
through these data impossible. Cavings are downhole data
that are returned with the mud in real time during drilling.
Therefore, if the mapping relationship between cavings and
wellbore collapse can be established, real-time analysis of
wellbore collapse can be realized. This research uses images
of cavings as the dataset and proposes the real-time analysis
model of wellbore stability integrating image recognition and
an expert system (WSIRES). The WSIRES model primarily
includes an improved threshold segmentation model, multi-
source feature fusion GoogleNet image recognition model, and
wellbore stability expert system (WSES) (Fig. 1).

2.1 Improved threshold segmentation model
To achieve effective segmentation and extraction of blocky

cuttings, this study proposes an improved thresholding seg-
mentation method, named SLIC-VGG19-TS. The SLIC-
VGG19-TS model includes simple linear iterative clustering
superpixel segmentation (SLIC), The visual geometry group
19-layer (VGG19) superpixel region classification, and thresh-

old segmentation (TS). The SLIC superpixel segmentation
segments the original caving images into multiple superpixel
regions based on image features. The VGG19 superpixel
region classification judges the superpixel regions obtained
from SLIC segmentation to identify the superpixel regions
containing cavings. The TS threshold segmentation performs
threshold segmentation on the superpixel regions containing
cavings, and different superpixel regions correspond to dif-
ferent segmentation thresholds, thus making the threshold
segmentation dynamic.

2.1.1 SLIC superpixel segmentation

The core of SLIC is to segment the image into tightly
adjacent and similar superpixel regions rather than independent
pixel points. Such superpixel regions can better represent
the structure and texture information of the image in image
analysis. The SLIC algorithm segments N pixel points in the
original image into k superpixel regions based on a clustering
algorithm. During initialization, the number of superpixels
k and the compactness parameter m need to be specified.
The parameter m controls the shape of the superpixels. The
larger the value of m, the more compact and regular the
superpixel regions become. The smaller the value of m, the
more irregular the superpixel regions become. After specifying
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Fig. 2. VGG19 network architecture.

the initial parameters, multiple iterations of optimization are
required. During iterative optimization, the distance between
each pixel and the surrounding superpixels is calculated. If the
calculated distance is less than the current minimum distance,
the minimum distance is updated, and the pixel is assigned
to the corresponding superpixel. The SLIC distance consists
of color distance and spatial distance. When calculating the
color distance, the original RGB color image needs to be
converted to a Lab color image, and the color distance should
be calculated based on the Lab color image:

dc(i, j) =
√
(l j − li)2 +(a j −ai)2 +(b j −bi)2 (1)

where l j, a j, and b j are the Lab color values of the superpixel
center; li, ai, and bi are the Lab color values of pixels; dc is
the color distance.

Spatial distance is the distance between pixels calculated
based on the pixel coordinates of an image:

ds(i, j) =
√

(x j − xi)2 +(y j − yi)2 (2)
where x j and y j are the coordinates of the superpixel center; xi
and yi are the coordinates of pixels; ds is the spatial distance.

By integrating color distance and spatial distance, com-
bined with the compactness and number of superpixels in
SLIC superpixel segmentation, the comprehensive distance of
SLIC can be obtained:

d =

√√√√√(
dc

m

)2

+

 ds√
N
k

2

(3)

where d is the distance between the pixel point and the center
of the surrounding superpixels; m and k are the compactness
and the number of superpixels, respectively; N is the number
of pixel points.

After calculating the distance in each iteration, the pixels
are readjusted, the superpixel center is updated, and the seg-
mentation is completed after reaching the termination condi-
tion. After completing the segmentation, continue to calculate
the similarity between adjacent superpixels, merge adjacent

and similar superpixels, and obtain the final result.

2.1.2 VGG19 classification and threshold segmentation

After SLIC segmentation, the original image is divided
into many superpixel regions. These superpixel regions can
be categorized into three types: Superpixels containing only
cavings (cavings superpixels), superpixels containing only
non-cavings areas (non-cavings superpixels), and superpixels
containing both cavings and non-cavings areas (some-cavings
superpixels). These three types of superpixel regions are
processed differently in the final cavings extraction. Cavings
superpixels are assigned black, non-cavings superpixels are as-
signed white, and some-cavings superpixels require threshold
segmentation to assign black to the cavings areas and white
to the non-cavings areas (Fig. 2). Therefore, it is necessary to
classify all superpixel regions accordingly.

