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Abstract:
This work considers a coupled system of the MATLAB Reservoir Simulation Toolbox, a
multi-phase network simulator and topside processing facilities, with the intent to provide a
research tool for studying integrated planning and optimization. To this end, a collection of
open-source tools are presented that can be combined with MATLAB Reservoir Simulation
Toolbox to model, evaluate and optimize the economy of integrated systems, including
reservoir and network under different market (costs and revenue) scenarios. The tools are
organized in four repositories containing code for cost/price scenario modelling, derivative-
free trust region optimization, pipe/network simulation and reservoir-network coupling and
examples. A brief background on each of these tools is given, followed by the presentation
of a fully implicit approach for the reservoir-network coupling. Moreover, a description is
given on how to set up coupled simulation models, and finally, a presentation of numerical
examples, including an optimization example that utilizes the full set of above-mentioned
tools.

1. Introduction
The upstream part of the hydrocarbon value chain, from

reservoir to export, involves multiple disciplines and a wide
range of process and production technologies. Optimization
of the system as a whole is therefore a challenge, given: the
complexities of modelling the coupled system, the significantly
different timescales for the flow through the system, the uncer-
tainty regarding the detailed reservoir structure, the uncertainty
of future profits and costs trajectories.

Additionally, the operation priorities change during the
lifetime of a petroleum field. For example, reservoir pressure
support and produced water strategies may only become
important in the later stages of the field lifetime, while in
the early stage of development a frequent drilling schedule

may be cost effective, due to the high initial production
potential. These complexities and uncertainties in combination
with the inherent high profitability of hydrocarbon production
may have dampened the incentives to implement system
wide optimization over both short-term (days to weeks) and,
especially, long-term (years). However, given the current focus
on reduced carbon footprints this work focuses on developing
a computationally efficient system optimization framework,
where the influence of uncertainty can readily be implemented.
The aim is optimal policies for hydrocarbon field operation
that maximizes profit and minimizes the energy consumption
and emissions.

Different models are employed in the optimization depend-
ing on the time scale of decisions, and there is a natural divi-
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Fig. 1. Illustration of a hydrocarbon production system that
takes into account the reservoir flow dynamics; the multi-
phase well and flow lines that connect to first stage pro-
cessing; process and down-hole production equipment, e.g.,
Direct electrical heating and Electrical submersible pumps,
and finally production economy including production revenue,
energy consumption and production, and emissions costs.

sion between the computational tools used for the daily
production optimization and those used for long-term field
planning optimization. Traditionally, production pipes and
network simulations have been performed at time scales where
reservoir responses can be approximated by simple inflow
performance relations (IPR), while reservoir simulations were
run largely ignoring dynamics above the reservoir. This is
however no longer the case, and most industry grade reservoir
simulators today support modelling of complex production
networks where pressure drops along the network are modelled
by vertical flow performance (VFP) tables generated from
multi-phase pipe simulations. An open-source simulator that
supports production network modelling is the Open Porous
Media (OPM) Initiative OPM Flow (Rasmussen et al., 2021).
Also, there have been several attempts at modelling reservoir
responses beyond IPR for pipe and network simulation soft-
ware, both for dynamic wellbore modelling (see e.g., da Silva
and Jansen (2015) for a review) and for improved coupling
(Guyaguler et al., 2011; Redick and Gildin, 2018; Hoffmann
et al., 2019).

Both IPR-curves and VFP-tables serve as reduced order
models for the well reservoir inflow and well flowline pipes,
respectively. An IPR-curve is a simplified model for a well’s
phase or component flow rate as a function of its bottom-
hole pressure (typically a good approximation only for a
limited time-span). VFP-tables can be used as a computa-
tionally efficient replacement for a pipe/network simulator
given that the occurring flow regimes are sufficiently sampled
and sufficiently smooth. In the same manner, IPR-curves can
be used as a computationally efficient replacement for the
reservoir simulator but only on a time-span where the reservoir
pressure remains more or less unchanged. In the following
work detailed models are presented for the reservoir and well
flowline network, connected through an implicit coupling.
This setup is relatively computationally expensive, but it is
shown that optimization still is practically possible. In future
developments the aim is to add functionality for the creation of
IPR and VFP models from the detailed modelling framework,
that can be employed when greater optimization speed is
desired.

Although there exist several commercial solutions for cou-
pling of subsurface and surface facility simulation models,
the authors are not aware of any existing fully open-source
solutions that support fully implicit coupling strategies. It
is however noted, that Chen (2020) considered an explicit
coupling approach of MATLAB Reservoir Simulation Toolbox
(MRST) to a surface network model using IPRs derived from
average drainage regions. Although explicit couplings can be
efficient in certain situations, the approach (Chen, 2020) was
not successful in reducing oscillations for simulation cases
using larger time steps. With the increased focus on carbon
emissions, it becomes increasingly important to enable tighter
and stronger coupling between the reservoir model, production
network and surface facilities for improved long-term predic-
tion modelling of multiple factors, such as production, econ-
omy, energy consumption and emissions. This work considers
a coupling of MRST to an open-source multi-phase pipeline
network simulator, with the intent to provide a research tool for
studying integrated optimization. One advantage of employing
MRST as the reservoir simulator is the availability of reduced
order reservoir modelling tools (Lie and Krogstad, 2023, 2024)
for exploring coupling strategies and speeding up optimization
loops. The reduced order modelling approach also facilities
uncertainty quantification and policy scenarios, because larger
parameter spaces can be explored.

