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1. Other figures and tables 

Table S1. Hyperparameter setting of base learners RF. 

Models n_estimators max_depth random_state 

RF1 222 15 42 

RF2 100 None 35 

Table S2. Hyperparameter setting of base learners CatBoost. 

Models iterations depth learning_rate random_state 

CatBoost1 535 9 0.01325 32 

CatBoost2 600 6 0.03 42 

Table S3. Hyperparameter setting of other base learners. (The types and default values of DT hyperparameters include criterion = mse, splitter = 

best, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, and so on. The types and default values of KNN hyperparameters 

include n_neighbors = 5, weights = uniform, algorithm = auto, leaf_size = 30, and so on).  

Models n_estimators max_depth learning_rate random_state 

DT No None No None 

KNN No No No None 

LightGBM 100 9 0.037 None 

XGBoost 924 6 0.06 None 

 



 

Fig. S1. The pairwise correlation plot of porosity after expanding the dataset. 

 



 

Fig. S2. The R2 results of ten porosity ML prediction models. 
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Fig. S3. The R2 results of ten permeability ML prediction models. 
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Fig. S4. The R2 results of feature ablation study for Stacking porosity prediction models. (A)Depth; (B)Depth, AC; (C) 

Depth, AC, SP; (D) Depth, AC, SP, CAL; (E) Depth, AC, SP, CAL, GR; (F) Depth, AC, SP, CAL, GR, DEN; (G) Depth, 

AC, SP, CAL, GR, DEN, CNL; (H) AC, SP, CAL, GR, DEN, CNL. 
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Fig. S5. The R2 results of feature ablation study for Stacking permeability prediction models. (A)Depth; (B)Depth, DEN; 

(C) Depth, DEN, SP; (D) Depth, DEN, SP, GR; (E) Depth, DEN, SP, GR, CNL; (F) Depth, DEN, SP, GR, CNL, CAL; (G) 

Depth, DEN, SP, GR, CNL, CAL, AC; (H) DEN, SP, GR, CNL, CAL, AC. 
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Fig. S6. The tectonic zone map of Sichuan Basin (After the expansion of porosity prediction dataset.). 

 



 
Fig. S7. The R2 results of ten porosity ML prediction models after model extension(Input features were Depth, AC, SP). 
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2. Mathematical theory of different algorithms 

2.1 LR  

The LR algorithm is among the most widely utilized regression algorithms for identifying the linear relationship between two or more 

variables. LR aims to establish the optimal linear correlation between the independent variable (feature) and the dependent variable (target variable) 

by fitting a line that minimizes the distance between the data points and itself. The central concept involves determining the weight vector by 

minimizing the loss function,  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 . (1) 

where n represents the number of features.  

2.2 SVR  

The SVR algorithm is a regression analysis tool derived from the Support Vector Machine (SVM) framework. Unlike the linear regression 

algorithm, which attempts to fit all data points, the SVR introduces an “insensitive band” around the prediction line. Data points within this band 

are considered acceptable and do not contribute to the loss calculation, whereas only data points outside this band impact the loss function. The 

SVR algorithm’s advantage lies in its sparsity and robustness. Owing to its design, where only data points outside the epsilon-insensitive band 

influence the loss function, SVR can inherently disregard the effects of noise and outliers. This capability leads to a more stable and reliable 

regression model, 

𝑓(𝑥) = ∑(

𝑚

𝑖=1

𝛼𝑖 − 𝛼𝑖)𝜅(𝑥𝑖
𝑇𝑥) + 𝑏. (2) 

Where 𝜅(𝑥𝑖
𝑇𝑥) is the kernel function, 𝛼𝑖 is the predicted value, 𝛼𝑖 is the true value，and b is the biased term.  

2.3 KNN  

KNN is an instance-based learning algorithm. The fundamental principle of KNN is that, within the feature space, if the majority of a sample’s 

K nearest neighbors belong to a certain category, then the sample is also classified into that category. Here, “nearest neighbors” are defined as the 

closest sample points within the feature space. The KNN algorithm’ s strengths include its simplicity and intuitiveness, the lack of need for 

parameter estimation, and its applicability to both classification and regression tasks. Furthermore, KNN demonstrates a certain degree of 

robustness to outliers and noisy data.  

Algorithm S1. The pseudocode of KNN. 

Algorithm K-Nearest Neighbors 

Input: Training dataset: D = {(x1, y1), (x2, y2), ..., (xn, yn)}, xn, yn ∈ R 

xn ∈ R were variables, yn ∈ R = {c1, c2, …, ck} were values or classes of objective variables. i = 1, 2, …, N. 