Due to its simple yet powerful architecture, VGG19 has
been widely used in the field of image classification in recent
years. This study employs VGG19 for the classification of
superpixel regions. The VGG19 includes 16 convolutional
layers, 5 max-pooling layers, and 3 fully connected layers.
Each convolutional layer uses 3× 3 convolutional kernels to
increase the depth of the network while keeping the receptive
field unchanged. Each pooling layer uses 2×2 kernels, which
can effectively aggregate local features while reducing com-
putational complexity. After inputting the extracted features
into the fully connected layer, three fully connected layers
can effectively classify the image (Fig. 2). This study uses
VGG19 to identify the superpixel regions segmented by SLIC,
and finally uses threshold segmentation to segment some-
cavings superpixel regions to achieve image segmentation with
cavings.

2.2 Multi-source feature fusion GoogleNet model
Convolutional neural networks can classify the original

images of cavings, but they often encounter recognition er-
rors with cavings that have similar shapes. To address this
issue, a multi-source feature fusion GoogleNet model (MMF-
GoogleNet) based on the GoogleNet network is established for
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Fig. 3. Inception architecture.

caving type recognition. The multi-source features include the
geometric shape features calculated from the cavings images
segmented by the SLIC-VGG19-TS model and the convolu-
tional features extracted by GoogleNet. Finally, these geomet-
ric features and convolutional features are fused through a
fully connected layer to improve the accuracy of caving type
recognition (Fig. 1).

2.2.1 Geometric feature extraction of cavings

Based on the mechanism of wellbore instability, the debris
can be classified into tabular cavings, angular cavings, blocky
cavings, and splintery cavings. The geometric features of
cavings are important factors in distinguishing their types. In
previous studies, roundness and rectangularity have been effec-
tive in describing the extent to which a 2D image approximates
a circle and a rectangle, respectively:

C =
4πA
p2 (4)

R =
A
SR

(5)

where C is roundness, R is rectangularity, A is the area of the
caving, p is the perimeter of the caving, SR is the minimum
bounding rectangle area of the caving.

Rectangularity and roundness can effectively distinguish
tabular and blocky cavings from the other two types of cavings.
However, these two geometric features cannot describe the
extent to which a 2D image approximates a triangle. Triangu-
larity can effectively distinguish angular cavings from the other
three types of cavings. Therefore, this study introduces the
concept of triangularity, based on the definitions of roundness
and rectangularity:

T =
A
ST

(6)

where T is triangularity, ST is the minimum bounding triangle
area of the caving.

2.2.2 GoogleNet model

GoogleNet utilizes the Inception module in its deep neural
network, which enhances feature-capturing capabilities by
simultaneously using convolutional kernels and pooling at
different scales. The Inception module in GoogleNet performs
multi-scale feature extraction, where the 1×1 convolution is

primarily used for linearly combining input channels, while
the 3× 3 and 5× 5 convolutions capture features over larger
receptive fields. The 1 × 1 convolution in the module not
only extracts features but also effectively reduces the num-
ber of input channels, thus reducing computational resource
consumption (Fig. 3).

2.2.3 Multi-source feature fusion

When merging geometric features with convolutional fea-
tures extracted by GoogleNet, it is necessary to combine these
features through a fully connected layer (Fig. 1). Geometric
features are processed through a fully connected layer to obtain
a matrix representing geometric features:

hg = f (ωgg+bg) (7)
where g is geometric features, ωg and bg are the corresponding
weights and biases for geometric features, f is the activation
function.

Convolutional features are input into another fully con-
nected layer to obtain a matrix representing convolutional
features:

hc = f (ωcc+bc) (8)
where c is convolutional features, ωc and bc are the corre-
sponding weights and biases for convolutional features, hc is
the matrix of convolutional features after the fully connected
layer operation.

Finally, different weights are assigned to geometric and
convolutional features, and feature fusion is performed based
on weighted averaging:

h = αhg +(1−α)hc (9)
where α is the weight for geometric features.

The weights are determined by the recognition accuracies
of geometric and convolutional features:

α =
pg

pg + pc
(10)

where pg is the accuracy when using geometric features alone
for recognition, pc is the accuracy when using convolutional
features alone for recognition.