In addition to reservoir and multi-phase pipeline network
coupling, the modelling framework presented in this work
includes models for the initial separation and re-pressurization
process, in terms of pump and compressor energy expenditure
with regards to the oil, gas and water flow, including water/gas
injection and export pipeline transport. In order to facilitate
optimization in terms of profit and cost, a database of scenarios
is compiled with current and future estimations of oil and gas
prices, CO2 taxes and electricity cost under uncertainty. An
illustration of such a hydrocarbon production system is given
in Fig. 1 for an offshore application.

In sum, this work presents a collection of open-source
code intended for research on integrated field planning and
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optimization. The code is located in a repository group on the
SINTEF GitLab server, and the Reservoir Network Coupling
repository in the group includes download and usage instruc-
tions. The paper proceeds as follows: first a description is
given of the flow network modelling and a detailed description
of the coupling strategies between the pipeline network and
the reservoir model (for information on the reservoir model,
MRST, see Lie (2019)). A description is then given of the in-
tegrated production optimization under uncertainty and market
prices, energy cost and tax scenarios. Finally, three simulation
examples are provided: A simplified example to illustrate
coupling strategies (Section 4.1); reservoir-network coupling
via a reduced model (Section 4.2); an optimization example
with the full coupled system, including topside process and
profit/cost scenarios (Section 4.3).

2. Flow network, reservoir modelling and
coupling

This work considers the use and coupling of two distinct
models, namely MRST for reservoir modelling and a flow
network solver written in C++. The flow network solver is
made accessible from MATLAB/MRST by a MEX-interface.
All reservoir simulations are performed using the (automatic
differentiation) AD-based solvers in MRST (Lie, 2019; Lie
and Møyner, 2021), and coupling strategies heavily depend
on the AD-generated Jacobians for the black-oil problems
considered.

2.1 Flow network modelling
The network model is a one-dimensional steady-state

model with a concept that is similar to the steady-state solvers
in commercially available software like LedaFlow (Kongsberg
Digital AS, 2024) or OLGA (SLB, 2024), solving for the mass
flow rates and pressure in a network of pipes. The model works
for any configuration of pipes, both converging (multiple pipes
joining into one pipe) and diverging (one pipe splitting into
multiple pipes) networks. The network model automatically
discretizes each pipe into a number of cells, though the grid
size can also be decided by the user. The default grid size is 20
D (D = pipe diameters) in vertical pipes and 40 D in horizontal
pipes, with a linear weighting for inclinations between. In each
cell the pressure drop and phase fractions are determined by
a so-called Unit Cell Model (UCM), by using the mass flow
rates and fluid properties as input. The UCM is a modelling
concept commonly used in the oil and gas community. The
UCM used in this study is based on the model described in
Khaledi et al. (2014) and Smith et al. (2015), with several
improvements implemented as part of the current work. The
main improvements are:

1) The model has been extended to handle three-phase
flow, though in a simplified manner. The oil and water
are combined into a single liquid phase using mixture
properties.

2) The robustness of the UCM has been significantly im-
proved, both through an improved solution algorithm
and by ensuring continuous and smooth physical models.
The UCM is able to find a solution for all cases in an

automated test set of 45 million simulations, covering a
wide range of conditions.

3) The model has been rewritten from MATLAB to C++,
making it significantly faster. Solving the model takes
about 10−4 seconds on average (for the UCM, not the
network model).

Just as for the previously published model, the UCM used
in this study has some assumptions/limitations: (1) there is
no slip between the entrained gas bubbles and the liquid, (2)
there are no liquid droplets in the gas, (3) the oil and water
are treated as a single liquid phase.

The UCM is a steady-state model, which means that it is
valid for a single point in a pipe with constant flow rates, fluid
properties and pipe properties. Such models are therefore also
often referred to as “point-models”. It should also be noted
that though reasonable results can be expected, the predictions
cannot be expected to be as accurate as using a commercial
model, as this would require years of development. The UCM
simply uses some commonly used closure laws found in the
open literature, as is described in Smith et al. (2015). The
inputs to the UCM are the mass flow rates (

−−→
m f r), fluid

properties and pipe properties. From this the phase fractions
(⃗α) and pressure gradient ((dp/dx)UCM) are calculated (Eq.
(1)), and the pressure gradients in turn determine the pressure
profile through Eq. (2):

UCM(
−−→
m f r, ρ⃗, µ⃗,θ ,D,ε)−→ α⃗,

dp
dx

UCM
(1)

where D is the pipe diameter, θ is the pipe inclination and ε

is the pipe roughness, while ρ⃗ and µ⃗ are the fluid densities
and viscosities, respectively. To solve the pressure profile and
phase fractions in an entire pipe or a network of pipes, the
UCM needs to be solved in each cell coupled to each other.
For a cell at index i:

pi+1 − pi =
∆xi

2
dp
dx

UCM

i
+

∆xi+1

2
dp
dx

UCM

i+1
(2)

Eq. (2) states that the difference in the pressure (p) between
two neighbouring cells equals the pressure gradient given by
the UCM (Eq. (1)) in the two cells, multiplied by half of each
cell length (∆x). In addition, continuity is needed in the mass
flow rates. The following equation relates the flow rate in and
out of one cell to possible source terms (Γ) in the cell. The
network solver has the ability to include both positive and
negative mass sources at any location. If there are no sources,
the flow rates in and out of the cell are equal:

−−→
m f rout

i −−−→
m f rin

i = Γ⃗i (3)
where both the mass flow rates and the source terms are in
kg/s. Together Eqs. (2) and (3) give a coupled system matrix
for all cells, with the mass flow rates and the pressure being the
unknown variables. Note that the mass flow rates are stored at
the cell faces, while the pressures are stored in the cell centres.
The user can either specify constant fluid properties (though
with a compressibility), or specify the path to a PVT-file
with tabulated properties (generated with for instance PVTSim
(Calsep, 2024) or Multiflash (KBC, 2024)).

