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Abstract:
To address the challenges of coal fracture image recognition, including interference from
gangue and multiscale fractures, a multiscale coal fracture segmentation network model
to significantly enhance the recognition of coal fracture structures is proposed. The
model significantly enhances the recognition of fracture structures based on a U-shaped
network architecture and the incorporation of several advanced techniques, including
transfer learning, depthwise separable atrous convolutions, and residual modules. Transfer
learning, by leveraging pretrained visual geometry group 16-layer network weights,
bolsters the feature extraction capabilities of an encoder. Simultaneously, the integration of
depthwise separable atrous convolutions and residual modules optimizes a decoder, thereby
improving segmentation accuracy and the robust recognition of fractures within images.
Experimental results based on qualitative and quantitative data showed that the proposed
model surpassed traditional convolutional neural networks, demonstrating proficiency in
identifying multiscale fractures in complex coal images. The model was applied to the
identification of fractures in roadway surrounding rock boreholes. By extracting fractures
from borehole imaging videos and planar diagrams, and conducting cross-validation, the
study precisely delineated the fracture distribution. Additionally, to improve coal seam gas
extraction efficiency, the grouting and sealing range for cross-layer extraction boreholes
was determined.

1. Introduction
With deep mining becoming increasingly common in coal

mines, compound dynamic disasters due to coal seam gas
have greatly increased, seriously threatening the safety and
efficiency of deep mining and the coordinated development of
mining environments (He and Wang, 2023). Coal comprises
various defects, including fractures and pores, which inevitably
influence the occurrence and migration of coal seam gas
(Liu et al., 2021). Meanwhile, dynamic disasters in mines
triggered by the instability and failure of coal structures may

change and expand pores and fractures within coal (Wang et
al., 2024). Therefore, the identification of coal fractures has
great practical significance for studying the laws governing the
migration of coal seam gas and the stability of the surrounding
rock.

Fractures are critical sites for gas leakage and play a
significant role in gas-related disasters. In recent years, various
detection technologies have been developed to analyze pore
and fracture networks in coal at different measurement scales.
These include methods such as mercury intrusion porosimetry
(De Castro et al., 2020), low-pressure nitrogen adsorption
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(Zhao et al., 2019), nuclear magnetic resonance (Liu et
al., 2020), X-ray computed tomography (CT) (Li et al., 2020),
scanning electron microscopy (Roslin et al., 2019), focused ion
beam-scanning electron microscopy (Fang et al., 2019), and
acoustic emission and ultrasonic techniques (Shi et al., 2019).
Among these technologies, many scholars have favored CT
technology, which allows sample destruction to be avoided
and macroscopic and microscopic measurement results to be
obtained. Li et al. (2012) used low-field nuclear magnetic
resonance and industrial CT scanning to quantitatively charac-
terize the physical properties of coal with different structures,
uncovering relationships between the coal structures and their
physical properties. Hao et al. (2020) applied industrial CT
scanning technology to analyze the extension direction, de-
velopment degree, and connectivity of primary cracks in coal
under different loads from a microscopic perspective. Wang
et al. (2022) conducted laboratory simulations of hydraulic
fracturing in coal and utilized industrial CT scanning com-
bined with digital volume correlation to quantify the spatial
distribution, structural changes, and expansion of fractures.
Wu et al. (2022) examined the microscopic damage evolu-
tion and fracture characteristics of coal under uniaxial and
triaxial loading conditions using industrial CT scanning. In
these studies, the researchers have employed industrial CT
technology to provide comprehensive insights into the internal
structures of coal, the evolution of fractures within it, and
coal’s dynamic responses to external forces. Corresponding
image data have also been used as analytical objects for digital
image processing, offering significant experimental support
and theoretical guidance for coalbed methane exploitation and
coal mine gas control.

Advances in digital image processing technology have led
to the widespread application of image segmentation algo-
rithms, including threshold segmentation, edge detection, and
wavelet transform, to coal image analysis. Liu and Cai (2008)
applied digital image processing techniques to crack analysis,
utilizing a multiscale wavelet transform method to detect
image edges and quantitatively assess cracks. Liu et al. (2009)
applied a least squares support vector machine to predict the
gray values of pixel neighborhoods within CT images. They
developed an edge detection technique that integrates gradient
and zero-crossing information. Bai and Liu (2009) integrated
image processing techniques into rock fracture expansion
analysis using a wavelet transform algorithm to detect edges
in CT images and to quantitatively measure fractures. Wang
et al. (2016) applied Wiener filtering to denoise CT images of
coal mass fractures, performed threshold segmentation on a
digital terrain model, and reconstructed coal pore structures in
three dimensions. Mohebbi et al. (2017) employed the Hough
transform to detect structural surface traces in rock masses,
while Leng et al. (2021) used a canny operator for edge
detection of structural surface traces to enhance the precision
of image processing. Lou et al. (2023) employed empirical
wavelet transform to filter and denoise electromagnetic radia-
tion waveforms induced by coal fractures, thereby enhancing
the accuracy and effectiveness of coal fracture identification.
These studies demonstrate the extensive application of digital
image processing technology to the segmentation and analysis

of coal images. Processing CT images facilitates a more
comprehensive understanding of the physical properties and
fracture structures of coal, providing accurate data inputs for
subsequent computer vision and deep-learning models. Despite
these advances, certain limitations remain. Further research is
needed to enhance the real-time performance, adaptability, and
versatility of such algorithms for different coal types and to
promote the broader application of digital image processing
technology.

