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Abstract:
Porosity and permeability are crucial indicators in the identification of high-quality
reservoirs and favorable “sweet spot” zones, as well as key parameters when predicting
and evaluating the development potential of fossil fuels like oil and gas. However, it
is impracticable to collect enough core samples on vertical and horizontal planes for
analysis due to the associated time and cost demand. Machine learning algorithms have
shown remarkable capabilities in predicting the petrophysical properties by capturing
non-linear relationships among logging data. In this study, to quantify the selection of
logging curves and reduce the redundant logging data input, a novel and interpretable
Permutation Importance-Set algorithm is proposed on the basis of logging data from the
Upper Triassic Xujiahe Formation in the Sichuan Basin. The results indicate that, because
of compaction, burial depth is the primary feature affecting the physical properties of tight
sandstone reservoirs. Acoustic and spontaneous potential logs are critical for porosity, while
density and spontaneous potential logs are pivotal for permeability, reflecting the complex
diagenesis caused by the widespread sand-mud interbedding. Basin-level prediction models
for porosity and permeability were developed using ten machine learning algorithms, then
ablation studies confirmed the effectiveness of our feature selection and the reduced model
complexity and over-fitting. This study offers a concise, interpretable prediction model with
superior accuracy and interpretability for tight sandstone reservoirs.

1. Introduction
To avoid costly drilling mistakes due to the geological

uncertainties and varying resource potential, the primary risk
assessment indicator for oil exploration must be taken as the
hydrocarbon enrichment potential of prospective reservoirs.
The petrophysical properties (porosity and permeability) of the
reservoir are among the crucial evaluation indicators of hydro-
carbon enrichment potential (Wang et al., 2020). Within the
context of continental sedimentation in China, tight sandstone

reservoirs refer to a porosity < 10% and permeability < 1
mD of oil and gas reservoirs (Zou et al., 2012). Compared
to conventional oil and gas reservoirs, tight oil and gas
reservoirs have less favorable physical properties, stronger
heterogeneity, lower reserve density ratio, and they present
challenges in predicting favorable “sweet spot” zones and
effective reservoirs (Zhao and Chen, 2014; Sun et al., 2019;
Ampomah et al., 2017). Therefore, it is essential to derive a
reliable and convenient technology that can predict reservoir
porosity and permeability across an entire basin. Such tech-

∗Corresponding author.
E-mail address: cl@student.cup.edu.cn (L. Cao); jfjhtb@163.com (F. Jiang); zxchen@eitech.edu.cn (Z. Chen);
gaoyang1112024@163.com (Y. Gao) hln10171007@163.com (L. Huo); chendcup@cup.edu.cn (D. Chen).
2207-9963 © The Author(s) 2025.
Received December 9, 2024; revised January 5, 2025; accepted February 1, 2025; available online February 5, 2025.

https://orcid.org/0000-0002-0089-2972
https://doi.org/10.46690/ager.2025.04.04


22 Cao, L., et al. Advances in Geo-Energy Research, 2025, 16(1): 21-35

nology could not only identify favorable “sweet spot” zones
and effective reservoirs, guiding oil and gas exploration and
development efficiently and in a cost effective way, but also
would be crucial to ensure interpretability and maintain cred-
ibility among exploration and development personnel (Aras
and Hanifi Van, 2022).

The accurate assessment of porosity and permeability typ-
ically relies on core tests, which are both costly and time-
consuming (Zhao et al., 2022). In addition, it is difficult
and impracticable to collect core samples across vertical and
horizontal planes for analysis. Thus, obtaining sufficiently
comprehensive and precise data on porosity and permeability
remains a significant challenge (Alfi et al., 2019). In contrast,
logging data, which is more readily available, offers a more
economic option while also providing a greater abundance
of data. In the actual exploration and development process,
well logging data records the formation data at every 0.125
m, which can reflect the continuous physical properties of
formations, including the electrical and acoustic properties (Lu
et al., 2021; Jiang et al., 2023). The first progress in this
field emerged from the study by Chork et al. (1994), who
pioneered sonic travel time clustering to homogenize logging
data and subsequently derived porosity-permeability conver-
sion formulas through systematic core data integration. Later
studies confronted the challenge of geological nonlinearity.
Zhang et al. (2020) developed a linearized rock physics in-
version method that predicts accurate physical parameters but
is unsuitable for nonlinear models. A limitation was similarly
observed in Belhouchet et al. (2021)’s multiple regression
model, which demonstrated partial success in permeability
prediction but inadequately addressed complex nonlinear inter-
dependencies. Recent research shifted focus toward specialized
relative permeability modeling. Shen et al. (2020) exper-
imentally established empirical correlations between water
relative permeability and hydrate saturation, while Yang et
al. (2023b) numerically simulated multiphase flow dynamics.
A theoretical breakthrough was made by Chai et al. (2024),
who redefined relative permeability characterization through
fractal geometry principles. Despite the widespread use of
logging interpretation and empirical methods for porosity and
permeability prediction, those in tight sandstone reservoirs
remain challenging due to their strong nonlinearity caused by
heterogeneity and their complex diagenesis (Al Khalifah et
al., 2020).