Boundary conditions are also needed to close the system
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of equations. The possible boundaries are:

1) Mass flow: Mass flow rates for all phases are specified.
2) Pressure: If there is flow from the pipe and into the

pressure boundary, the pressure boundary only acts to
connect the pressure in the pipe to a boundary pressure.
If there is flow from the pressure boundary into the pipe,
the boundary in addition acts to specify the flow rates
(pressure driven flow rates).

3) Junction: The boundary can also be a junction, which
acts similarly to a pressure boundary, with either inflow
or outflow. In addition, an extra set of equations is
available for conservation of the mass flow rates through
the junction.

The network model also has some assumptions and limi-
tations:

1) There is no phase change (evaporation or condensation).
2) For diverging networks, a simplifying assumption is made

that the flow split through a junction is the same for all
phases. For the scenarios presented in this study however,
only converging networks are used.

3) There are no temperature calculations, so the temperature
must be given by the user. A single temperature can
be given for the entire pipe, or the temperature can be
individually specified for different parts of the pipe, or
even for each cell. This allows for specifying a non-
uniform temperature profile along the pipe, if one has an
approximate idea of what that temperature profile would
be.

2.2 Model coupling
Coupling of distinctly different simulation models is a

common but challenging task, particularly for different time-
dynamics. For reservoir simulations typically requiring a fully
implicit solution procedure for stability, it is not likely that any
form of explicit coupling to a network model (with even faster
dynamics) will be successful. Accordingly, the aim is a fully
implicit solution of the coupled network-reservoir system.

For a detailed description of the discretized equations
describing a three-phase black-oil model, the reader is re-
ferred to Lie (2019) and Lie and Møyner (2021). Herein,
we will simply denote as xxxr,k the vector of all unknown
primary variables at simulation step k. Hence, xxxr,k contains
pressures and phase saturations for every grid cell in addition
to bottom-hole pressures and rates for each well. In the fully
implicit approach, each simulation time step involves solving
a nonlinear system of equations:

rr(xxxr,k,xxxr,k−1) = 000 (4)
where xxxr,k−1 contains the (known) primary variables of the
previous step, and all property evaluations in rr depend on
the unknown xxxr,k. The system in Eq. (4) is solved to a
given tolerance by the Newton-Raphson method, where the ith

iteration update δxxx(i)r,k is obtained by solving the linear system:

J(i−1)
r,k δxxx(i)r,k =−rr(xxx

(i−1)
r,k ,xxxr,k−1) (5)

where J(i−1)
r,k = ∂ rr

(
xxx(i−1)

r,k ,xxxr,k−1

)
/∂xxx(i−1)

r,k is the Jacobian
matrix of all partial derivatives. As previously mentioned, the
Jacobian of the reservoir equations is generated by automatic
differentiation (Lie and Møyner, 2021).

For a given time step k, consider the discrete reservoir
system of equations rr(xxxr,k,xxxr,k−1) = 000, and the steady-state
discrete network system of equations rn(xxxn) = 000. For the two
systems to be compatible, there are (assuming a three-phase
system) four quantities per well that need to match between
the two systems. These are the three-component mass flow
rates (or volume rates at specified conditions) and the bottom-
hole pressure (bhp). These correspond to each well’s primary
variables in MRST (assuming the standard well model is used),
and likewise, to the primary variables for the network solver
in its boundary node.

Accordingly, the two systems may be rephrased as:

rr(xxxr,k,xxxr,k−1,xxxn,k) = 000 and rn(xxxr,k,xxxn,k) = 000 (6)
where e.g., rr sets up its well control equations as bhp-control
with values taken from the corresponding network solution
node pressures, and rn sets up its corresponding boundary
conditions with mass rates taken from the reservoir solution.
In a fully implicit coupling strategy, analogously to Eq. (5), a
Newton update of the coupled system becomes: JJJrr JJJrn

JJJnr JJJnn

 δxxxr

δxxxn

=

 −rrrr

−rrrn

 (7)

where Ji j = ∂ ri(xxxi)/∂xxx j and where the k step index and (i)
iteration index have been omitted for brevity. In essence, there
is no difference between Eqs. (5) and (7). In practice, however,
if the two models are implemented in separate simulators,
constructing the coupled system Jacobian matrix Eq. (7) can
be challenging. For the code presented herein, the implicit
coupling is performed using the AD-functionality of MRST
and equipping the network solver with functionality to output
its Jacobian matrix. Hence for a given Newton update, JJJrr
and JJJnn are available, so the missing pieces are the Jacobian
cross terms JJJrn and JJJnr. In this implementation, the coupling
matrix JJJrn picks out the boundary node pressure updates for
the network model to enforce continuity in pressure, while JJJnr
picks well component rate updates from the reservoir model
to enforce flux continuity. It is noted that this merging only
takes effect for the production networks, as the simplifying
assumptions have been made that injection networks only
consist of single pipes with flow rate control without pressure
limits. In this way injector bhps can be determined solely
based on the reservoir model, and the coupling becomes one-
way.