Computer vision technology has been increasingly used
to detect fractures in coal roadway heading faces. Long et
al. (2015) proposed a fully convolutional network model in
which traditional fully connected layers were substituted with
convolutional layers. This architecture leveraged skip connec-
tions to combine global and local features, enabling pixel-wise
classification. Ronneberger et al. (2015) proposed a U-shaped
network (U-Net) comprising an encoder-decoder structure to
allow the semantic information extracted from images to
be effectively learned and high-quality image segmentation
to be achieved. The researchers improved the segmentation
accuracy of the model by combining shallow and deep fea-
tures via skip connections. Chaurasia and Culurciello (2017)
proposed a semantic segmentation network based on deep
learning that comprised an encoder-decoder structure. In the
encoder section, the researchers incorporated techniques such
as residual connections and depthwise separable convolutions
to enhance the network’s capacity to extract and process
image features. Roy et al. (2019) introduced a parallel spatial
and channel squeeze-and-excitation module, demonstrating
that combined residual modules and attention mechanisms
enhanced the focus on and extraction of feature information.
Xie et al. (2019) applied a fully connected layer for individual
pixel classification following convolutional neural network
processing to achieve surface crack segmentation in coal sub-
jected to impact loading from a Hopkinson pressure bar. Zhang
et al. (2020) enhanced U-Net architecture by incorporating
inception modules and dense connections, thereby significantly
expanding the receptive field to extract detailed features of coal
fractures. Lu et al. (2020) developed a convolutional neural
network that fused parallel multiscale features to alleviate
weak boundary fracture loss and improve the accuracy of coal
mass fracture segmentation. Meanwhile, Zheng et al. (2022)
achieved intelligent segmentation of coal fracture CT images
using a deep learning U-Net model and completed three-
dimensional reconstruction based on the segmentation results.
Yan et al. (2023) proposed a coal fracture recognition network
model based on an improved deeplab version 3 plus model.
They employed a lightweight mobilenet version 2 module
as the backbone feature extraction network for this model,
which reduced the model parameters. These studies highlight
the diverse applications of deep learning techniques to the
intelligent recognition of coal fractures. However, challenges
persist regarding the robustness, versatility, and adaptability of
these models in dealing with small sample sizes, indicating a
need for further research.

Traditional methods for identifying coal fractures have
proved highly successful, particularly for simple images in
which fractures exhibit clear edges and high contrast with the
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Fig. 1. Flowchart of the overall research procedure.
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Fig. 2. The architecture of the MCSN model.

background. The algorithms they incorporate generally per-
form well under such conditions. However, several chal-
lenges remain. The robustness of existing models in noisy
environments is inadequate, which often compromises crack
detection accuracy. Furthermore, the complexity of multiscale
fractures limits some models’ ability to effectively integrate
feature information across different scales, thereby impacting
overall recognition performance. Hence, it is crucial to conduct
research on deep learning algorithms specifically for coal frac-
tures. Such research would facilitate the automated detection
of fractures, eliminating the need for traditional labor-intensive
manual methods while better accommodating the complex and
variable structures of coal fractures.

For engineering applications, accurate and efficient identi-
fication of coal fractures is essential for ensuring coal mine
safety, underground engineering stability, and disaster preven-
tion in mining operations. Multiscale fusion strategies, im-
proved depthwise separable atrous convolution (DCAC) mod-
ules and residual modules can be incorporated into the design
of multiscale coal fracture segmentation networks (MCSN).
Compared to existing technologies, the MCSN model offers
enhanced accuracy, robustness, and practicality, making them
particularly well-suited for handling complex, multiscale coal
fracture images.

2. U-Net network and overall framework
A schematic diagram of U-Net (a convolutional neural

network for image segmentation), named for its distinctive U-
shaped architecture. The network model primarily comprises
two key components: a symmetrically arranged encoder and a
decoder. The encoder consists of five downsampling modules,
each incorporating a 3 × 3 convolution kernel, a rectified linear

unit (ReLU) activation function, and a 2 × 2 max pooling
layer. Each pooling operation reduces the feature map size
by half. The decoder comprises five upsampling modules,
each featuring a 3 × 3 convolution kernel and a 2 × 2
deconvolution layer. These modules progressively restore the
resolution of the feature map as the decoding process unfolds.
Additionally, U-Net employs skip connections between the
encoder and decoder to facilitate the integration of shallow
and deep features. Finally, a 1 × 1 convolution kernel carries
out classification and produces the final semantic segmentation
output.

Based on U-Net, to accomplish more accurate image seg-
mentation, the research procedure shown in Fig. 1 is followed,
which comprises the following four steps:

1) Design an MCSN model for the identification of coal
fractures.

2) Construct a dataset of coal fracture images.
3) Perform qualitative and quantitative analyses of the coal

fracture image extraction results.
4) Apply the MCSN model to identify fractures in the

surrounding rock boreholes of roadways.

3. The MCSN network model
This section first presents an overview of the MCSN model

architecture and provides detailed sequential descriptions of
the multiscale fusion strategy, the DCAC module, and the
residual module.

3.1 Overall network architecture
The MCSN model developed is based on U-Net network

architecture and uses an encoder-decoder structure combined
with skip connections to segment complete crack images from
complex coal mass images. The overall structure of the model
is illustrated in Fig. 2.