With the great capabilities of data-driven artificial intel-
ligence algorithms in discerning nonlinear mapping relation-
ships, machine learning (ML) techniques have found extensive
application in porosity and permeability prediction (Zhang et
al., 2023). Yu et al. (2020) combined fractal theory with deep
learning to accurately determine macroscopic permeability
from microscopic sandstone images. Zhao et al. (2022) used
a cross-correlation matrix to analyze the relationship between
logging characteristics and permeability, and developed a high-
accuracy eXtreme Gradient Boosting (XGBoost) model based
on core test data from three wells. Jiang et al. (2023) applied
the Grey Correlation Analysis (GCA) and Back Propagation
Neural Network (BPNN) methods to predict porosity and
permeability using 678 datasets. Lu et al. (2021) employed

linear regression to identify correlations between logging
curves and porosity, selecting log features for their machine
learning model based on expert judgment. Otchere et al. (2022)
used Pearson and Spearman correlation coefficients along
with Random Forest (RF) algorithms to determine the best
method for predicting porosity and permeability, ultimately
favoring RF. Zhang et al. (2021) introduced univariate and
bivariate predictive patterns (UPP and BPP) to visualize how
variables influence model predictions, whereas these methods
are limited in uncovering variable interactions. Each com-
monly used feature selection algorithm has its inherent advan-
tages and limitations: Pearson, Principal Component Analysis
(PCA), and Linear Regression (LR) excel at detecting linear
relationships (Jolliffe, 1986; Seber and Wild, 1989; Hauke
and Kossowski, 2011), Spearman is suited for monotonic
relationships (Hauke and Kossowski, 2011), and tree-based
algorithms like RF have inherent biases (Breiman, 2001). In
addition, due to the limitations of small datasets, there remains
a paucity of discussions on the application of ML models with
industrial application value (typically R2 ≥ 80%) across larger
geographical spaces, such as at the basin scale, hindering
the development of predictive models at this extensive level
(Karpatne et al., 2019).

In this study, taking logging data from the Xujiahe For-
mation (Xu FM) in the Sichuan Basin as a basis, a novel
and highly interpretable PI-Set algorithm is proposed, which
quantifies the importance of specific logging features to greatly
reduce the unnecessary and redundant logging data input,
alleviating model complexity and overfitting risk. Additionally,
the geological reasons for selecting logging curves by the PI-
Set model are discussed. Comparative experiments with ten
ML algorithms are conducted to develop the best-performing
basin-level porosity and permeability prediction models. Five
evaluation metrics are introduced to assess the prediction
performance of the ML models, and their applicability to
the prediction of porosity and permeability is examined. In
addition, complete feature ablation studies are conducted to
illustrate the influence of each feature on the final prediction
results, validating the effectiveness of the PI-Set model.

2. Geological setting
The Sichuan Basin is located at the western margin of

Yangtze Block, China, with an area of approximately 180,000
km2 (Liu et al., 2020). It was estimated to contain about
40× 1012 cubic meters of natural gas, making it the largest
reserve in China. However, its proven reserve has turned out
to be merely 18.8% (Liu et al., 2020; Yang et al., 2023a).
According to the structural characteristics of this basin, it
can be divided into four first-order tectonic units: foreland
thrust zone, foreland depression zone, foreland lope zone, and
foreland uplift zone (Fig. 1(a)). Therefore, it is a classical
superimposed basin with sedimentary records encompassing
the Paleozoic, Mesozoic and Cenozoic eras (Deng et al., 2022;
Shi et al., 2022).

The Xu FM contributes nearly 80% of the entire reserves in
the Sichuan Basin, which are mainly distributed in its central
and northwest parts, accounting for 65% and 29% of the pro-
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Fig. 2. Workflow of DMML.

ved reserves, respectively (Yang et al., 2023a). During the Xu
FM period, the Sichuan Basin was primarily characterized
by a topography that was high in the east and low in the
west, forming strata gradually thickening from east to west.
The Upper Triassic Xu FM constitutes a set of continental
coal-bearing clastic rock strata, with a thickness ranging from
250 to 3,500 m. On the basis of sedimentary cycles and
lithological characteristics, the Xu FM can be divided into
6 layers, sequentially named as Xu1 to Xu6. During the
sedimentary periods of Xu1, Xu3 and Xu5, the basin witnessed
periodic rises of lake water levels, leading to mudstone accu-
mulation and the formation of main source rock beds (Liu et
al., 2018; Gou et al., 2024). During the Xu2, Xu4 and Xu6
periods, lake water levels in the basin decreased, leading to
the widespread development of alluvial fans, braided rivers,
deltas, and littoral-shallow lake beach bars. These features
represent a basin-wide sedimentary pattern characterized by
a predominance of sand, which forms the main reservoir
layers of the Xu FM. As such, the source rock and sandstone
reservoirs of the Xu FM are closely interbedded, forming a
unique “sandwich” structure (Fig. 1(b)) that is conducive to

the accumulation of tight sandstone gas.

3. Data and methodology
The basic geological data include 13,640 measured poros-

ity samples and 6,403 measured permeability samples from
the Research Institute of Exploration and Development,
PetroChina Southwest Oil & Gas Field Company, all con-
forming to the Chinese National Standard. This collection
was accompanied by nine conventional well logging curves,
including spontaneous potential (SP, mV), gamma ray (GR,
API), caliper (CAL, cm), compensated neutron log (CNL,
%), density log (DEN, g/cm3), acoustic log (AC, µs/m),
resistivity log (RT, OMM), deep resistivity log (RLLD, OMM)
and shallow resistivity log (RLLS, OMM) (detailed in the
Supplementary file). Due to logging issues, the RT, RLLD
and RLLS curves are missing in some wells, so these three
well logging curves were omitted from the feature selection
and modeling process. Finally, the available data set included
2,583 measured porosity data points from 19 wells and 1,043
measured permeability data points from 16 wells (Tables 1
and 2). After relaxing input feature constraints via the PI-Set
algorithm, the porosity dataset was expanded to include 6,337
measured data points from 35 wells (see Section 4.3). Owing
to the limitations of the original dataset, the permeability
dataset could not be expanded. All the datasets were divided
into training set and test set in a ratio of 70% to 30%.