Three solution strategies have been implemented for the
coupled system of Eq. (6) that all (if successful) converge
to fully implicit solutions of the coupled system. The first,
however, uses a simple fixed-point strategy where forming the
coupled Jacobian matrix is not required.
(1) Sequentially fully implicit (SFI). This is the least intrusive
approach, and simply alternately solves the two systems until
converged. One outer iteration of this approach is achieved
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by first solving the (non-linear) reservoir equations with fixed
bhps obtained from the previous network solver boundary node
pressure values, and then solving the (non-linear) network
equations with boundary node mass rates obtained from the
previous reservoir solution. Accordingly, at iteration i, the
solution sequence is:

rr(xxx
(i)
r ,xxx(i−1)

n ) = 000

rn(xxx
(i)
r ,xxx(i)n ) = 000

In effect, this a fixed-point approach where one cannot hope
for more than linear convergence. Compared to the standard
fully implicit approach, this potentially is a computationally
costly approach, since in each coupled non-linear iteration,
it needs to solve both the non-linear reservoir and network
systems (and not just a linearized system). Also, for more
complex systems, convergence can be hard to obtain at all.
(2) Fully implicit (FI). For the standard fully implicit approach,
the equations are solved fully coupled as Eq. (7). In the
examples presented herein, the coupled linear systems are
solved using a direct sparse method (MATLAB’s backslash)
which is not efficient for problems exceeding ≈ 106 unknowns.
In a more unified framework, it is expected that a tailored
constrained-pressure-residual (CPR) approach would be the
best option for solving linear systems on the form Eq. (7).
(3)Fully implicit with local network solves (FI-LNS). If the
non-linear dynamics in the network is much faster than in the
reservoir, it can be advantageous to spend extra iterations on
the network solver, in order to reduce the number of global
Newton iterations. In this third option, the full non-linear
network equations are solved keeping the current reservoir
states fixed, in between each coupled Newton iteration. Hence,
before each coupled Newton iteration i, the procedure is to

solve rn(xxx
(i−1)
r ,xxx

(i− 1
2 )

n ) = 000 with xxx(i−1)
r fixed. Note that this

yields rrrn ≈ 000 for the subsequent coupled iteration Eq. (7)).
Section 4.1 presents a simple comparison of the three

coupling approaches.

3. Integrated production optimization
Integrated production optimization is a discipline that

considers both long-term and short-term timescales when
optimizing field operation decisions. A physics-based inte-
grated model of reservoir and production network facilities
could provide more realistic forecasts for production planning
than standalone models. An important aspect of integrated
modelling is how the coupling between the reservoir and
gathering network works, with different approaches described
in Section 2.2.

When it comes to the optimization of an integrated model,
different approaches can be used, depending on the charac-
teristics of the models, the timescale of the decisions and
the overall goals. Traditionally, in well control optimization
problems, response surfaces can be regarded as having a
smooth curvature. In such cases, there are simulators that
implement adjoints and provide sensitivities with respect to the
control variables, allowing the use of gradient-based methods
(Brouwer and Jansen, 2004; Sarma et al., 2006; Kraaijevanger
et al., 2007; Bukshtynov et al., 2015). Even though MRST

has flexible adjoint capabilities, this has not been carried over
to the coupled reservoir-network solver, so in the coupled
setting adjoints are currently not an option. It is however
noted that gradient-based optimization may not be the best
option if problems are not sufficiently smooth. In practical
applications, adjoint-based gradients may also be sensitive to
simulator adaptive time-stepping and accuracy (tolerance) of
the forward solver.

While gradient-based approaches can be efficient if deriva-
tives are trusted (Jansen, 2011), derivative-free methods are
often a practical alternative when gradients are unavailable,
or are unreliable due to cost function discontinuities caused
by simulation-based constraints. Compared to gradient-based
methods, derivative-free approaches tend to require a larger
computational budget for optimization, mainly due to the lack
of the additional information provided by the approximation
model when evaluating new candidate solutions during the
optimization search (Ciaurri et al., 2011).

3.1 Production optimization under uncertainty
The objective function adopted is an economic measure

that incorporates key financial parameters, such as oil and
gas prices and the costs associated with water injection and
emission costs. Specifically, the objective function is the Net
Present Value (NPV), which is calculated from a series of cash
flows over a specified time period. The NPV may be expressed
as:

NPV(qu) =
T

∑
t=1

1
(1+d)τ̂(t)

[
r̂og(qu, t)+ r̂gg(qu, t)− r̂pc(qu, t)− r̂ec(qu, t)

]
(8)

with qu being a vector with the rates of gas, oil and water
rates for all time steps t = 1, . . . ,T . For given flows qu at
time t, the gains/costs are given by the following functions:
r̂og(·) for oil production gains; r̂gg(·) for gas production gains;
rpc(·) for the topside process costs; and rec(·) the CO2 for the
emission costs. The function τ̂(t) maps the current time t to
the corresponding year of production. The revenue generated
from field production is discounted over time using a discount
factor d.

An ensemble of reservoir models represents the geological
uncertainty present in the models. For this reason, instead
of maximizing the NPV of a single realization, the objective
function is the expected value of the NPV for the ensemble.
As all the realizations which belong to the ensemble are
considered equally probable, the expected value is given as
the mean of the NPV values computed across all realizations,
namely:

f (qu) =
1
M

M

∑
i=1

NPVi(qu) (9)

in which NPVi(qu) is the economic function resulting from
the ith realization, assuming a well control sequence u, and M
is the number of reservoir realizations.

The production optimization problem for an ensemble of
geological realizations can then be formulated as:
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P : maximize
u

f (qu) (10a)

subject to:
Ri(x0,xu,u) = 0, ∀i = 1, . . . ,M (10b)
qu = Q(xu) (10c)
ulb ≤ u ≤ uub (10d)
c(u)≥ 0 (10e)

The reservoir and network equations of the integrated
model for each ensemble member i are denoted by Ri(x0,xu,u)
in Eq. (10b), where the reservoir states are xu, and the well
controls are u.