The fused features are then input into another fully con-
nected layer to obtain the cavings recognition results:
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o = f (ωmh+bm) (11)
where h is the fused features after merging, ωm and bm are
the corresponding weights and biases for the merged features,
and o is the final output.

2.3 WSES model
This study establishes the WSES model based on caving

type, surface roughness, and edge angles, integrating years
of domain expertise. Through the computation of these three
features, the model determines the mechanisms of wellbore
instability and proposes corresponding solutions. Edge angle
calculations utilize the cartToPolar module from OpenCV,
which first transforms pixel coordinates from Cartesian to
polar coordinates, and then computes the magnitude and
direction of pixel points. Firstly, it is necessary to calculate
the gradient values of pixels in both horizontal and vertical
directions:

Gx = III ·


−1 0 1

−2 0 2

−1 0 1

 (12)

Gy = III ·


−1 −2 −1

0 0 0

1 2 1

 (13)

where Gx is the gradient value of pixels in the horizontal
direction, Gy is the gradient value of pixels in the vertical
direction, III is the matrix of the input image.

After calculating the gradient value of the pixel, calculate
the pixel coordinates in polar coordinate system based on the
gradient values:

r =
√

G2
x +G2

y (14)

θ = arctan
Gy

Gx
(15)

where θ is the direction of pixels in the polar coordinate
system, r is the magnitude of pixels in the polar coordinate
system.

Surface roughness calculations rely on the Sobel module
in Python, which calculates the roughness of the image based

on gradient changes in different directions.
The WSES model is based on existing rule-based expert

systems and is improved by introducing feature weights and
iterative updates (Fig. 4). It integrates real-time production
knowledge to update these weights dynamically, thereby en-
hancing decision accuracy. During the weight updating pro-
cess, decisions are made based on three features, and the
accuracy of these decisions is evaluated with field feedback.
Each feature is used individually to make decisions based on
the expert system, and the accuracy of decisions made using
each feature is accumulated. If the accuracy of decisions made
using a particular feature is higher, the weight corresponding to
that feature will be greater. The calculation of specific feature
weights can be implemented using:

ωi =

ni

Ni
3
∑

i=1

ni

Ni

(16)

where Ni is the total number of decisions made based on
feature i, ni is the total number of correct decisions made
based on feature i, and ωi is the weight assigned to feature i.

3. Multi-source feature fusion for caving
recognition

The MFF-GoogleNet model proposed in this study effec-
tively recognizes caving types through multi-feature fusion.
Caving type recognition serves as a crucial basis for analyzing
the causes of wellbore instability in the WSES model. This
section primarily includes the description and analysis of
the dataset, caving extraction using SLIC-VGG19-TS, and
caving recognition using MFF-GoogleNet. SLIC-VGG19-TS
can effectively segment the cavings areas, making it easier to
calculate three geometric features: Roundness, rectangularity,
and triangularity. Integrating these geometric features with the
convolutional features extracted by GoogleNet can partially
compensate for the issue of insufficient samples in cavings
recognition by GoogleNet, thereby improving the accuracy of
cavings recognition.

3.1 Data set description
This study collected a total of 517 samples of cavings,

which were gathered through photographic means. Typically,
each photograph contains multiple cavings (Fig. 5(a)). The im-
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Fig. 5. Caving dataset. (a) Caving image, (b) blocky caving, (c) angular caving, (d) tabular caving and (e) splintery caving.

Table 1. Caving image dataset.

Dataset Splintery Angular Tabular Blocky

Origin 91 107 186 133

Transformation 273 321 558 399

Table 2. The main hyperparameters of VGG19 and
GoogleNet.

Model Learning rate Kernel size Pooling size

VGG19 0.001 (3,3) (2,2)

GoogleNet 0.0005 (1,1) (3,3) (5,5) (3,3)

ages of cavings taken from different angles may show some
variations. To more accurately determine the type of cuttings,
the studychose to position the flattest and larger side of the
cavings facing downward during the photography. Based on
the shape characteristics, cavings can be categorized into four
main types: Blocky caving, angular caving, tabular caving,
and splintery caving (Fig. 5). Each type corresponds to dif-
ferent collapse mechanisms. Blocky cavings appear as rough-
surfaced blocks, angular cavings present as rough triangular
or arrow-shaped forms, tabular cavings show smooth-surfaced
plates and splintery cavings appear as concave elongated
pieces. Among these types, angular cavings and splintery
cavings differ significantly from others in shape, while tabular
cavings and blocky cavings often exhibit smaller differences.