3.1 Data preprocessing and preparation
3.1.1 Data preprocessing

Matching measured data with logging data is often a
cumbersome task requiring excessive manual effort by re-
searchers. To address this challenge, we developed a software
called DMML (Data Matching of Measured Data and Logging
Data) (Fig. 2). This can automatically convert logging data
text files within the same storage path to Excel/CSV tables
and allow for customized data analysis, including Box Plot,
Kernel Density (KD) Plot, Pairwise Correlation Plot, and
Pearson’s/Spearman’s Correlation Heatmaps. It calculates the
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Table 1. Statistical summary of well log data and porosity of tight sandstone.

Features Depth (m) SP (mV) GR (API) CAL (cm) CNL (%) DEN (g/cm3) AC (µs/m) Porosity (%)

mean 2,776.35 143.55 77.57 9.25 11.01 2.52 63.35 5.784377

std 606.77 114.09 30.40 4.46 6.38 0.15 6.52 2.896617

min 1,946.31 -14.48 26.16 4.51 -0.18 1.39 46.62 0.080000

25% 2,346.54 27.52 55.71 6.62 7.20 2.47 59.23 3.750235

50% 2,757.62 162.61 68.84 7.90 8.95 2.53 62.44 5.340000

75% 3,106.13 246.71 91.40 9.52 13.42 2.61 66.50 7.230000

max 4,518.21 366.32 247.07 29.53 65.99 2.92 101.14 15.897613

Notes: Count means the total number of data, mean is the average value, std stands for the standard deviation, min is the
minimum, 25% denotes the first quartile, 50% is the median, 75% represents the third quartile, and max is the maximum.

Table 2. Statistical summary of well log data and permeability of tight sandstone.

Features Depth (m) SP (mV) GR (API) CAL (cm) CNL (%) DEN (g/cm3) AC (µs/m) Permeability (mD)

mean 2,789.75 174.18 86.66 8.46 11.01 2.50 65.22 0.533566

std 747.73 110.04 32.87 3.26 7.75 0.20 7.64 2.094230

min 2,012.64 -14.48 26.16 4.51 -0.18 1.39 46.80 0.000005

25% 2,119.33 58.73 61.41 6.45 6.52 2.46 58.82 0.004400

50% 2,570.20 183.59 75.56 7.82 8.73 2.54 63.11 0.071672

75% 3,133.68 248.99 112.12 9.50 12.60 2.62 67.46 0.241350

max 4,518.21 366.32 214.90 25.28 65.99 2.85 101.14 27.70000

minimum depth difference between each measured data and
the corresponding logging data on the basis of well names and
depth, and selects the logging data with the closest depth for
matching.

3.1.2 Data preparation

The permeability values were logarithmically transformed
from skewed distribution to normal distribution for correction.
Then, a pairwise correlation plot, including porosity and
permeability with depth and each logging parameter, was
generated to analyze the correlations between each pair of
variables in the dataset (Figs. 3 and 4).

From Figs. 3 and 4, it can be seen that SP, porosity and
permeability all exhibit a horizontal distribution parallel to the
X-axis by well location, making it impossible to describe their
relationships with simple linear or nonlinear correlations. AC
and porosity show an obvious nonlinear distribution pattern
by well location, while GR with porosity and permeability
presents a distinct clustered distribution, suggesting the possi-
bility of other relationships, such as exponential correlation, to
describe this distribution. From the pairwise correlation plot,
it is possible to observe the data distribution between each
pair of features, thus gaining an intuitive understanding of
the mathematical relationships between the feature pairs, such
as linear, nonlinear, and feature interaction relationships (the
latter refers to a specific correlation or interaction between
two or more features, i.e., the information gain resulting from

the interaction of multiple features). The cross-plot illustrates
the data distribution relationship between two features, while
the images on the diagonal represent KD plots, which intu-
itively display the distribution shapes of specific feature data,
including peaks, valleys and skewness.

3.2 Feature engineering
In ML problems, data and features set the upper limit

of achievable results, with algorithms striving to reach this
limit. To this end, feature engineering, which includes data
presentation, information extraction and organization, is a
pivotal process (Wood, 2023). Feature selection, a key part
of feature engineering, involves choosing the most beneficial
subset of features, and eliminating redundant or irrelevant ones
to enhance model stability, reliability and performance. This
process also mitigates overfitting and improves generalizabil-
ity, rendering the model more comprehensible (Otchere et
al., 2022).

Geology researchers have long used various feature selec-
tion algorithms, while these often lack interpretability and have
inherent flaws. Though some algorithms excel at identifying
linear or monotonic relationships (Table 3), they may miss
complex interactions. For example, high AC indicates higher
pore volume and lower density (DEN), revealing valuable
insights into porosity prediction through their interaction.

Using common feature selection algorithms in ML models
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Fig. 3. Pairwise correlation plot of porosity illustrating the data distribution relationship between two features (the units are
the same as in Table 1).

for porosity and permeability prediction may result in the loss
of intricate information between depth and logging features,
leading to reduced model accuracy and interpretability. This
flaw is particularly pronounced in the Xu FM of the Sichuan
Basin due to its vast area and varied well locations. To
address these limitations of common feature selection algo-
rithms, Fisher et al. (2019) proposed the model-independent
Permutation Importance (PI) algorithm, which disrupts the
relationship between a feature and the target variable by
randomly shuffling the feature’s values, assessing the impact
on model performance to rank feature importance. By re-
peating this process with different shuffling sequences, PI
accurately captures both direct and interaction information
between features. This algorithm is suitable for structured data,
can be applied to any model and offers high interpretability

in feature importance measurement:
For each repetition k in 1 · · ·K, column j of dataset A is

randomly shuffled to generate a corrupted version of the data
named D̃k, j, and sk, j is the computation score of model m on
corrupted data D̃k, j.