The initial states are given by x0, and the control sequence
and corresponding flow rates are computed from the states
using Q(xu) in Eq. (10c). The constraints Eqs. (10d) and (10e)
are bounds on the well controls and some additional inequality
constraints, respectively. The lower and upper bounds ulb
and uub are typically used to impose physical or user-set
limits that prevent invalid control strategies, such as too low
pressures (causing production issues), or too high pressure for
injectors, exceeding formation or equipment limits. Inequality
constraints Eq. (10e) on the input variables u are used to limit
the field-wide production on the platform, such as the total
water handling limits or environmental constraints.

3.2 Derivative-free trust region optimization
Among the available derivative-free optimization methods,

model-building approaches tend to present a better conver-
gence performance and require less computational budget
than model-free or pattern-search approaches. This is mainly
because the model-building methods rely on the construction
of a model (polynomials, Gaussian distributions, and linear
regression) that provides additional information during the
optimization search. Derivative-free trust region methods have
exhibited good performance in production optimization prob-
lems, particularly because of their ability to reach close-to-
optimal solutions with fewer function evaluations than model-
free approaches (Conn et al., 2000, 2009).

A derivative-free trust region algorithm is applied for
the optimization of the robust well control problem. The
method constructs a polynomial interpolation model using
simulated data points, providing a locally valid approximation
of the underlying cost function. The next candidate solution is
determined by minimizing this approximate model. Compared
to direct-search sampling methods, the inference of curvature
information through the approximate model is expected to
enhance the efficiency of the search within the feasible space.
The model-building process of the derivative-free trust region
method relies on a polynomial interpolation of objective
function values, which in the robust well control problem will
be the expected NPV for all the realizations. The subsequent
search for new tentative solutions relying on this interpolation
is regarded as less sensitive to objective function noise and
error.

More information about the derivative-free algorithm used
in this example, with implementation details and applications
to production optimization can be found in Silva et al. (2020)

for deterministic problems, and more thoroughly reported
in Silva et al. (2022) for production optimization problems
under uncertainty. Recent studies, as reported in Hannanu
et al. (2024a, 2024b), proposed extensions to the derivative-
free trust region optimization algorithm to account for output
constraint-handling in the presence of uncertainty.

3.3 Market prices and scenarios
Commodity prices are crucial parameters in optimizing

profitability of petroleum production. To facilitate access and
use of price estimates gathered from multiple sources, a
software package is developed to simplify versioned access
to datasets for easy reproduction and documentation of as-
sumptions, as not all sources include all commodities. For
transparency the raw results from different studies have been
included in the package in addition to adapted prices. The
analyses require both short- and long-term estimates, and the
prices with estimates of uncertainty have been gathered from
multiple sources before being made available in a common
format.

For short-term estimates, historical data is used for elec-
tricity prices, wind and PV production, oil and gas prices,
and CO2 emissions. For long-term projections, estimates are
obtained from openly available research reports. For oil and
gas prices, the long-term values are based on the International
Energy Agency’s various future scenarios, including the Net-
Zero-Emissions by 2050 scenario, which predicts low oil
prices (USD 24/barrel) and high CO2 prices (USD 250/tonne)
(Bouckaert et al., 2021).

For electricity price scenarios, data is more variable and
dependent on numerous factors like technology costs, demand,
energy mix, and policies. Studies from the Norwegian TSO
Statnett (Statnett, 2020) and The Norwegian Water Resources
and Energy Directorate (Jelsness, 2020) provide some future
projections for electricity prices for Norway and Europe.

The software package is designed to allow for flexible
scenario creation defined by parameters such as the market
scenario, reference years, and methodologies, ensuring con-
sistency and provenance of data. The resulting market data
for the analyses below are represented as three generic price
scenarios: -Low, Medium, and High-.

4. Numerical examples
Three numerical experiments will now be presented with

increasing complexity to illustrate usage of the software.
A simplified example to illustrate coupling strategies. A
reservoir-network coupling via a reduced modelling of the flow
in the reservoir. And, finally, an optimization example with the
full, coupled system, including topside process and profit/cost
scenarios.

4.1 A simple example for testing coupling
strategies

As a simple illustrative example comparing coupling strate-
gies, a modified version is considered of the SPE1 model
(Odeh, 1981). This is originally a small black-oil model with
a single injector and producer. In this setup, the injector is re-
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Fig. 2. Simulation results for the example based on the SPE1-test. (a) Left plot shows topside pressure (control input) and bhp
for producer and (b) right plot shows oil/gas production rates at surface conditions.
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Fig. 3. Outer iteration counts per time step for the three
coupling strategies SFI, FI and FI-LNS.

moved (i.e., no pressure support), and a 1,000 meters long
vertical pipe is attached to the producer. The producer is
controlled by its topside pressure which at the beginning of the
simulation is set to 100 bar, but then reduced every 60 days
until the end of simulation, when it is at 5 bar. Since there is
no pressure support, the reservoir pressure drops substantially
during this simulation.

Fig. 2(a) reports the topside pressure (the control) and
corresponding bhp for the producer. The pressure drop in the
pipe (difference between the two), is mainly due to gravity
and friction. Initially there is no free gas in the reservoir,
but as pressure drops below the bubble point in the reservoir,
gas production increases (right plot). The effect of increasing
gas-to-oil ratio on pressure drop in the pipe, is initially a
decrease due to less dense mixture. However, toward the end,
an increase can be observed due to the high gas flow rate such
that friction and acceleration accounts for more than 25% of
the total pressure drop.