The encoder progressively reduced image resolution while
extracting high-level features. Combined convolutional and
pooling layers were employed for downsampling to capture
features at different scales. A visual geometry group 16-layer
(VGG16) network was adopted as the backbone for feature
extraction and a 3 × 3 convolution kernel was employed in
the five convolutional layers, with kernels per layer set at 64,
128, 256, 512, and 512, respectively (Alshammari, 2022). A
ReLU activation function was applied each convolutional layer
to enhance the network’s nonlinear representation capacity.
The VGG16 backbone reduced the input image size from 512
× 512 pixels with 3 channels to 32 × 32 pixels with 512
channels, resulting in five initial feature layers that effectively
concentrated the features of coal fractures.

The decoder restores the high-level features extracted by
the encoder to the original image dimensions through upsam-
pling and skip connection operations to produce a binary seg-
mentation map of coal fractures. During upsampling, neigh-
boring interpolation expands the feature map size, which ac-
celerates the training of the segmentation model. An improved
feature extraction network with a redesigned convolutional
module was developed to achieve spatially cascaded depthwise
separable atrous convolutions, and to mitigate the network de-
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Fig. 3. Multiscale fusion architecture diagram.

gradation that typically occurs with increased depth, residual
connections were incorporated into the new design.

Shallow features capture more detailed spatial and po-
sitional information, and deep features encapsulate richer
semantic content. By fusing five preliminary effective feature
layers, the model recovered spatial details in the decoder
while accurately understanding semantic information. Through
skip connections, this fusion mechanism enabled the model to
better address complex scenarios involving shape variations,
scale changes, and occlusions, thereby enhancing segmentation
accuracy and robustness.

3.2 Multiscale fusion process
The concept of multiscale fusion underpinning the MCSN

model refers to the integration of feature information from
different scales into the encoder and decoder, which facilitates
the comprehensive use of local and global contextual informa-
tion for accurate semantic segmentation prediction. This fusion
is achieved primarily through two methods: 1) employing
multiscale receptive fields in the network structure modules to
capture feature information at varying scales simultaneously
and 2) introducing a multiscale feature fusion mechanism into
the MCSN, as illustrated in Fig. 3.

The decoder fused five preliminary effective feature layers,
each of which contains information at different scales. The
fusion process began with 2 × 2 upsampling with a stride of 2
on the initial feature layers extracted by the encoder. These
layers were then concatenated to perform the first feature
fusion of the multiscale information. The shallow feature
images, which retained detailed information about the original
image at different scales, were stacked to preserve self-
similarity. Subsequently, the fused feature maps were input

into DCAC modules, where convolution-based feature maps
were stacked to reintegrate the multiscale information. The
atrous convolution captures structural information from var-
ious receptive fields, and self-similarity effectively enhanced
feature representation.

3.3 Depthwise separable atrous convolution
module

Coal fractures have diverse, complex shapes, typically with
a small number of fractures, and fracture pixels comprise only
a small portion of the entire coal image. To address the issue of
data class imbalance and enhance the accuracy and efficiency
of fracture recognition, a spatially cascaded DCAC module
was designed for the feature reconstruction process. This
module integrates atrous convolution with depthwise separable
convolution (Wang et al., 2019; Dai et al., 2023). Traditional
convolution operations focus primarily on local neighborhood
information, which may fail to capture the fine features of
small, sparse fractures. In contrast, atrous convolution is a
specialized operation that expands a receptive field without
increasing the number of parameters or computational loads,
thereby improving the model’s ability to capture long-range
contextual information. The introduction of a dilation rate
allows the convolution kernel to cover a broader input area
within the receptive field. The dilation rate is defined as:

y(m,n) =
M

∑
i=1

N

∑
j=1

u(m+ r× i,n+ r× j)w(i, j) (1)

where y(m,n) denotes the output feature map obtained via
atrous convolution; m and n represent the horizontal and
vertical coordinates of the output feature map, respectively;
and M and N represent the length and width of the convoluted
image, respectively. u refers to the input image; r is the dilation
rate, which controls the spacing within the convolution; w
represents the convolution kernel; and i and j are the indices
of the convolution kernel.

Atrous convolution with varying dilation rates is illustrated
in Fig. 4, using a 3 × 3 convolution kernel as an example.
The red dots indicate the positions at which the convolution
kernel operates on the input, while the blue area represents
the original receptive field of the input. At a dilation rate of
1, there is no gap between the convolution kernel elements,
which corresponds to a conventional convolution operation.
This is ideal for detecting subtle fracture structures, such as
microscopic cracks or slight texture variations, ensuring that
even small fracture features are not overlooked by the model.
At a dilation rate of 2, the spacing between convolution kernels
increases, allowing the model to capture the relationships
between local features and their surrounding contexts. This
facilitates the integration of broader contextual information,
making it particularly useful for analyzing prominent macro-
scopic fracture features. Similarly, at a dilation rate of 4, the
model can capture a wider range of contextual information.
This dilation rate enhances the model’s ability to discern
broader spatial relationships, allowing large-scale fractures or
other structural features to be identified.

Coal has small and large macrocracks that range widely
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Fig. 4. Receptive field at different dilation rates. (a) dilation rate of 1, (b) dilation rate of 2, and (c) dilation rate of 4.