The 517 cavings images are segmented into 68,932 su-
perpixel regions using SLIC superpixel segmentation. These
superpixel regions are then classified using VGG19. After
classification, thresholding segmentation is applied to different
types of superpixel regions to obtain the final cavings areas.
Therefore, during VGG19 image classification, 68,932 seg-
mented images are used.

The partitioning of the dataset is particularly impor-
tant for convolutional neural networks. Considering that the
GoogleNet model requires only 517 images, one of the follow-
ing operations-rotation, mirroring, or adding noise-was applied

to each image. As a result, the sample dataset was expanded
to 1,551 images (Table 1). Of these, 80% were used as the
training data and 20% as the test data. For VGG19, the images
used are superpixels generated by SLIC segmentation, and
since the sample size is sufficient, 80% of the images were
directly used as the training dataset, with the remaining 20%
used as the test dataset. The hyperparameters of the models
were primarily determined through a grid search optimization
algorithm. The main hyperparameters of the models obtained
after training VGG19 and GoogleNet are shown in Table 2.

3.2 Caving extraction based on image
segmentation

Cavings extraction is crucial for calculating geometric
features and obtaining surface roughness and edge angles.
This study proposes the SLIC-VGG19-TS image segmentation
model, comprising SLIC superpixel segmentation, VGG19
superpixel classification, and dynamic threshold segmentation.
In SLIC superpixel segmentation, the number of superpixels
k and compactness m significantly affect segmentation ef-
fectiveness (Eq. (3)). The parameter m primarily determines
the regularity of superpixel regions; smaller m values result
in more irregular superpixel shapes. Within a suitable range,
variations in m have less impact on the final segmentation
results. Given the irregular nature of cavings, smaller values of
m are preferable. In contrast, the choice of k varies widely, with
different k values exerting a greater influence on segmentation
outcomes. As depicted in Fig. 6 with 15 cavings examples,
varying m and k settings illustrate the segmentation effects of
SLIC. Compactness m and the number of superpixels k directly
influence the segmentation outcome, thereby affecting the final
classification results of VGG19. Through multiple trials, it
has been found that when m and k are set to 8 and 2,000
respectively, the VGG19 achieves the highest classification
accuracy (Fig. 6(d)). Therefore, it is finally decided that m = 8
and k = 2,000 (Fig. 6).

For the three types of superpixels, different processing
methods are required, necessitating the classification of all
superpixels obtained from SLIC segmentation (Fig. 2). The
superpixel regions obtained from SLIC are irregular two-
dimensional images, whereas VGG19 image classification
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requires input in standard rectangular format. Therefore, in
this study, the non-superpixel regions of the SLIC segmented
superpixel images are filled with red color (Fig. 2). Red color
was chosen for filling non-superpixel regions because the
research found that pure red is not present in any of the non-
caving areas, which helps reduce background interference after
filling.

The extracted cavings closely resemble the original caving
shapes, maintaining their fundamental characteristics (Fig. 7).
Subsequent calculations of geometric features are primarily
based on these extracted caving images. This study demon-
strates that the SLIC-VGG19-TS segmentation and extraction
of cavings meet the research requirements effectively.

3.3 Cavings recognition
In the recognition of caving shapes, this study proposes

the MFF-GoogleNet model, which integrates two main types
of features: Convolutional features and geometric features.
Convolutional features are extracted by GoogleNet through
convolution and pooling operations on the original caving
images. Geometric features are extracted based on binary
images of cavings segmented by SLIC-VGG19-TS. Geometric
features mainly include roundness, rectangularity, and tri-
angularity of cavings. Analysis of the relationship between
caving types and geometric features in the sample dataset
reveals that triangularity tends to be higher for angular cavings,
rectangularity is generally higher for tabular cavings, and
all three geometric features are smaller for splintery cavings
(Fig. 8). This indicates a direct correlation between geometric
features and caving types.