Fig. 3 reports the number of outer iterations required for
each time step for each of the three strategies. Note that
a single iteration for the sequential strategy is much more
computationally expensive than the other two approaches,
since it solves both non-linear systems to convergence. The
least costly iteration is naturally the standard fully implicit

strategy since this amounts to just solving the coupled linear
system. It is clear from Fig. 3 that the increased gas-to-oil ratio
makes the coupled problem harder for the sequential strategy
to solve, even for this simple problem setup, so it is not
advisable to use this approach for more complex problems. As
expected, the FI-LNS requires slightly less iterations than the
FI, but it is also slightly more expensive, so for this example,
their performances are more or less equal. We have observed,
however, that the FI-LNS is the most robust option, so for
the remaining numerical examples this will be the preferred
strategy.

4.2 Reservoir-network coupling via a reduced
model

In this example a detailed reservoir simulation model
is coupled to the pipe network model via a proxy that is
continuously calibrated to output from the detailed model. In
this way, the implicit coupling between reservoir and network
is still used, but the detailed reservoir simulation is considered
black box (and could in principle have been performed using
any simulator).

The example model is an altered version of an MRST
test-case which is based on the Norne field grid model. It
is however slightly altered to better serve the purpose of
illustrating the coupling methodology. It is noted that this is a
two-phase oil/water model, which results in a less challenging
simulation of the flow in pipes. On the other hand, low
compressibility, and hence fast reservoir pressure propagation,
makes the coupling more challenging (and global). Fig. 4(a)
shows the Norne model and the wells used for this example.
For the simulation schedule, the following is defined:

(1) The six injection wells all inject water at a constant
rate of 1,296 m3/day.

(2) The three producer wells P1, P2, P3 are connected to
inclining pipes of lengths 500, 750 and 600 m, respectively,
that all meet in a manifold. From the manifold there is a
vertical riser of length 500 m and at the top a pressure
boundary condition of 10 bar is imposed.

(3) The simulation is run for 40 years with time steps of
30 days.
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(a) (b)

Fig. 4. (a) Norne model and considered wells where cells are coloured by the logarithm of the horizontal permeability and (b)
the right plot depicts partitioning into coarse blocks used for the coarse models.

Reduced reservoir modelling. The purpose of this exam-
ple is to illustrate how the network coupling can be solved
with a reduced order reservoir model that shadows the (local
in time) response of the detailed reservoir model. There are
many possible candidates for such a reduced order model, but
here the MRST-functionality for coarse grid network models
(Lie and Krogstad, 2023, 2024) is utilized. In this approach the
detailed reservoir grid is partitioned into very coarse blocks
that serve as basis for a very coarse reservoir model. The
petrophysical parameters of this model are then considered
free and are calibrated so that model output matches that of
the detailed model. Parameter sensitivities are obtained by
adjoint simulations and calibration/optimization is performed
using the Levenberg-Marquardt algorithm.

Coarse model generation is based on a [10,6,1] logical
partitioning of the 44,915 cells in the detailed model grid. In
addition, since high accuracy is desired, the detailed grid well
cells are included as separate blocks in the coarse partitioning,
in order to have sufficient parameter-resolution around wells.
The resulting coarse partitioning is depicted in Fig. 4(b).
Due to an impermeable layer in the model, most of the
coarse blocks have been split horizontally, since the coarsening
algorithm assures that all coarse blocks are connected. In
effect, the resulting coarse model can be considered a two-
layer model. For calibration, an objective function is used that
calculates a mismatch value according to:

J =
Nw

∑
m=1

Nt

∑
k=1

∆tk
T

(
e2

k,bhp

w2
bhp

+
e2

k,w

w2
w
+

e2
k,o

w2
o

)
(11)

in this expression, Nw is the number of wells, Nt is the number
of time steps and T is the total simulation time. Further-
more, ek,bhp, ek,w and ek,o denote the respective mismatches
in bhp, water-rate and oil-rate for time step k. Finally, the
wbhp, ww and wo are weights that are set according to the
magnitude of pressure variances and flow rates for the model
under consideration. In this example, wbhp = 100 bar and
ww = wo =1,000 m3/day is used, and the aim is a mismatch
J < 10−5.

Coupled simulation strategy. The simulation is divided
into episodes where in each episode the aim is to have a
reduced reservoir model that sufficiently matches the fine

model, and where the episode can be re-run whenever the
reduced reservoir model needs re-calibration. Let xxxr,k and xxxrc,k
denote the fine model and coarse model reservoir states at
time step k, and let xxxp,k denote the corresponding pipe/network
states. For ease of notation, consider simulating the coupled
system from time zero to ∆T by performing m time steps. That
is, it is desirable to obtain xxxr,1:m and xxxp,1:m. This involves the
following steps:

(1) Simulate the coupled proxy-network model with the
imposed topside boundary condition for m time steps to obtain
states xxx(i)rc,1:m and xxx(i)p,1:m.

(2) Simulate the fine reservoir model for m time steps using
well controls (bhps) uuu(i)rc,1:m fetched from xxx(i)rc,1:m to obtain xxx(i)r,1:m.

(3) Fetch coarse model well output (bhps and rates) yyy(i)rc,1:m

from xxx(i)rc,1:m and fine model well output yyy(i)r,1:m from xxx(i)r,1:m. Then
if

∥yyy(i)r,1:m − yyy(i)rc,1:m∥ ≤ tol:

Set xxxr,1:m = xxx(i)r,1:m, xxxp,1:m = xxx(i)p,1:m and return.