3 Channel Input Filters × 3 Maps × 3(a)

Maps × 3 Filters × 4 Maps × 4(b)

Fig. 5. Depthwise separable convolutions. (a) depthwise convolution and (b) pointwise convolution.

in sizes. Thus, during the identification process, crack struc-
tures must be considered across multiple scales. However,
indiscriminately increasing the dilation rate may result in the
loss of critical details or the blurring of local features within
an image. In fracture segmentation, maintaining a balance
between local detail and macroscopic structure is crucial for
achieving optimal performance. To address this challenge and
preserve local perceptual capabilities while capturing as many
fine details as possible, dilated convolutions with dilation
rates of 1, 2, and 4 were applied in parallel. This strategy
captured more dimensional feature information and enhance
the accuracy of crack segmentation.

Depthwise separable convolution was regarded as another
type of convolution operation. It decomposes standard con-
volution into two distinct steps: depthwise convolution and
pointwise convolution. In depthwise convolution, the convolu-
tion was applied independently to each input channel, whereas
in pointwise convolution, a 1 × 1 convolution kernel was used
to convolve the output generated by the depthwise convolution
step. This two-step process effectively combined the feature
maps produced by depthwise convolution, mapping them into

the final feature space, as shown in Fig. 5.
By integrating the spatial cascade of dilated convolutions

into depthwise separable convolutions, the MCSN model can
better capture relationships and semantic information between
objects, particularly when dealing with small structures, such
as cracks. For each input channel of the feature map, three
convolutions of the depthwise convolution module were ap-
plied separately. The resulting output feature maps were then
concatenated along the channel dimension, creating a larger
feature map that was passed to the pointwise convolution layer.
Finally, the features are mapped to the desired feature space.
This method enabled each dilation rate to effectively capture
contextual information at different scales, while pointwise
convolution combines the output feature maps and adjusts the
number of output channels. The multiscale fusion of depth-
wise separable atrous convolutions significantly enhanced the
model’s ability to segment complex details, such as edges,
textures, and small structures.
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3.4 Residual module
Residual networks were employed to address the issues of

gradient vanishing and explosion that arise as model depth
increases (He et al., 2016). The residual module is formally
defined as:

y = F(z,{Wi})+ z (2)
where z represents the input of the residual module, y repre-
sents the output of the residual module, and F(z,Wi) is the
residual map to be learned by the network.

Unlike traditional convolutional neural network archi-
tectures, the residual neural network employs “shortcut”
connections-also referred to as skip connections-as illustrated
in Fig. 6. This modification changes the input to the activation
function from the traditional network output H(z) = F(z) to
H(z) = F(z) + z. This structural enhancement can improve
the model’s expressive capability, with the activation function
being the ReLU.

The network was constructed based on residual learning,
incorporating a newly designed convolutional component. The
original convolution operation was replaced with two newly
designed 3 × 3 standard convolution modules, as depicted
in Fig. 7. The entire module facilitates identity mapping
through shortcut connections by forming residual connections.
The activation function employed is the Gaussian error linear
unit (GeLU) (Minhyeok, 2023)-a high-performance activation
function for neural networks. The formula is:

xP(X ≤ x) = x /0(x) (3)
where ø(x) is the cumulative distribution of Gaussian normal
distribution. P(X ≤ x) denotes the probability that the stochas-
tic variable X is no greater than x, where x symbolizes the
value fed into the activation function. The complete form of
Gaussian normal distribution is:

xP(X ≤ x) = x
∫ x

−∞

e−(x−µ)2

2σ2√
2πσ

dX (4)

where µ and σ represent the mean and standard deviation of
the normal distribution, respectively.
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This approach facilitates the direct propagation of gradients
during backpropagation, thereby enhancing the model’s train-
ing efficiency and alleviating the vanishing gradient problem.

4. Experimental description and data

4.1 Sample preparation and experimental
equipment

Coal blocks were collected from the main mining seam
of the Zhaogu No. 2 Mine, located in Xinxiang City, Henan
Province, China. The large coal blocks were processed into
cylindrical specimens, each with a 25-mm diameter and 50-
mm height. The industrial CT rock scanning system proposed
by Wang et al. (2021) was employed to scan four coal samples.

4.2 Scan results
The coal samples were scanned layer by layer from top to

bottom, using representative slice images of the coal fractures,
as shown in Fig. 8. According to the principles of industrial CT
scanning, different gray values correspond to varying material
densities in the scanned images. Typically, fractures have the
lowest density and thus appear as black regions in the images.
The density of a coal matrix is higher than that of the fractures
it contains, but lower than that of the minerals; therefore, the
coal matrix appears as a dark gray area in the images. Miner-
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als, being the densest components, are represented by white or
light gray areas. However, due to the limitations of CT scan-
ning technology, ring-like artifacts may occur during imaging,
and the heterogeneity of the coal mass introduces several key
challenges: 1) the gray values of fractures may resemble those
of the coal matrix, 2) the gray values of fractures may be close
to that of gangue, and 3) the topological structure of fracture
development is complex.

4.3 Dataset production
Datasets are essential for deep learning, directly influencing

the performance and generalization ability of the MCSN
model. Given the absence of an open-source CT segmentation
image dataset for coal fractures, a custom dataset was manu-
ally created comprising 400 images derived from CT slices of
four coal samples. Specifically, 100 CT slices from each coal
sample were selected, which resulted in 400 images, including
both tensile and shear fractures. These fractures varied in size,
shape, and orientation, reflecting the inherent complexity and
heterogeneity of coal masses.