However, the PI algorithm relies on the predictive per-
formance of a single model to determine the importance of
features. To ensure both high accuracy and interpretability in
feature selection, inspired by Zhang (2022)’s work on medical
data, this study proposes a novel PI-Set algorithm (Fig. 5). On
the basis of the set theory, this algorithm selects models with
the best predictive performance, using diverse mathematical
methods, ensemble techniques (see Section 3.4), and Decision
Tree (DT) types (Table 4). The PI-Set algorithm evaluates
contributions from multiple high-performance models, reduc-
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Fig. 4. Pairwise correlation plot of log permeability (the units are the same as in Table 2).

ing bias from any single model and minimizing information
inaccuracies.

3.3 Various regression algorithms
Porosity and permeability prediction tasks are treated

as regression problems involving numerical predictions. In
this study, 10 ML algorithms (including LR (Seber and
Wild, 1989), Support Vector Regression (SVR) (Drucker
et al., 1996), K-Nearest Neighbors (KNN) (Cover and
Hart, 1967), DT (Quinlan, 1986, 1993; Chou, 1991), BPNN
(Zhao et al., 2022), RF (Breiman, 2001), XGBoost (Chen
and Guestrin, 2016), Light Gradient Boosting Machine (Light-
GBM) (Ke et al., 2017), Category Boosting (Catboost)
(Prokhorenkova et al., 2018), and Stacking (Wolpert, 1992)),
encompassing traditional ML, deep learning and ensemble
learning techniques, were utilized to predict porosity and

permeability (detailed in the Supplementary file).

3.4 Ensemble learning-Stacking
Addressing complex data by a singular model often

presents challenges, including limited resistance to noise.
Therefore, the objective is to amalgamate multiple models,
leveraging their respective advantages and compensating for
their deficiencies, to bolster the model’s overall generalization
capacity, constituting the foundation of ensemble learning.
Ensemble learning predominantly adopts two methodologies:
a boosting framework, represented by algorithms like Light-
GBM, XGBoost, and CatBoost, which aims to construct a
robust learner by sequentially combining base learners. This
method focuses on sequentially improving the base learners
by specifically addressing the errors of the previous models
(Freund and Schapire, 1997). The bagging framework, as illus-



Cao, L., et al. Advances in Geo-Energy Research, 2025, 16(1): 21-35 27

Table 3. Flaws of the common feature selection algorithms.

Algorithms Flaws

Manual selection Relies on individual
experience

LR (Seber and
Wild, 1989)

Interaction information is not
considered

Pearson (Hauke and
Kossowski, 2011)

Identifies only linear
relationships

Spearman (Hauke and
Kossowski, 2011)

Identifies only monotonic
relationships

PCA (Jolliffe, 1986) Insensitive to nonlinear
relationships

GCA (Deng, 1982) Requires a sequence among
the data

AHP (Saaty, 1988) Excessive subjectivity

Tree-based Algorithms
(Breiman, 2001)

Existence of feature
preferences

Notes: Pearson: Pearson’s Correlation Coefficient; Spear-
man: Spearman’s Rank Correlation Coefficient.

trated by RF, creates several independent models and merges
their predictions through “voting” or “averaging” strategies
to form a potent learner. This approach is known for its
ability to reduce variance and improve prediction stability
(Breiman, 1996).

Furthermore, Stacking represents a hybrid approach, merg-
ing the aspects of both boosting and bagging techniques.
Stacking involves employing a variety of base learners to
process the original dataset and then using the predictions
from these base learners as inputs for a subsequent meta-
learner model (Algorithm 1). The essence of Stacking is to use
the predictive outputs of various base learners as new inputs
for training a meta-learner. This approach capitalizes on the
diversity among base learners to boost the overall prediction
accuracy. One of Stacking’s key benefits is its capacity to inte-
grate the strengths of numerous base learners through a meta-
learner, thereby achieving enhanced performance outcomes.
Additionally, Stacking can mitigate the risk of overfitting,
since the meta-learner is trained on the predictions from
the base learners instead of directly on the original data
features (Wolpert, 1992). Typically, it is advisable to select
ML algorithms with strong performance as base learners while
opting for algorithms of lower complexity (such as the LR
algorithm) for the meta-learner. This approach balances the
ability of Stacking to capture complex patterns with the need
to maintain overall model simplicity and interpretability.

i j = s− 1

K
K
∑

k=1
sk, j

(1)

where j represents the numbering of feature tabular dataset
A; i j presents the computation importance for feature j; s
represents the computation reference score of the validation
model m on data A.

Table 4. Baseline models of the PI-Set, which utilize
different mathematical computation methods, ensemble

methods, and DT types.

Algorithms Mathematical
methods

Ensemble
methods DT types

RF Gini
coefficient Bagging CART

XGBoost Information
entropy Boosting GBDT

CatBoost Information
entropy Boosting Symmetric

trees

PI
-R
F

PI-XGBoost

PI-CatBoost

PI-Set

Fig. 5. Architecture of the PI-Set algorithm (a feature is
deemed important and selected only if it is considered as such
by two or more baseline models).