∥yyy(i)r,1:m − yyy(i)rc,1:m∥> tol:

Re-calibrate coarse model to match yyy(i)r,1:m,

set i = i+1 and go to Step 1.
It is noted that an initial coarse model is needed for the

first episode, and for the current example this is obtained
by running the fine reservoir model for a few time steps
and training the initial coarse model to match these. The re-
calibration of the coarse model can be performed on any
amount of past history from the fine reservoir model. For
illustration, we consider the following combinations of episode
lengths versus re-calibration history.

(1) 6-month episodes/6 previous months re-calibration.
(2) 1-month episodes/4 previous months re-calibration.
In the first case, six month episodes are chosen and utilize

fine model output from the current episode whenever re-
calibration is needed. Hence, the coarse model is updated at
most every six months. For the second case shorter episodes
are used (one month) but re-calibration is performed over the
last four episodes. For both cases the mismatch tolerance is
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Fig. 5. (a) Oil and (b) water production rates for the Norne example obtained with the two simulation cases using 6-month
episodes/6-month re-training (solid lines) and 1-month episodes/4-month re-training (dashed lines). Note that curves for the
two cases are overlapping.

set to tol = 10−5, which is sufficiently strict that that well
curves completely overlap in eye-norm for the fine and coarse
model. As seen in Fig. 5, this also holds true for the two
coupled cases. For both cases a single re-calibration is required
for most episodes although a few don’t need calibration at
all. At the water breakthrough of well P1, two re-calibrations
are needed to reach the desired agreement between the fine
and coarse models. For the current implementation the case
with 6-month episodes/6-months re-training is the most com-
putationally efficient, since the model re-calibration is much
more frequent in the case using 1-month episodes/4-months
re-calibration. This is however in part due to the significant
relative overhead of running small models in MRST. In terms
of fine model evaluations, the two cases are fairly equal
(in complexity approximately equal to two uncoupled full
reservoir simulations).

4.3 Optimization example
A production optimization example will now be explored

of the integrated model with multiple geological realizations
of a detailed reservoir simulation model, coupled to a steady-
state gathering network model and topside facilities. The
objective function is the NPV for a selected market scenario
that includes the revenue from selling of the produced oil and
gas, subtracted by operational costs such as water handling
and energy costs. Optimization is performed considering a
time span of 4 years, with two control variables per well, the
topside pressure for the production wells, and the water or gas
flow rates for the injection wells.

The optimization example considered is an instance of
the problem formulated in Eqs. (10a)-(10e), also discussed
in Section 3.1. The example uses the synthetic Egg reservoir
as given by Jansen et al. (2014). The original model is two-
phase oil/water, that has been extended to a three-phase black-
oil model to enable more dynamic pipe flow. The reservoir
is positioned 600 m from the ocean surface, with production
and injection flow lines extending from a topside processing
facility on a surface rig down to the reservoir. The following
setup for the simulation is used:

(1) There are 8 injection wells, where 4 inject water and
4 inject gas, as given in Fig. 9.

(2) The 4 production wells are connected to production
multi-phase flow lines. The flow lines have pipe segment
lengths 200, 96, 267, 103, 220 and 50 m, having the respective
angles (relative to the horizontal) 90, 0, 50, -29, 85, and 0
degrees, as illustrated in Fig. 9. The production wells have a
diameter of 41 mm, and a constant temperature of 50 degrees
Celsius is to all flow lines pipeline segments.

(3) A topside process with 3 stage separation and 4 stage
compressor re-pressurization for gas injection and export, as
given in Fig. 8, where P1 is the topside pressure after the
choke, and P2 and P3, are set to 10 and 1.5 bar, respectively.
The mass fractions of gas passing compressors 2 and 3 are set
to 0.07 and 0.01, respectively. Therefore, the separation of gas
from liquid is not modelled as dependent on flow rates in the
topside process system. Oil and water separation is considered
to be 100%, hence cost for water treatment is not considered
in the current case. Pumps for oil export and water injection
are included, and relevant pump and compressor curves are
used to calculate the energy expenditure of the topside process
(Schümann and Bergmo, 2022).

(4) The simulation is run for 4 years. The first five time
steps have a duration of 0.1, 0.9, 4, 10 and 15 days, and
subsequent time steps have a duration of of 30 days.

For this example, 5 geological realizations are chosen for
the reservoir model, as depicted in Fig. 6, with the producers
coupled to a gathering network.

As the Egg model is a channelized reservoir, the geological
uncertainty is represented with different patterns for the high
permeability channels (realizations 1 to 5 from top-left to
bottom-right). In this way, a control strategy will have different
production performance, and thus different NPV values, for
each realization. The defined optimization problem will max-
imize the expected NPV value, which in this case is the mean
NPV, as all the realizations are considered equally probable.

As for the market scenarios, as described in Section 3.3, the
uncertain parameters are electricity prices, natural gas prices,
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Fig. 6. Log-permeabilities of three-phase Egg model realizations 1 to 5, given in subfigures (a) to (e).