Output: 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑗

∑ 𝐼(𝑦𝑖 − 𝑐𝑖 ),𝑥𝑖∈𝑁𝑘(𝑥)
𝑖 = 1, 2, 3 …  𝐾 

  I is the indicator function 

 𝐼(𝑦𝑖 − 𝑐𝑖 ) = {
1, 𝑦𝑖 = 𝑐𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

2.4 DT  

The DT algorithm is a widely utilized supervised learning method for addressing classification and regression issues. It cons tructs a DT by 

iteratively partitioning the dataset into smaller subsets, thereby facilitating predictions and decisions on new data instances. The essential concept 

of the DT algorithm involves segmenting the dataset into distinct subsets based on data attributes and recursively developing the DT on each subset 

until a stopping criterion is reached. 

ID3 algorithm is the first work of DT algorithm. It utilizes information gain as the criterion for selecting partition attributes. Specifically, it 

selects the attributes that can maximize the information gain of the partitioned sample set. When the discrete attribute a possesses V possible values 

{a1, a2, ..., av}, and the dataset D is segmented based on attribute a, then V branch nodes are generated. Each V branch node encapsulates all 

samples in D that correspond to the value av of attribute a, denoted as DV. Subsequently, the information gain from partitioning the sample set D 

using attribute a can be determined:  

𝐺𝑎𝑖𝑛(𝐷, 𝑎) = 𝐸𝑛𝑡(𝐷) − ∑
|𝐷𝑣 |

|𝐷|
𝐸𝑛𝑡(𝐷𝑣 ).

𝑉

𝑣=1

(3) 

Generally, the higher the information gain, the more significant the “purity boost” achieved through partitioning with attribute a. However, 

utilizing information gain for attribute division poses a potential issue: when an attribute contains a large number of values, the information 

entropy for the sample subset corresponding to each attribute value may become minimal. To mitigate the negative impact of this bias, the C4.5 

DT algorithm does not directly employ information gain. Instead, it utilizes the gain ratio to select the optimal partition attribute.  



The C4.5 algorithm represents an enhancement of the ID3 algorithm, addressing several of ID3’s limitations, such as the inabi lity to handle 

continuous attributes and missing values. C4.5 employs the information gain rate as the criterion for selecting part ition attributes, circumventing 

the ID3 algorithm’s tendency to favor attributes with a large number of values. The information gain rate is defined as:  

𝐺𝑎𝑖𝑛𝑟 𝑎𝑡𝑖 𝑜(𝐷, 𝑎) =
Gain(𝐷, 𝑎)

IV(𝑎)
, (4) 

here,  

𝐼𝑉(𝑎) = − ∑
|𝐷𝑣|

|𝐷|

𝑉

𝑣=1

𝑙𝑜𝑔2

|𝐷𝑣|

|𝐷|
. (5) 

This is referred to as the intrinsic value IV of attribute a. The greater the number of possible values for attribute a (that is, the larger V is), 

the higher the value of IV(a)) tends to be.  

The CART (Classification and Regression Trees) algorithm is another widely utilized DT methodology. It employs a binary tree structure and 

is applicable to both classification and regression tasks. The CART algorithm utilizes the Gini index as the criterion for selecting partition attributes. 

The Gini coefficient is calculated as follows:  

𝐺𝑖𝑛 𝑖(𝐷) = ∑ ∑ 𝑝𝑘𝑝𝑘′

𝑘′≠𝑘

|𝑦|

𝑘=1

= 1 − ∑ 𝑝𝑘
2

|𝑦|

𝑘=1

, (6) 

where k is the number of sample types in the data set; pk is the proportion of the number of Class i samples to the total number of samples.  

Gini(D) reflects the probability that two samples taken at random from dataset D have inconsistent category labels. Therefore, the smaller 

Gini(D) is, the higher the purity of the dataset D. The result is the Gini index:  

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥(𝐷 , 𝑎) = ∑
|𝐷𝑣|

|𝐷|

𝑉

𝑣=1

𝐺𝑖𝑛𝑖(𝐷𝑣). (7) 

Algorithm S2. The pseudocode of DT. 

Algorithm Decision Tree  

Input: Training dataset: D = {(x1, y1), (x2, y2), ..., (xn, yn)}, xn, yn ∈ R  

  if termination criteria met  

return base hypothesis gt(x)  

else 

  learn branching citeria b(x)  

  split D to C parts DC = {(xn, yn): b(xn) = c}  

  build sub-tree Gc ← Decision Tree (Dc)  

  return 𝐺(𝑥) = ∑
𝑐=1
𝐶

[𝑏(𝑥) = 𝑐]𝐺𝐶(𝑥)  

2.5 RF  

The foundational principle of RF involves generating several subsamples sets from the original training dataset through boots trap resampling. 