Geometric features are closely related to caving types,

but alone they are insufficient to determine the type of
cavings. Therefore, in MMF-GoogleNet, convolutional fea-
tures extracted by GoogleNet are also integrated. GoogleNet
extracts convolutional features from the input raw caving
images through convolution and pooling operations, resulting
in convolutional feature maps (Fig. 9). The effectiveness of
feature extraction through convolution significantly impacts
the final classification performance of the model. Taking the
first convolutional layer of GoogleNet as an example, which
has 64 output channels, it can be viewed as producing 64
feature maps (Fig. 9). Each feature map from every convo-
lutional layer captures partial features of the image, and no
single feature map can describe all features of the image.
These feature maps collectively represent different aspects
of the caving image. After multiple convolution and pooling
operations, the final pooling layer converts the feature maps
into feature matrices of a fixed size. In GoogleNet, this results
in 1,024 feature matrices, each with spatial dimensions of
7×7 (Fig. 9). These feature matrices are then fused with the
feature matrices obtained from geometric feature extraction to
form new feature matrices (Eqs. (7)-(11)). These new feature
matrices are input into fully connected layers for the final
recognition of caving types.

MMF-GoogleNet achieved an overall recognition accuracy
of 94.97% on the test dataset. Among the different types of
cavings, angular cavings had the highest recognition accuracy,
followed by splintery cavings. However, recognition accuracy
was lower for blocky and tabular cavings (Fig. 10(a)). The
lower accuracy for blocky and tabular cavings is primarily
due to their similar appearance in images, leading to potential
misidentification. Specifically, 80.5% of misidentified blocky
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Fig. 7. SLIC-VGG19-TS caving extraction. (a) SLIC, (b) SLIC-VGG19-TS and (c) extraction results.
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Fig. 8. Types of cavings and Gaussian distribution of geometric features. (a) Roundness of cavings, (b) rectangularity of cavings
and (c) triangularity of cavings.

cavings were mistakenly classified as tabular cavings, while
62.5% of misidentified tabular cavings were incorrectly identi-
fied as blocky cavings (Fig. 10(b)). Tabular cavings and blocky
cavings are prone to mutual recognition errors due to their
similar appearances. Additionally, after drilling fluid infiltrates
formations with well-developed fractures and bedding, and it is
likely to form tabular and blocky cavings. The mechanisms of
wellbore instability for both types of cavings are quite similar.
The lower recognition accuracy of blocky cavings compared
to tabular cavings is because there are more tabular cavings
in the dataset (Table 1). During model training, it is easier
for the model to learn the features of tabular cavings, which
is why the recognition accuracy of blocky cavings is lower
than that of tabular cavings. Angular cavings and splintery
cavings, characterized by their unique structural features, had
higher recognition accuracy, with a lower likelihood of being
misidentified than other types of cavings.

To validate the performance of the MMF-GoogleNet
caving recognition, it was compared against several other
models: The threshold segmentation-based geometric feature
model (TS-GF), the SLIC-VGG19-TS segmentation recog-
nition model based on geometric features (SLIC-VGG19-
GF), the GoogleNet model based on convolutional features
alone, and the threshold segmentation improved GoogleNet
model based on multiple-sources features (TS-GoogleNet).
The results showed that both TS-GF and SLIC-VGG19-GF,
based solely on geometric features, had significantly lower
recognition accuracy compared to the other three models.
SLIC-VGG19-GF had slightly higher accuracy than TS-GF,
indicating that SLIC-VGG19-TS segmentation performs better
than threshold segmentation for caving segmentation. Both TS-
GoogleNet and MMF-GoogleNet, which integrate both geo-
metric and convolutional features, exhibited higher recognition

accuracy than the other three models. This demonstrates that
the fusion of geometric and convolutional features effectively
enhances the model’s recognition accuracy. Among the five
models evaluated, MMF-GoogleNet consistently achieved the
highest recognition accuracy for all types of cavings, indicat-
ing that the proposed model improvement approach in this
study is of practical value (Fig. 11).