The image processing software ImageJ was employed to
annotate the CT slice images at the pixel level and to identify
the location, shape, and size of the fractures. During the an-
notation process, fractures and backgrounds were categorized
into two classes using distinct colors: fracture regions marked
as white areas with a grayscale value of 225 and nonfracture
regions marked as black areas with a grayscale value of 0, as
illustrated in Fig. 9.

To augment the dataset and enhance the model’s general-
ization and robustness, data augmentation techniques were ap-
plied to the original images, including spatial transformations
such as fixed-angle rotation (ranging from -30° to 30°) and
horizontal flipping. Pixel transformations by adding salt-and-
pepper noise and Gaussian blur were also applied to simulate
different image acquisition conditions and environments. The
augmented dataset, comprising 3,200 images (including the
original data), was divided into a test set (320 images), a
validation set (640 images), and a training set (2,240 images)
at a 1:2:7 ratio. Stratified sampling was employed to ensured
that fracture images of the coal samples were evenly dis-
tributed across the training, validation, and test sets according
to fracture type. This approach provided a sufficient volume of
training data to enable the model to better learn and generalize
complex fracture structures.

4.4 Test environment and parameter settings
A computing platform running the Windows 10 operating

system was used as the test environment. The platform was
equipped with an Intel(R) Xeon(R) Gold 6226R CPU @
2.90 GHz processor, 192 GB of memory, and an NVIDIA
Quadro RTX 5000 graphics card. Python was employed as
the programming language and pytorch as the deep learning
framework.

To train the MCSN model, a transfer learning technique
based on frozen layers was used, and the hyperparameters
were configured as follows: a batch size of 6, a learning rate
of 0.0001, and a momentum of 0.9. Additionally, the model
was trained for 100 epochs to ensure convergence during the
training process.

4.5 Loss function
Dice loss is commonly used as a loss function for image

segmentation, especially for tasks involving class imbalances.
Unlike other loss functions, such as cross-entropy loss, dice
loss effectively handles imbalanced segmentation problems be-
cause it emphasizes object classes rather than the background.
In the case of coal fracture extraction, where the background
occupies most of the image and fractures are comparatively
small, dice loss helps reduce the background’s influence on the
loss function, leading to more accurate fracture segmentation.

The similarity between segmentation results and the ground
truth was measured using the dice coefficient, which is
a widely used evaluation metric employed to quantify the
overlap between the predicted and actual regions (Wang et
al., 2020). Derived from the dice coefficient, dice loss was
served as the loss function for segmentation tasks. A dice loss
value of 0 signifies perfect overlap between the predicted and
true labels, while a value of 1 indicates no overlap; thus, a
value close to 1 indicates a high degree of overlap and more
accurate segmentation. Low dice loss values reflect a better
alignment between a model’s predictions and the ground truth.
The dice loss can be calculated by:

dice =
2
∣∣∣X ∩Y

∣∣∣∣∣∣X∣∣∣+ ∣∣∣Y ∣∣∣ (5)

dl = 1−
2
∣∣∣X ∩Y

∣∣∣∣∣∣X∣∣∣+ ∣∣∣Y ∣∣∣ (6)

where dl stands for dice loss, and X and Y represent the true
results and predicted results of the task, respectively.

4.6 Evaluation indicators
The segmentation of coal fractures involves pixel clas-

sification, with each pixel classified as either a part of the
background or a fracture. Confusion matrices are widely used
evaluation tools for such classification and for assessing the
segmentation accuracy and performance of a model during
the prediction process.The matrix was derived from four
key classification outcomes-true positive, true negative, false
positive, and false negative-and used to calculate several
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Fig. 10. Visual comparison of the different network models.

commonly used evaluation metrics for image segmentation,
including recall, precision, mean pixel accuracy (MPA), and
mean intersection over union (MIoU). The specific formulas
for these metrics are:

Re =
Pii

Pii +Pi j
(7)

Pre =
Pii

Pii +Pji
(8)

MPA =
1

k+1

k

∑
i=0

Pii

∑
k
j=0 Pi j

(9)

MIoU =
1

k+1

k

∑
i=0

Pii

∑
k
j=0 Pi j +∑

k
j=0 Pji −Pii

(10)

where Re stands for recall, Pre stands for precision, k is
the number of foreground classes, and i and j are the pixel
categories. Pii represents a true positive outcome, which is
the number of actual fracture pixels correctly classified as
fractures; Pi j is a false negative outcome, which represents
the number of fracture pixels classified as nonfracture; and
Pji represents a false positive outcome (i.e., the number of
nonfracture pixels incorrectly classified as fractures).

5. Results and discussion

5.1 Qualitative analysis of the model
segmentation results

Four representative image groups were selected to con-
duct segmentation comparison experiments using a pyramid
scene parsing network (PSPNet), deeplab version 3 model
(DeepLabV3), U-Net model, and MCSN model, which are
all benchmark models widely used for image segmentation.
Their performance and technological maturity have been ver-

ified, so they provide reliable comparison benchmarks for the
effectiveness of new models. These experiments revealed the
performance of each algorithm in segmenting fractures under
varying conditions, as shown in Fig. 10.

For the first group of coal CT fracture images, the pri-
mary challenge lay in the substantial grayscale gradients of
the fractures, necessitating the model to handle pixel-level
variations with a high degree of precision. Traditional network
models struggled with images that have significant grayscale
gradients, resulting in blurred edges and insufficient local
contrast. Consequently, regions that should been continuous
appeared disjointed. In contrast, the MCSN model effectively
addressed these issues, enhancing the detection of boundary
information and improving the models’ ability to capture fine
details.