Algorithm 1: The pseudocode of Stacking.
Input : Training dataset:

D = (x1,y1),(x2,y2), ...,(xn,yn),xn,yn ∈ R
Input : Base learners: L1,L2, ...,LT ;
Input : Meta-learner: L.
Output: H(x) = h′(h1(x),h2(x), ...,hT (x))

1 for t = 1,2, · · · ,T do
2 ht = Lt(D);
3 end
4 D′ = /0;
5 for i = 1,2, · · · ,m do
6 for t = 1,2, · · · ,T do
7 zit = ht(xi);
8 end
9 D′ = D′∪ ((zi1,zi2, ...,ziT ),yi);

10 end
11 h′ = L(D′);

Stacking can be implemented by two primary methods
(Fig. 6). The first employs the K-fold cross-validation method
to partition the original dataset into k subsets, it utilizes diverse
ML algorithms to predict on each subset, and ultimately amal-
gamates the predictions. The second method involves applying
different ML algorithms directly to the original dataset and
integrating the outcomes of these algorithms. This strategy
ensures a comprehensive utilization of the data, enhancing the
ensemble’s predictive performance. In this study, the second
method was utilized to construct the Stacking model, integrat-
ing the outputs of various ML algorithms applied directly to
the original dataset.
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Table 5. Mathematical expression and value ranges of
common evaluation metrics for five types of regression

models.

Evaluation
metric Mathematical expression Range of

values

R-squared (R2)
R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(ȳi − yi)

2

(−∞,1]

Mean Squared
Error (MSE) MSE =

1
n

n
∑

i=1
(yi − ŷi)

2 [0,+∞)

Root Mean
Squared Error
(RMSE)

RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2 [0,+∞)

Mean Absolute
Error (MAE) MAE =

1
n

n
∑

i=1
|yi − ŷi| [0,+∞)

Mean Absolute
Percentage
Error (MAPE)

MAPE =
100%

n

n
∑

i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ [0,+∞)

3.5 Model evaluation metrics
In order to assess the ML model’s predictive performance,

it is essential to employ various evaluation metrics. Each eval-
uation metric offers unique benefits and limitations (detailed
in the Supplementary file), underscoring the importance of
selecting the most appropriate indicator based on the specific
problem, the nature of the dataset, and the characteristics of the
model under consideration. In practice, to gain a general view
of a model’s effectiveness, it is advisable to assess its perfor-
mance comprehensively by integrating different metrics. This
consideration is vital for accurately evaluating the predictive
performance and interpretability of the ML model concerning
a given problem. In this study, five evaluation metrics were
utilized to thoroughly evaluate the proposed model’s predictive
capabilities (Table 5).

4. Results
In this section, the innovative PI-Set algorithm is employed

to rank the features based on their importance, providing an
in-depth explanation of the feature selection process. Then,
a comprehensive ablation study is conducted to evaluate
the influence of this feature selection. Following this, ten
ML models, including traditional ML, ensemble learning and
deep learning methods, are developed to predict porosity and
permeability in tight sandstone using well logging data. The
performance of these ML models is thoroughly assessed by
five different regression evaluation metrics. In addition, the
research includes detailed hyperparameter settings for the base
learners in the Stacking model.

4.1 Feature selection
In order to address the limitations of traditional fea-

ture selection algorithms, this study proposes a novel PI-
Set algorithm on the basis of the PI algorithm and the set
theory. Unlike conventional approaches, this algorithm uses
baseline models with distinct mathematical methods, ensemble
techniques and DT types (data structures). This innovative
approach allows for a comprehensive consideration of the
relationships between feature variables and target variables.

For porosity and permeability feature selection models, RF,
XGBoost and CatBoost were chosen as the baseline models for
the PI-Set model, aiming for optimal prediction performance
(Tables 6 and 7) and significant model differentiation (Table 4).
Consequently, the PI-Set feature selection models for porosity
and permeability prediction were established (Figs. 7 and 8).

PorosityPI−Set =

(Depth,AC,SP,CAL,GR,DEN,CNL)PI−RF

∪ (Depth,AC,SP,CAL,GR,DEN,CNL)PI−XGBoost

∪ (Depth,AC,CAL,SP,DEN,GR,CNL)PI−LightGBM

= (Depth,AC,SP,CAL,GR,DEN,CNL)

(2)

On the basis of the principle that “a feature is deemed
important and selected only if it is considered as such by two
or more baseline models”, the ranking of features by their
importance to porosity, from highest to lowest, is as follows:
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Table 6. Results of five evaluation metrics for ten porosity
ML prediction models.

Category Models R2

(%) MSE RMSE MAE MAPE
(%)

Traditional
ML

LR 22.50 6.41 2.53 1.92 54

DT 67.92 2.65 1.63 1.07 24

SVR 55.80 3.66 1.91 1.32 32

KNN 69.09 2.56 1.60 1.12 27

Deep
learning BPNN 39.71 4.99 2.23 1.70 46

Ensemble
learning

RF 81.66 1.52 1.23 0.86 21

XGBoost 80.48 1.62 1.27 0.90 22

LightGBM 78.16 1.81 1.34 0.95 24

CatBoost 79.96 1.66 1.29 0.92 23

Stacking 83.04 1.40 1.18 0.83 20

Fig. 7. Results of the PI-Set feature selection model for
porosity: (a) PI-RF, (b) PI-XGBoost and (c) PI-CatBoost. The
first numbers in each line of the arrangement result indicate
the degree of model performance attenuation. Negative values
indicate that the prediction result of the disrupted feature
is more accurate than the real data. The numbers after ±
represent the standard deviation of multiple shuffling.