A DT model is then built for each subsample set, with the final prediction result obtained by amalgamating the outputs from all the DTs. In a 

Random Forest, each DT is trained on a random subset of features, meaning only a fraction of the features are selected for partitioning at each 

node. This approach boosts the model’s diversity and, consequently, its integrated prediction accuracy. The benefits of the RF algorithm include 

its capability to manage high-dimensional data, resistance to overfitting, robustness to outliers and noisy data, and its ability to provide variable 

importance evaluations.  

Algorithm S3. The pseudocode of RF. 

Algorithm Random Forests  

Input: Training dataset: D = {(x1, y1), (x2, y2), ..., (xn, yn)}, xn, yn ∈ R  

  Base learning algorithm 𝔏  

  Number of trainings T.  

Algorithm:  

1. For t = 1, 2, ..., T, do  

2. ℎ𝑡 = 𝐿(𝐷, 𝐷𝑏𝑠)  

3. End for  



Output: 𝐻(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦∈𝑌

∑ ∏(ℎ𝑡(𝑥) = 𝑦)𝑇
𝑡=1   

2.6 XGBoost  

XGBoost is an ensemble learning (boosting) algorithm that is based on Gradient Boosting Decision Trees (GBDT). The fundamental principle 

of XGBoost is to enhance the DT model through gradient boosting. 

Algorithm S4. The pseudocode of XGBoost. 

Algorithm XGBoost (Exact Greedy Algorithm for Split Finding)  

Input: Training dataset: D = {(x1, y1), (x2, y2), ..., (xn, yn)}, xn, yn ∈ R  

  I, instance set of current nodes  

  d, feature dimension  

gain ← 0  

𝐺 ← ∑ 𝑔𝑖

𝑖∈𝐼

, 𝐻 ← ∑ ℎ𝑖

𝑖∈𝐼

  

for k = 1 to d do  

GL ← 0, HL ← 0  

for j in sorted (I, by xjk) do  

        GL ← GL＋gj, HL ← HL＋hj 

            GR ← G－GL, HR ← H－HL 

            score ← max (score, 
𝐺𝐿

2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

𝐺2

𝐻+𝜆
)  

    end  

end  

Output: Split with max score  

1.7 LightGBM  

The LightGBM algorithm shares similarities with XGBoost, as both are ensemble learning (boosting) algorithms grounded in GBDT. The 

primary advantages of LightGBM lie in its efficiency and scalability. 

Algorithm S5. The pseudocode of LightGBM. 

Algorithm LightGBM (Gredient-based One-Side Sampling)  

Input: I: training data, d: iterations  

Input: a: sampling ratio of large gradient data  

Input: b: sampling ratio of small gradient data  

Input: loss: loss function, L: weak learner  

models ← { }, fact ← 
1−𝑎

𝑏
 (I)  

topN ← a × len(I), randN ← b × len(I)  

for i = 1 to d do  

   preds ← models.predict(I)  

   g ← loss(I,preds), w ← { 1, 1, ... }  

   sorted ← GetSortedIndices(abs(g))  

   topSet ← sorted[1:topN]  

   randSet ← RandomPick(sorted[topN:len(I)],randN)  

   usedSet ← topSet + randSet  

   w[randSet] × = fact ⊳ Assign weight fact to the small gradient data.  

   newModel ← L(I[usedSet], − g[usedSet], w[usedSet])  

   models.append(newModel)  



2.8 CatBoost  

CatBoost is an ensemble learning (boosting) algorithm that utilizes symmetric trees. Its principal strength lies in its capability to efficiently 

handle categorical features and mitigate overfitting through the reduction of gradient bias and prediction shift, enhancing both the model’s accuracy 

and its ability to generalize. CatBoost employs symmetric trees as base learners , meaning that at each step, the leaves of the preceding tree are 

split based on identical conditions. This uniformity simplifies the model’s structure, contributing to its stability.  

Algorithm S6. The pseudocode of CatBoost. 

Algorithm CatBoost  

Input: Training dataset: D = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , I, a, L, s, Mode  

σr ← random permutation of [1, n] for r = 0 … s;  

M0 (i) ← 0 for i = 1 … n;  

if Mode = Plain then  

Mr (i) ← 0 for r = 1… s, i: σr (i) ≤ 2j+1;  

if Mode = Ordered then  

for j ← 1 to ⌈log2 𝑛⌉ do  

    Mr,j (i) ← 0 for r = 1… s, i = 1..2j+1;  

for t ← 1 to I do  

Tt, {𝑀𝑟 }𝑟=1
𝑠  ← BuildTree ({𝑀𝑟 }𝑟=1

𝑠 , {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , a, L, {𝜎𝑖}𝑖=1

𝑠 , Mode);  

leaf0 (i) ← GetLeaf (xi, Tt, σ0) for i = 1… n);  

grad0 ← CalcGradient (L, M0, y)  

foreach leaf j in Tt do  

    𝑏𝑗
𝑡  ← －avg(grad0 (i) for i : leaf0(i) = j);  