4. Analysis of wellbore instability based on
expert systems

4.1 The relationship between cavings and
wellbore failure

Cavings are a type of drilling cuttings, where conventional
cuttings are generated by the drill bit damaging the rock at the
bottom of the wellbore, whereas cavings are larger cuttings
that fall due to damage to the wellbore, often larger in size
compared to normal cuttings. According to the mechanism of
wellbore instability and the shapes of the cavings, cavings can
be classified into four types: Blocky caving, tabular caving,
angular caving, and splintery caving (Skea et al., 2018; Jin et
al., 2022). The type of cavings can indicate the mechanism of
their formation, thereby revealing the mechanism of wellbore
damage. During construction, if real-time analysis of the type
of cuttings and analysis of the wellbore instability mechanism
can be performed based on the cavings returned from the
bottom of the well, appropriate solutions can be implemented
accordingly. This approach helps in reducing the risk of
wellbore instability and drilling costs. While the type of
cavings can indicate the mechanism of wellbore instability, this
determination is not always absolutely accurate. To enhance
the accuracy of these determinations, this study introduces a
WSES model. The WSES model mainly focuses on the type
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Fig. 9. GoogleNet feature extraction process.
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Table 3. Concrete measure of wellbore instability (Skea et
al., 2018; Jin et al., 2022).

Failure Measure Concrete measure

I I Increase drilling fluid density

II II Increase flow rate and drilling fluid density

III III Reduce the rate of penetration and adjust
drilling fluid density

IV IV Increase drilling fluid density and sealing
ability

of cavings, and combines the surface roughness and edge angle
changes of cavings to establish an expert system for wellbore
stability analysis (Fig. 4). Based on the results, corresponding
solutions are provided. According to current research and field
construction feedback, instability types can be categorized into
four classes (Table 4), each corresponding to specific
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Fig. 11. Recognition accuracy of different models and types
of caving.

mitigation measures (Table 3).
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Table 4. Classification of wellbore instability mechanisms (Skea et al., 2018; Izurieta et al., 2019; Jin et al., 2022).

Failure Caving Formation Instability mechanism

I Splintery High-pressure and high-rock strength Drilling fluid density below pore pressure, tensile failure

II Angular High-stress difference, low rock strength Drilling fluid density below collapse pressure, shear failure

III Tabular Well-developed bedding and weak planes Low adhesion of weak surfaces, weak slip failure

IV Blocky Well-developed fractures and faults Drilling fluid into natural fractures
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Fig. 12. The relationship between the edge angle, surface roughness of some cavings and the type of instability at a depth of
5,783 meters. (a) Mean edge angle of cavings and (b) roughness of cavings.

4.2 The influence of edge angle and roughness on
wellbore instability

Based on research, the type of cavings can indicate the
majority of reasons for wellbore instability. However, some
instability causes may still be misjudged. Therefore, in devel-
oping an expert system for wellbore instability, the primary
consideration is the shape characteristics of cavings, with
secondary considerations given to the edge angles and surface
roughness of the cavings. Research conducted on cavings
collected from two sets of production wells revealed specific
findings: when instability occurs due to slip along weak
planes like bedding planes, the surface roughness of cavings
is minimal, but the edge angles are large. When the drilling
fluid density is insufficient and causes shear failure or tensile
failure of the wellbore walls, cavings exhibit larger surface
roughness but smaller edge angles (Fig. 12).

In the context of the four types of wellbore instability,
if bedding planes are present, most of the instability occurs
along these planes. Consequently, the surface roughness of the
cavings is minimal. However, cavings produced under these
conditions tend to have larger roundness, leading to significant
variations in edge angles (Fig. 12). Instability caused by
drilling fluid intrusion into natural fractures, results in cavings
with surface roughness and edge angles that are similar to
cavings occurring on bedding planes (Fig. 12). Therefore,
distinguishing between damage along bedding planes and

instability due to drilling fluid intrusion into natural fractures
based solely on edge angle variations and surface roughness
is challenging. These two types of instability are primarily
differentiated based on caving types, but edge angles and
surface roughness can help distinguish them from the other
two types of instability. For shear and tensile failures causing
instability, which results from stress imbalances in the for-
mation, cavings typically exhibit larger surface roughness and
smaller edge angles (Fig. 12). These patterns generally apply
to most cases of instability, but not every collapse-induced
instability scenario fits this analysis. Therefore, for a more
accurate analysis of instability mechanisms, combining caving
types, surface roughness, and edge angles is crucial. Utilizing
an expert system model can provide the final analysis results
based on these factors.

4.3 Engineering application analysis
To validate the effectiveness of the WSIRES model pro-

posed in this study, we applied this method to a development
well under construction in Xinjiang, China. The studied reser-
voir is situated in Cretaceous formations predominantly com-
posed of mudstone and sandstone. We collected four batches of
cavings from this formation and conducted a detailed analysis.