Fig. 8. Results of the PI-Set feature selection model for
permeability: (a) PI-RF, (b) PI-XGBoost and (c) PI-CatBoost.

Depth, AC, SP, CAL, GR, DEN, CNL.

PermeabilityPI−Set =

(Depth,DEN,SP,GR,CNL,CAL,AC)PI−RF

∪ (Depth,DEN,SP,GR,CNL,AC,CAL)PI−XGBoost

∪ (Depth,DEN,SP,CAL,GR,CNL,AC)PI−LightGBM

= (Depth,DEN,SP,GR,CNL,CAL,AC)

(3)

The ranking of features by their importance to permeability,
from highest to lowest, is as follows: Depth, DEN, SP, GR,
CNL, CAL, AC.

The analysis of the PI-Set models for porosity and perme-
ability revealed that baseline models with significant differ-

Training set

 Porosity  Permeability 
Depth, SP, GR, CAL, CNL, DEN, AC

DTRF2 Catboost1 Catboost2 LightGBM KNN XGBoostRF1

Predictions P3P1 P2 P5P4 P6 P7 P8

Final prediction Pf

Meta-Regressor

Regression
models

Predictions

Training

N
ew

 data

Linear Regression

Fig. 9. The actual Stacking models for porosity and permeabil-
ity prediction were constructed in this paper (to reduce the risk
of overfitting, there are substantial differences between base
learners).

ences display remarkable consistency in the ranking of feature
importance. This consistency deviates from the traditionally
accepted significance of well logging features, a topic explored
further in the discussion section. The next Section 4.3 presents
an ablation study on input features. Both the porosity and
permeability prediction models achieved their highest accuracy
when using the top three features identified by the PI-Set
algorithm, which validates the precision and robustness of this
novel algorithm.

4.2 Prediction
Among the nine ML models evaluated for predicting poros-

ity and permeability, DT, RF, CatBoost, LightGBM, XGBoost,
and KNN achieved the best performance (Tables 6 and 7,
Figs. 10 and 11). Due to their substantial differences, these
six models were selected as base learners for the Stacking
ensemble model, with the LR algorithm chosen as the meta-
learner for its simplicity and low complexity (Fig. 9).

In order to promote model diversity and obtain compre-
hensive differential information without overfitting, this study
used the RF and CatBoost models twice. We first used the
Bayesian optimization algorithm (Pelikan et al., 2000) (de-
tailed in the Supplementary file) to find the optimal hyperpa-
rameter configurations for RF1 and CatBoost1, then randomly
set the hyperparameter values for RF2 and CatBoost2. This
strategy introduced variations in the dataset and hyperpa-
rameters between RF1 and RF2, as well as CatBoost1 and
CatBoost2 (detailed in the Supplementary file), with the aim
to provide the Stacking model with sufficient differential infor-
mation to enhance predictive accuracy and prevent overfitting.

As can be observed from Table 7, the MAPE values for
the permeability prediction model display exceptionally high
figures. As mentioned in Section 3.5 and Supplementary file,
MAPE penalizes true values that are close to zero, leading to
abnormally high MAPE values. Given that the permeability
values in tight sandstone reservoirs often approach near-zero
true values, MAPE is not a suitable metric for evaluating the
performance of permeability prediction models. Considering
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Table 7. Results of five evaluation metrics for ten permeability ML prediction models.

Category Models R2 (%) MSE RMSE MAE MAPE (%)

Traditional ML

LR 22.31 7.11 2.67 2.18 3.06×1013

DT 73.35 2.44 1.56 1.05 2.46×1012

SVR 64.62 3.24 1.80 1.30 3.25×1011

KNN 80.63 1.77 1.33 0.93 1.66×1012

Deep learning BPNN 72.12 2.55 1.60 1.12 1.02×1013

Ensemble Learning

RF 80.14 1.82 1.35 0.88 1.16×1012

XGBoost 80.53 1.78 1.33 0.90 1.05×1012

LightGBM 80.40 1.79 1.34 0.95 5.46×1011

CatBoost 80.84 1.75 1.32 0.92 1.67×1012

Stacking 82.84 1.57 1.25 0.86 4.64×1013

Fig. 10. The R2 result of porosity prediction for Stacking
model (The Stacking is 83.04%).

Fig. 11. The R2 result of permeability prediction for Stacking
model (The Stacking is 82.84%).

that the subject of this paper is the Xu FM across the
entire Sichuan Basin, with data points distributed over several
different gas fields, the vast geological block and the complex
geological conditions contain a wealth of information, present-
ing significant challenges to model prediction. Therefore, this

study posits that the most appropriate evaluation metric for a
basin-level porosity and permeability prediction model is the
R2, as it measures the model’s ability to capture information.

4.3 Ablation studies
Ablation studies are critical to ML research as they eluci-

date the impact of individual feature variables within the black
box of ML models. These studies offer a tangible means to
visualize the influence of specific features on the performance
of a ML system. In this context, we evaluated the performance
of ten ML models in predicting porosity and permeability with
varying input features.

As indicated by the results in Tables 8 and 9, and Figs.
12 and 13, the porosity prediction model and the permeability
prediction model both exhibited optimal performance when
the PI-Set model selected the top three important features
as inputs. The best-performing Stacking model attained an
R2 = 85.15% accuracy in the porosity prediction model and an
R2 = 83.62% accuracy in the permeability prediction model.
These results surpassed the accuracy achieved when all seven
features were input into the Stacking model, which yielded an
R2 = 83.04% for the porosity prediction and R2 = 82.84% for
the permeability prediction. It was observed that the Stacking
models, which performed optimally, consistently achieved
the highest prediction accuracy when the top three features
identified by the PI-Set model proposed in this study were
used as inputs. This outcome underscores the PI-Set model’s
exceptional accuracy and robustness in constructing porosity
and permeability feature selection models. Specifically, this
research focuses on the Xu FM across the entire Sichuan
Basin, where the PI-Set model is required to extract sufficient
effective information from a vast geological area and intricate
logging data to identify the optimal feature combination. The
high level of accuracy and consistency demonstrated by the
PI-Set model in this complex setting fully attests to the
effectiveness of the PI-Set algorithm.