   M0(i) ← M0(i) + a𝑏𝑙𝑒𝑎𝑓0 (𝑖)
𝑡  for i = 1… n;  

return 𝐹(𝑥) = ∑𝑡=1
𝐼 ∑𝑗𝛼𝑏𝑗

𝑡1{𝐺𝑒𝑡𝐿𝑒𝑎𝑓(𝑥,𝑇𝑡 ,𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑑𝑒)=𝑗}   

2.9 Bayesian optimization  

Bayesian optimization is a powerful black-box optimization algorithm based on probability theory. The core idea is to guide the search process 

by building a probabilistic model of the objective function, thereby finding the parameter configuration that optimizes the objective function.  

Algorithm S7. The pseudocode of Bayesian optimization. 

Algorithm Bayesian optimization 

for n = 1, 2, ... , do 

    select new xn+1 by optimizing acquisition function α 

𝑥𝑛+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑥

𝛼(𝑥; 𝐷𝑛) 

query objective function to obtain yn+1 

augment data Dn+1 = {Dn, (xn+1, yn+1)} 

update statistical model 

end for 

3. Abbreviation 

AI - Artificial Intelligence 

AC - Acoustic Log (μs/m) 

AHP - Analytic Hierarchy Process 

BPP - Bivariate Predictive Patterns 

BPNN - Back Propagation Neural Network  

CAL - Caliper (cm) 

CNL - Compensated Neutron Log (%) 

CatBoost - Category Boosting 

DEN - Density Log (g/cm3) 

DMML - Data Matching of Measured Data and Logging Data 

DT - Decision Tree 

KD - Kernel Density 



KNN - K-Nearest Neighbors 

LR - Linear Regression 

LightGBM - Light Gradient Boosting Machine 

ML - Machine Learning 

PCA - Principal Component Analysis 

PI - Permutation Importance 

PI-Set Permutation Importance - Set 

SP - Spontaneous Potential (mV) 

SVR - Support Vector Regression 

GR - Gamma Ray (API) 

RF - Random Forest 

RT - Resistivity Log (OMM) 

RLLD - Deep Resistivity Log (OMM) 

RLLS - Shallow Resistivity Log (OMM) 

UPP – Univariate Predictive Patterns 

Xu FM - Xujiahe Formation 

XGBoost - eXtreme Gradient Boosting 

4. Mathematical descriptions of evaluation metrics 

4.1 R2  

R2 signifies the proportion of the variance in the dependent variable that is predictable from the independent variable(s). A value closer to 1 

indicates a model that can more accurately explain the observed data, thus providing insights into the model’s adequacy in capturing information. 

However, R2 is influenced by the sample size and the complexity of the model. Consequently, a high R2 does not necessarily guarantee strong 

predictive power in some scenarios.  

4.2 MSE  

MSE calculates the average of the squared differences between predicted and actual values. Its function curve is smooth, continuous, and 

differentiable everywhere, facilitating the use of the gradient descent algorithm for optimization. As the error decreases, the gradient diminishes 

accordingly, aiding in convergence. However, MSE is highly sensitive to outliers, potentially exaggerating errors. When the actual values deviate 

significantly from the predicted ones, MSE imposes a substantial penalty, which could lead the model to overly concentrate on outliers at the 

detriment of the predictive accuracy for other, more typical data points. 

4.3 RMSE  

RMSE is the square root of the average of the squared differences between the predicted and actual values. It is straightforward to interpret, 

sensitive to outliers, and provides an intuitive measure of the average error between predicted and actual values. However, RMSE does not account 

for the variability of the target variables, which may not accurately represent the model’ s performance. Its sensitivity to outliers can result in 

unstable evaluation outcomes.  

4.4 MAE  

MAE calculates the average of the absolute differences between predicted and actual values. It demonstrates robustness against outliers, 

simplicity in calculation, and clarity in interpretation. MAE assigns equal weight to all errors, ensuring stable evaluation outcomes. However, it 

fails to account for the variability of the target variable, potentially misrepresenting the model’ s performance.  

4.5 MAPE  

MAPE measures the average percentage difference between predicted and actual values. MAPE quantifies errors in percentage terms, 

emphasizing relative errors, making it highly suitable for comparing predictions across datasets of varying scales. However, MAPE encounters 

limitations when actual values approach zero, as this leads to division by zero issues, rendering the metric inapplicable. Additionally, MAPE is 

particularly sensitive to minor errors, potentially exaggerating the magnitude of errors in cases with smaller actual values. The closer the values of 

MSE, RMSE, MAE, and MAPE are to 0, the superior the model’s performance is considered to be.  

 