In the second group of coal CT fracture images, the
complex topology of the fractures posed challenges. In regions
with intricate fracture patterns and numerous fine textures,
traditional network models exhibited varying degrees of mis-
detection. Specifically, for some groups, many fine spiderweb-
like structures were mistakenly identified as blocky fractures,
leading to the merging of separate fractures. This issue stems
from inadequate segmentation performance, which prevents
models from reliably preserving fracture shapes and structures.
In contrast, the proposed MCSN model correctly identified
most fractures, with only a few minor exceptions.

The third group of coal CT fracture images presented
the challenge of identifying fine cracks, since the fractures’
grayscale values closely resembled those of the coal matrix.
Although traditional network models captured the complex
features of images, they struggled to accurately detect very
small or subtle fissures. The proposed MCSN model captured
such fine details, enabling cracks with pixel values nearly indi-
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Table 1. Comparative evaluation metrics for different neural
network models.

Methods MIoU (%) Re (%) Pre (%) MPA (%)

PSPNet 68.52 66.04 66.54 66.04

DeepLabV3 75.49 78.10 82.87% 78.10

U-Net 79.19 83.48 89.65 83.49

MCSN 87.69 92.75 91.55 92.75

stinguishable from the background to be identified and im-
proving the precision of fracture detection.

In the fourth group of coal CT fracture images, the
primary challenge was interference caused by gangue and
minerals. The high gloss and reflectivity of these materials
often obscures the edges or fine details of fractures, preventing
accurate fracture identification. When the boundaries between
fractures and gangue or minerals become blurred, traditional
network models misclassified fractures as part of the gangue
or minerals, or even failed to detect the fractures altogether,
resulting in poor segmentation performance. However, the
proposed MCSN model effectively mitigated the interference
caused by the heterogeneity of coal, leading to enhanced
fracture detection accuracy.

In conclusion, the MCSN model consistently outperformed
the other models in terms of fracture identification, regardless
of the simplicity or complexity of the fracture structures in
the images. It exhibited superior resilience to noise interfer-
ence, effectively preserving both the trajectory and structural
integrity of the fractures.

5.2 Quantitative analysis of the model
segmentation results

The MCSN model was compared with three other rep-
resentative models. The first model (PSPNet) is a deep
convolutional neural network developed for semantic image
segmentation (Zhao et al., 2017). It is primarily based on
a pyramid pooling module that captures contextual infor-
mation across multiple scales, which enhances the model’s
ability to interpret and accurately segment images. The sec-
ond model (DeepLabV3) is a deep learning framework for
semantic segmentation (Chen et al., 2018). It combines dilated
convolutions, an encoder-decoder architecture, and a spatial
pyramid pooling module obtain accurate boundary and con-
textual information from images. The third model (U-Net)
is a convolutional neural network designed specifically for
image segmentation tasks (Liu and Wang, 2022). Featuring
an encoder-decoder structure with skip connections, U-Net
excels at capturing multiscale features, resulting in high-
quality segmentation outcomes.

The transfer learning and training methods described pre-
viously were applied to these deep learning models and the
models were validated using the enhanced dataset. Table 1
shows a comparison of the evaluation metrics for each model.

Although the PSPNet, DeepLabV3, and U-Net models
generally demonstrated strong semantic segmentation perfor-

Table 2. Single-image processing times for different network
models.

Methods PSPNet DeepLabV3 U-Net MCSN

Time (ms) 130.00 271.61 164.28 182.99

mance, the performance was suboptimal for the coal CT
fracture dataset, as shown in Table 1. The PSPNet model,
which utilizes a pyramid pooling module to capture multiscale
contextual information, however, due to the abundance of fine
texture and edge features in coal CT images, the global scene
information was not fully captured or leveraged by the PSPNet
model, thereby affecting the accuracy of semantic segmenta-
tion. The DeepLabV3 model, based on a deep residual network
encoder and incorporating complex operations, such as dilated
convolutions and multiscale attention mechanisms, exhibited a
highly complex hierarchical structure, which led to overfitting
and higher training costs. In addition, expanding the recep-
tive field without pooling reduces image resolution, which
caused information loss and negatively affect segmentation
accuracy. Compared to more complex architectures, the U-Net
model, which was originally designed for medical imaging,
has fewer parameters and thus reduces overfitting. However,
its reduced complexity limited its learning capability, making
it challenging to accurately capture small or subtle features in
images. Consequently, there is room to considerably improve
segmentation accuracy.

In contrast, the MCSN model consistently outperformed
the other models across various evaluation metrics, achieving
87.69% MIoU, 92.75% Re, 91.55% Pre, and 92.75% MPA.
This model demonstrated exceptional overall performance and
robust generalization for the coal CT image dataset.

The image processing times for each model were evaluated
using the previously defined test dataset. The times required
by the models to process single images are presented in Table
2. Of the deep learning models were compared in this work,
the U-Net model exhibited the fastest processing speed for
crack extraction, while the PSPNet and DeepLabV3 models
demonstrated the slowest extraction speeds. The proposed
MCSN model achieved a moderate processing speed, balanc-
ing performance and computational efficiency. Notably, the
MCSN model delivered the best crack extraction performance
without the longest processing time. This demonstrates that the
MCSN model excels in terms of both segmentation accuracy
and computational efficiency.