Cao, L., et al. Advances in Geo-Energy Research, 2025, 16(1): 21-35 31

Table 8. Results of R2 (%) metrics of the feature ablation study for ten porosity ML prediction models.

Input feature LR DT SVR KNN BPNN RF XGBoost LightGBM CatBoost Stacking

Depth 0.56 49.64 23.49 72.50 3.65 65.99 65.66 61.07 64.74 72.79

Depth, AC 2.28 74.10 29.47 49.72 24.30 80.10 76.96 76.25 72.28 82.20

Depth, AC, SP 5.84 74.75 35.64 62.62 17.56 84.45 82.44 76.68 78.54 85.15

Depth, AC, SP, CAL 7.09 65.56 37.91 56.73 30.87 83.05 79.01 75.99 77.81 83.76

Depth, AC, SP,
CAL, GR 6.65 68.13 41.78 64.26 32.80 81.94 80.00 75.06 77.76 83.55

Depth, AC, SP,
CAL, GR, DEN 9.24 67.11 48.72 67.78 37.26 82.31 80.31 76.24 79.01 82.85

Depth, AC, SP, CAL,
GR, DEN, CNL 22.50 67.92 55.80 69.09 39.71 81.66 80.48 78.16 79.96 83.04

AC, SP, CAL,
GR, DEN, CNL 22.52 53.57 50.90 67.70 40.13 75.14 71.61 71.23 73.82 76.90

Table 9. Results of R2 (%) metrics of the feature ablation study for ten permeability ML prediction models.

Input feature LR DT SVR KNN BPNN RF XGBoost LightGBM CatBoost Stacking

Depth 1.34 58.89 25.76 74.86 49.50 68.19 66.19 74.97 71.90 74.45

Depth, DEN 9.32 74.10 38.98 56.77 45.83 80.10 76.96 76.25 77.50 79.50

Depth, DEN, SP 19.17 76.14 56.43 77.42 75.03 82.93 82.19 81.15 81.43 83.62

Depth, DEN, SP, GR 19.41 72.94 64.64 76.71 73.14 82.85 81.27 80.86 82.89 83.07

Depth, DEN,
SP, GR, CNL 19.37 66.85 63.58 78.43 69.74 81.60 81.28 81.28 82.04 82.74

Depth, DEN, SP,
GR, CNL, CAL 22.34 70.74 64.89 76.67 76.99 79.81 80.41 80.86 80.21 82.31

Depth, DEN, SP, GR,
CNL, CAL, AC 22.31 73.35 64.62 80.63 72.12 80.14 80.53 80.40 80.84 82.84

DEN, SP, GR,
CNL, CAL, AC 21.46 58.94 49.55 72.98 61.40 75.93 77.97 77.34 77.55 78.14

4.4 Model extension
By adeptly capturing the interplay between feature vari-

ables (depth and conventional logging data) and target vari-
ables (porosity and permeability) with sufficient differentiation
in the baseline model, the PI-Set model further loosens the
constraint on the logging feature data. This flexibility permits
the exploration of expanding the dataset utilized for building
predictive models within the scope of the gathered data.

In the case of the porosity prediction model, Depth, AC,
and SP-the three most crucial features identified by the PI-
Set model, which also correspond to the best-performing
model configuration-were chosen (Table 8 and Fig. 12). Sub-
sequently, a porosity dataset consisting of 6,337 measured data
points from 35 wells was compiled (as illustrated in Figs.
S1 and S2 of the Supplementary file). This dataset covers
a comprehensive range of well locations throughout the Xu
FM in the entire Sichuan Basin. A split of 70% of this data
was utilized as the training set for feeding into the model,
while the remaining 30% served as the test set to evaluate

the model’s efficacy. After significantly increasing both the
volume of data and the number of well locations, with only
two logging curves, the optimally performing Stacking model
still maintained an accuracy of R2 = 84.04% (Table 10 and
Fig. S7 of the Supplementary file).

Despite the loosening of input feature constraints by the
PI-Set model, the permeability dataset could not be similarly
expanded.

5. Discussion
As observed in Figs. 3 and 4, depth exhibits a well-

distributed relationship with porosity and permeability on a
well-by-well basis. The PI-Set model further validates that
depth is an extremely important feature for the prediction
of porosity and permeability. In ablation studies that only
considered depth, the prediction accuracies for porosity and
permeability reached 72.79% and 74.45%, respectively. Our
study suggests that the compaction effect experienced during
the formation of the tight sandstone reservoirs in the Xu FM



32 Cao, L., et al. Advances in Geo-Energy Research, 2025, 16(1): 21-35

Fig. 12. R2 results of feature ablation study for Stacking
porosity prediction models (The Stacking is 85.15%).

Fig. 13. R2 results of feature ablation study for Stacking
permeability prediction models (The Stacking is 83.62%).

of the Sichuan Basin has a significant impact on the reser-
voir’s porosity and permeability. Such impacts are accurately
captured and reflected in the feature importance and model
accuracy by the artificial intelligence model; therefore, the
depth factor should be taken seriously in the modeling process
of porosity and permeability prediction.