Fig. 7. Market scenarios Lav, Basis, Høy (Low, Base, High) for the prices (from Jelsness (2020)) and (Zero Emissions, Delayed
Recovery, Stated policies) for the oil price (from Bouckaert et al. (2021)). The selected scenario used in the optimization example
include (a) low crude oil price, (b) low electricity price, (c) low natural gas price and (d) Zero Emissions scenario, high tax
on CO2.
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Fig. 8. Topside process (illustration from Schümann and Bergmo (2022), modified with permission) with 3 stage separation
and 4 stage compressor re-pressurization for gas injection and export. Here, P1 is the topside pressure after the choke, and
P2 and P3, are set to 10 and 1.5 bar, respectively. The mass fractions of gas passing compressors 2 and 3 are set to 0.07 and
0.01, respectively. Pumps for oil export and water injection are included, and relevant pump and compressor curves are used
to calculate the energy expenditure.
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Fig. 9. The synthetic reservoir case Egg as given by Jansen et
al. (2014). There are 8 injection wells, where 4 inject water
and 4 inject gas. There are 4 production flow lines (shown as
grey lines), that connect to a topside process shown in Fig. 8.

crude oil prices and the CO2 tax associated with natural
gas and crude oil production. Categories used for the oil
prices are ‘Zero Emissions’, ‘Delayed Recovery’ and ‘Stated
policies’ (Bouckaert et al., 2021). The other parameters have
the categories ‘Low’, ‘Base’ and ‘High’ (Jelsness, 2020). This
example uses a scenario with low electricity price, low natural
gas price, zero emissions scenario (high tax on CO2), and low
crude oil price, as given in Fig. 7.

The initial controls (u0) provided to the optimization are:
(1) Water injection rate (surface conditions), qw = 259

m3/day.
(2) Gas injection (surface conditions), qg = 25,920 m3/day.
(3) Producers topside pressure, psep = 240 bar.
Lower and upper bounds for the injectors mass flows and

topside pressure for the producers are set as constraints in the
optimization:

(1) Water injection bounds, 86 m3/day≤ qw ≤501 m3/day.
(2) Gas injection bounds, 8,640 m3/day≤ qg ≤40,000

m3/day.
(3) Producers topside pressure bounds, 220 bar ≤ psep ≤

280 bar.
The objective function is the expected NPV for all the

geological realizations calculated from the resulting well flows
obtained with the controls u.

The algorithm supports different types of constraints on
the control variables: Bound constraints, linear equality con-
straints and linear inequality constraints. For this example,
however, only bound constraints are used. Standard stopping
criteria are the minimum step length or radius size. Since
each linear system of the coupled model is solved using a
direct sparse solver, the simulation of a single realization
takes approximately 20 minutes. Accordingly, since ensemble
simulations are run in parallel this is also the evaluation time of
one function evaluation during optimization. The trust region
algorithm is run for 50 iterations (124 function evaluations).

The NPV evolution for the initial and optimized control
settings are shown in Fig. 10. Increased expected NPV is
observed over the initial controls for the optimized solution.
Furthermore, a slightly larger spread (thin lines) is seen among
the realizations for the optimized solution compared to the
initial. Fig. 11 depicts the optimized controls for the gas inje-
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Fig. 10. Evolution of expected NPV for the initial and optimal
controls (thick lines). Thin lines show evolution for individual
ensemble members.

ctors (left), water injectors (middle) and producers (right). For
all gas injectors, It is observed that the suggested strategy is
to inject at full capacity for the first period while reducing to
the minimal for the second. All water injectors are suggested
to inject at full capacity for the entire time horizon. For the
producers, the situation is a bit less uniform, and indicates that
PROD1 is the most profitable well (operating at its minimum
pressure) while PROD3 is operating at its maximal pressure
for the entire horizon.

Production rates at the four producers (gas, oil and water
flows), are given in Fig. 12 for the initial and optimized
solution. The ensemble variation, for the optimal production,
due to the five reservoir realizations used in the optimization
are represented by shaded areas for the 10th-90th and 25th-75th

percentile. By comparing the initial and optimized production
rates it is clear that the optimization has reduced the amount of
produced gas at late times, while at the same time increasing
oil production in the early phase. Water production is however
increased for all producers. Still, the result is an overall
increase in NPV given the chosen market scenario.

The optimization example presented here is a synthetic
case assembled to illustrate a field production scenario, which
includes several factors that determine the overall performance
of upstream oil and gas production in terms of profits vs.
cost, such as reservoir flow under uncertainty, multi-phase flow
lines, topside process facilities and marked scenarios.

5. Concluding remarks
In this work a set of open-source research tools have been

presented for studying integrated planning and optimization
of petroleum production scenarios. The functionality of the
combined set of tools was demonstrated through numerical
examples.

Stable coupling of simulators written in different languages
(e.g., MRST and the network simulator) is not straightfor-
ward, and in the current work a fully implicit coupling was
achieved utilizing the AD-functionality in MRST together
with providing Jacobian output-functionality from the network
solver. The structure of the full (coupled) system Jacobian,
however, is not of a form that easily lends itself to the class
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Fig. 11. Optimal controls for first (blue) and second (red) control step. Control bounds are indicated as dashed horizontal lines.
Gas injection rates (INJECT 1 to 4), water injection rates (INJECT 5 to 8), and choke pressures (PROD 1 to 4) are given in
subfigures (a), (b) and (c), respectively.
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Fig. 12. Initial (dotted line) and optimal (solid lines) production rates at the four producers, given by the (a) gas, (b) oil and (c)
water flows. The ensemble variation for the optimal production, due to the five reservoir realizations used in the optimization
(as seen in Fig. 6) is given by shaded areas for the 25th-75th percentile.

of linear solvers in MRST, and hence a direct sparse solver
was utilized in this work. Setting up coupled model simulation
cases requires some domain knowledge and analysis in order
to create a feasible system. However, potential users may find
the included case creation GUI helpful in this process.

Finally, an obvious improvement to the work presented
here would be collecting the functionality in a single coding
language. This would improve robustness and efficiency, and
make use of adequate linear solvers and e.g., adjoint capabil-
ities more easily attainable.
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