In summary, the proposed MCSN model offers several
notable advantages: 1) its robust feature extraction capabilities
and expansive receptive field facilitate the precise identifica-
tion of image details and structures; 2) it effectively integrates
multiscale feature information, facilitating the processing of
variously sized target objects; and 3) the enhanced residual
structure contributes to stable and efficient network training.

5.3 Ablation experiment
To evaluate the effectiveness of each module in coal

fracture identification, ablation experiments were designed and
the results are listed in Table 3.
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Table 3. Results of the ablation experiments.

VGG16 DCAC Residual module MIoU (%) Re (%) Pre (%) MPA (%)

× × × 79.19 83.48 89.65 83.49

✓ × × 81.37 90.75 91.03 90.75

✓ ✓ × 85.24 91.05 91.45 91.05

✓ ✓ ✓ 87.69 92.75 91.55 92.75

Note: The symbol ✓ indicates a module’s inclusion in the basic U-Net network model, while the symbol × indicates its
exclusion.

The experimental results demonstrated that the VGG16
network, DCAC modules and residual modules all positively
contributed to the model’s performance. As shown in Table 3,
the introduction of the VGG16 backbone network improved
across all evaluation parameters. The VGG16 network’s robust
feature extraction capabilities enabled the model to better
capture and understand complex data features. DCAC modules
further improved the model’s quantitative evaluation values.
This improvement could be attributed to DCAC modules
reducing the computational load while enhancing the model’s
capacity to extract multiscale features by performing separate
computations in the spatial and channel dimensions. Addi-
tionally, atrous convolutions enabled the network to capture
a broader range of features, thereby leading to a better
understanding of the structure and context information of
fractures. When the VGG16 network, DCAC modules, and
residual modules were integrated, the model achieved optimal
fracture identification performance. Skip connections allowed
the model to learn hierarchical features, enabling the network
to perceive cracks at multiple scales and extract them with
greater accuracy. Ultimately, when these three enhancements
were combined, the MCSN model outperformed the bench-
mark U-Net model, with improvements in MIoU, Re, Pre, and
MPA of 8.5%, 9.27%, 1.9%, and 9.26%, respectively. These
combined effects significantly contributed to the model’s over-
all improved performance, thereby providing stronger support
for practical applications.

Despite these advances, the MCSN model has some re-
maining limitations that should be addressed in future research.
First, although depthwise separable and atrous convolutions
reduced the model parameters and improved computational
efficiency, the model still suffers from relatively long training
times, particularly when processing large-scale datasets. Con-
sequently, its real-time applications may be limited. Second,
the model’s accuracy decreases when used for extremely
blurred field images, which adversely affects crack extraction
performance. This degradation is primarily due to factors such
as suboptimal lighting conditions, equipment limitations, and
operational errors. Future researchers should focus on optimiz-
ing the model’s structure to further reduce parameters and im-
prove crack identification accuracy. These enhancements will
increase the model’s performance in practice and strengthen
its adaptability and robustness in complex environments.

Original images

Identification

results

2cm

Fig. 11. Identification results for rock fractures.

6. Engineering applications

6.1 Ablation experiment
The rock samples were scanned using an industrial CT

scanning system, which allowed the extraction of clear, repre-
sentative images for use in the experimental testing of the
proposed MCSN model. Some of the fracture recognition
results are presented in Fig. 11.

Clearly, the MCSN model effectively captured and accu-
rately classified fracture features in rock images, demonstrat-
ing its broad applicability. Moreover, the model achieved an
MIoU of 86%, an Re of 91.41%, a Pre of 91.6%, and an MPA
of 91.41% for the rock fracture images. This indicates that
the model is suitable for analyzing the internal structures of
coal seams and assessing other complex geological materials.
Hence, the underlying principles of the MCSN model can be
directly applied in engineering environments, such as to iden-
tify borehole fractures in the surrounding rocks of roadways.

6.2 The project profile
The borehole imaging was conducted in an engineering

context in the bottom extraction roadway 13,161 of the Baip-
ing Coal Mine in Henan Province, China. The primary coal
extraction seam at this mine is the No. 2-1 coal seam, in
which the lithological distribution of the 13,161 working face
roof primarily consists of a large sandstone layer containing
medium-grained sandstone. The mechanical parameters of this
rock layer indicate high strength and good integrity, making it
favorable for borehole drilling. The average thickness of the
coal seam is 5.5 m, with inclination angles ranging from 7°
to 27°. The maximum measured gas content is 15.8 m3/t, and
the maximum gas pressure was 1.70 MPa. There are no
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(a) (b)

Fig. 12. Intelligent fracture identification results for borehole fractures (unfolded display). (a) unfolded display of borehole
fractures in the surrounding rock and (b) fracture identification results for the MCSN model.

(b)

(a)

Fig. 13. Intelligent fracture identification results for borehole
fractures (cross-sectional display). (a) cross-sectional display
of borehole fractures in the surrounding rock and (b) fracture
identification results for the MCSN model

risks of coal and gas outbursts in the main mining coal seam.