In traditional logging interpretations, DEN, AC and CNL
are often regarded as the most pertinent logs to porosity.
The assessments of the PI-Set model, developed employing
PI-RF, PI-XGBoost and PI-CatBoost, demonstrate remarkable
consistency, unanimously identifying AC, SP and CAL as
the key logging features for the porosity prediction model.
Moreover, the optimal configuration for both porosity and
permeability prediction models include depth plus one porosity
logging curve and one lithology logging curve. Despite the
PI-Set’ reliance on diverse mathematical methods, DT types
and ensemble techniques, this agreement persists. SP and
CAL are indicators of formation lithology changes, signified
through potential changes and borehole diameter variations,
respectively. From our results, it can be suggested that this is
due to the PI-Set model capturing unique information from
the widespread sand-mud interlayering phenomena in the Xu
FM of the Sichuan Basin, providing crucial insights for model
predictions.

Table 10. Results of five evaluation metrics for ten porosity
ML prediction models after expanding the dataset (the input

features are Depth, AC and SP).

Category Models R2

(%) MSE RMSE MAE MAPE
(%)

Traditional
ML

LR 13.85 9.04 3.01 2.37 91

DT 70.66 3.08 1.75 1.02 31

SVR 39.80 6.31 2.51 1.78 64

KNN 66.13 3.55 1.89 1.30 43

Deep
learning BPNN 33.99 6.92 2.63 1.98 75

Ensemble
learning

RF 81.38 1.95 1.40 0.91 31

XGBoost 79.31 2.17 1.47 1.00 33

LightGBM 76.10 2.51 1.58 1.12 38

CatBoost 77.28 2.38 1.54 1.10 37

Stacking 84.04 1.68 1.29 0.85 27

In addition, as demonstrated in Fig. 3, DEN and CNL,
along with SP, exhibit collinear data distributions in opposite
directions yet with relatively consistent patterns. This obser-
vation further corroborates the presence of highly correlated
feature interaction information between SP, DEN and CNL,
indirectly validating their interconnectedness. In other words,
the SP effectively encapsulates the information pertinent to
porosity prediction that is contained within DEN and CNL.
The results of ablation studies show that the PI algorithm
can well capture the potential nonlinear relationship between
feature variables and target variables well, and effectively
mine the interaction information between feature variables and
target variables. Furthermore, it can effectively uncover the
interaction information among feature variables. This approach
maximizes the shared information across different models and
ensures that the feature selection process is both interpretable
and transparent (“white box”) for geologists.

This study establishes base learners with substantial dif-
ferences by developing diverse ML models and creating dif-
ferential models among identical ML models. The application
of Stacking ensemble learning method effectively leverages
the disparities among base learners, which overcomes the
limitations of unsatisfactory prediction accuracy inherent to
single models, thereby enhancing the overall predictive perfor-
mance and reducing the risk of model overfitting. Additionally,
the Stacking method is trained on the predictions made by
base learners rather than on the original features, which also
mitigates the risk of overfitting to a certain degree. After
significantly increasing both the volume of data and the
number of well locations, with only two logging curves, the
optimally performing Stacking model still maintained a high
accuracy of R2 = 84.04%, conclusively proving the efficacy
of the PI-Set model in feature selection and the robustness of
the Stacking model in performing prediction across the entire
basin.
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Using well logging data and ML techniques to predict
porosity and permeability can enhance the utilization of this
data, boosting efficiency and reducing laboratory analysis
costs. During the exploration phase, accurate predictions guide
drilling decisions and mitigate exploration risks. In the devel-
opment phase, these predictions provide support for real-time
reservoir monitoring, facilitate adjustments to development
plans, and increase operational efficiency. Consequently, these
methods lower exploration and production costs while maxi-
mizing economic returns. Furthermore, basin-scale predictions
using these interdisciplinary techniques are particularly impor-
tant for fuel science: they advance data-driven research, deepen
the understanding of complex reservoir properties, and enable
optimized exploration and development of tight sandstone gas
resources. This in turn provides critical insights and supports
research advancements, contributing to more effective and
sustainable energy resource management.

6. Conclusions
This study has presented a new ML model and conducted

data preprocessing, feature engineering, hyperparameter tun-
ing, model construction, extension and evaluation. Each step
has been designed to be interpretable and repeatable for
geological researchers. From the results, the following key
points can be highlighted:

1) This study developed an automated software named
“DMML” for preprocessing measured and logging data.

2) The PI-Set algorithm proposed in this study is able to
quantify the relationship between feature variables and
target variables, addressing the limitations of common
feature selection algorithms through multi-angle explo-
ration. The intuitive principle of this algorithm ensures
the interpretability of feature selection results for re-
searchers.

3) Five common evaluation metrics were explored in the
prediction of porosity and permeability by regression
models. It was found that MAPE is unsuitable for per-
meability predictions in tight sandstone reservoirs, as low
permeability values lead to inflated MAPE scores. R2 is
recommended as the most appropriate metric for basin-
level porosity and permeability prediction models, since
it effectively measures the information capture ability of
the model.

4) Ten ML methods, including traditional, deep learning
and ensemble learning techniques, were used to predict
porosity and permeability in the Xu FM of the Sichuan
Basin. The Stacking algorithm from ensemble learning
achieved prediction accuracies of 85.15% for porosity and
83.62% for permeability. The PI-Set model, as indicated
by ablation studies, reduced the input requirements for
well logging data.

In future research, we intend to investigate the effectiveness of
the PI-Set algorithm in other geological problems and explore
the transferability of porosity and permeability prediction
models in other basins and blocks.
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