The first batch of cavings returned to the surface at a depth
of 5,498 meters, with slight drilling sticking observed during
the process. The largest length of the cavings at this depth was
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Fig. 13. At a depth of 5,498 meters, the WSIRES model was used for cuttings identification and wellbore stability analysis. (a)
Cavings, (b) multi-source feature extraction, (c) reasons for failure and solutions and (d) the recognition results, edge angle,
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Table 5. Comprehensive analysis of cavings identification
results and wellbore stability.

No. Depth (m) Types Failure Measure

1 5,498 Blocky IV IV

2 5,662 Tabular III III

3 5,783 Blocky IV IV

4 5,901 Angular II II

approximately 7 cm. Initially, convolutional features and geo-
metric features including triangularity, rectangularity, and cir-
cularity were extracted separately using GoogleNet and SLIC-
VGG19-TS methods. The convolutional features resulted in a
3D matrix of dimensions (7,7,1024), while geometric features
were also extracted (Fig. 13(b)). After feature extraction,
the types of cavings were identified. A total of 15 samples
were collected, out of which 8 were identified as block-
shaped cavings (Fig. 13(d)). Therefore, the predominant type
of cavings at this depth was identified as blocky cavings.
Using the caving type as the primary criterion and considering
variations in edge angles and surface roughness, an analysis
of the wellbore instability mechanism was conducted. The
analysis concluded that the instability of the wellbore at this
depth was primarily caused by drilling fluid intrusion into
natural fractures, resulting in blocky cavings (Fig. 13(c)).
During the construction process, the instability issue at this
depth can be resolved by increasing mud density, reducing

mechanical drilling speed, and changing mud types.
We collected four batches of cavings from different depths

of the same well. The identification and analysis process for
each batch of cavings was similar to that of the cavings
at 5,498 meters depth (Fig. 13). The final analysis revealed
that the instability mechanism of the third batch of cavings
was similar to that of the first batch. The second batch of
cavings experienced instability due to slip failure along weak
planes or reduced adhesion of weak planes under stimulation
(Table 5). For such instability, it is recommended to drill
slowly, make minor adjustments to mud density, and minimize
agitation. The fourth batch of cavings experienced shear failure
of the wellbore walls due to drilling fluid density being
lower than the collapse pressure. For this type of instability,
measures should include controlling drilling speed, increasing
circulation rate, and increasing mud density within the safe
density window (Table 5).

4.4 Limitations and future work
The WSIRES model proposed in this study can monitor

wellbore instability during drilling and determine the insta-
bility mechanism, providing corresponding solutions based on
the identified mechanism. This study is not limited to any
specific formation, and as long as relevant image datasets are
collected, wellbore instability analysis can be performed for
any formation.

Due to limitations in the research conditions, this study has
some shortcomings; however, they do not affect the current
stage of its application. The study assumes that the cavings
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formed by wellbore collapse do not undergo shape changes
during the cuttings transportation process. However, for some
cavings from rocks with weaker strength, a small portion
of them may change shape during transportation. This is an
aspect that needs to be further considered in future research.

5. Conclusions
This study proposes the WSIRES model for real-time

analysis of wellbore stability based on image recognition and
expert systems. Firstly, this study improves the threshold seg-
mentation based on SLIC superpixel segmentation and VGG19
image classification to calculate the important geometric fea-
tures of cavings. In addition, an MMF-GoogleNet model for
caving type recognition was established by fusing geometric
features with convolutional features. Finally, a WSES model
was established to analyze the mechanism of wellbore instabil-
ity by combining the caving type, surface roughness, and edge
angle. Through modeling, testing, and practical application,
this study draws the following conclusions:

1) The improved threshold segmentation based on SLIC
superpixel segmentation and VGG19 image classification
effectively segments the caving regions in the images and
extracts their edges.

2) The MFF-GoogleNet model, by integrating geometric
features of cavings with convolutional features extracted
by GoogleNet, provides more accurate recognition of
dropped block types.

3) There is a good mapping relationship between caving
types and wellbore instability mechanisms, which allows
us to infer the mechanisms of wellbore instability to a
certain extent based on the caving types.

4) Using caving types as the primary dataset, the expert
system for wellbore stability analysis, which integrates
surface roughness and changes in edge angles of cavings,
can analyze the causes of wellbore instability in real-time
and effectively. It can also provide reasonable solutions
accordingly.
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