6.3 Fracture identification results for
surrounding rock boreholes

Borehole imaging devices were used to collect visual data,
and the MCSN model was applied to intelligently analyze
the data and visualize fractures in the roadway’s surrounding
rock. The visual data consisted of borehole videos and planar
unfolded images. By extracting fractures from these images
and performing cross-validation, the accuracy and reliability
of the analysis was significantly improved. As shown in Figs.
12 and 13, the model precisely classified each pixel into a
fracture or nonfracture category. Fracture pixels were marked
in red, while nonfracture pixels were marked in black, allowing
fractures and nonfractures to be clearly distinguished. A few
representative borehole images were selected for display. The
fracture sizes varied, reflecting the complexity of underground
fracture structures. The fractures showed no significant fillings,
and the borehole walls maintained good integrity.

6.4 Determination of the grouting range and
verification of gas extraction effectiveness

Based on the comprehensive analysis of borehole en-
doscopic results, with the issue of varying sealing lengths
under different hole-opening positions and borehole inclination

angles taken into account, an outer normal was constructed
through the coal seam floor. The vertical distance from the
opening position to the coal seam floor was used as a relative
reference standard to describe the extent of the seal zone. Ac-
cording to the endoscopic results, the loosening ranges of the
surrounding rock in the bottom gas extraction roadway (No.
13,161) were 3.5-4.7 m and 5.2-7.6 m, indicating the presence
of two distinct fracture loosening zones within the surrounding
rock. After further consideration, the overall loosening range
of the surrounding rock was established as 3.5-7.6 m. Table 4
shows the recommended sealing ranges for specific borehole
positions and inclinations, with loosening and sealing ranges
calculated from the borehole opening position in the roadway.

Based on the identified fracture distribution ranges, the
fracture zones in the surrounding rock boreholes were effec-
tively sealed to minimize air leakage, thereby enhancing the
gas extraction concentrations and purity. Field measurements
of gas extraction concentrations were conducted in the bottom
gas extraction roadway (No. 13,161) of the mine, where cross-
layer boreholes had been drilled. In this roadway, one set of
test boreholes and one set of reference boreholes were drilled,
with each set comprising four boreholes. For the test group, the
grouting range was determined based on the conclusions drawn
from the fracture distribution analysis, while for the reference
group, conventional practices for determining the grouting
range were followed. Compared to the reference boreholes, the
average gas concentration in the test group boreholes increased
by 31% within the first 7 days, 21% within the first 15
days, and 25% within the first 30 days. Throughout the entire
extraction period, the average gas concentration in the test
group boreholes increased by 15%. A comparison of the gas
concentrations between the reference and test groups is shown
in Fig. 14. Compared to the reference boreholes, the average
pure gas flow rate in the test group boreholes increased by 26%
within the first 7 days, 14% within the first 15 days, and 20%
within the first 30 days. Over the entire extraction period, the
average pure gas flow rate increased by 12%. A comparison
of pure gas flow rate between the reference and test groups
is presented in Fig. 15. The results indicate that intelligent
identification of surrounding rock borehole fractures, followed
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Table 4. Sealing ranges for different borehole positions and inclinations.

Borehole
inclination
(°)

Distance from
the center line
(m)

Distance from
the coal roof
(m)

Distance from
the right side
(m)

Designed
borehole length
(m)

Surrounding rock
loosening range
(m)

Recommended
sealing range
(m)

5 2.5 2.5 0 38 11.8-15.9
17.5-21.6 24-28

15 2.5 2.5 0 29 8.4-15.8 17-29

30 2.5 2.5 0 22 6.0-8.4
9.0-11.4 15-22

45 2.5 2.5 0 18 5.1-9.7 11-18

60 0 0 2.5 22 5.7-8.0
8.9-11.4 14-22

75 0 0 2.5 25 4.5-8.6
10.2-12.4 15-25
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Fig. 14. Comparison of gas extraction concentrations.
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Fig. 15. Comparison of pure flow rates of gas extraction.

by grouting based on the identification results, significantly
improved borehole sealing quality and enhanced the gas ex-

traction concentration of the coal seam.

7. Conclusion
To achieve high-precision identification of coal fractures, a

novel MCSN fracture segmentation model was designed, and
its segmentation performance was evaluated qualitatively and
quantitatively. The model was further applied to identify frac-
tures in the surrounding rock boreholes. The main conclusions
are as follows:

1) The VGG16 was adopted as the backbone feature extrac-
tion network, the MCSN model was built by integrating
a DCAC module and a multiscale feature extraction
network. This proposed MCSN model incorporated a
multiscale fusion function, which enabled it to capture lo-
cal and global contextual information for accurate seman-
tic segmentation predictions. Additionally, it effectively
mitigated the noise interference typically associated with
traditional image segmentation methods during fracture
extraction.

2) The MCSN model successfully addressed interference
in fracture recognition caused by gangue, artifacts, and
complex pore structures to achieve high-precision coal
fracture identification. In terms of coal fracture identi-
fication, the evaluation MIoU, Re, Pre, and MPA met-
rics for the model were 87.69%, 92.75%, 91.55%, and
92.75%, respectively. For rock fracture identification, the
corresponding evaluation metrics reached 86%, 91.41%,
91.6%, and 91.41%, respectively.

3) The MCSN model was utilized to conduct an on-site
characterization of fractures in gas extraction boreholes.
The distribution ranges and development degrees for sur-
rounding rock cracks were accurately determined, which
provided a reliable reference for the reasonable sealing
length of gas extraction boreholes. Optimizing the sealing
length using the MCSN model increased the average gas
concentration in the extraction boreholes by 15% during
the extraction period, while the average pure gas flow
rate improved by 12%, thereby enhancing the overall
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effectiveness of coal gas extraction.
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